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Vorwort.
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Diese deutsche Übersetzung der im vergangenen Jahre in den Memorie
  della Reale Accademia delle Scienze di Torino (Ser. II, Bd. 38)
  erschienenen Monographie des Herrn G i n o L o r i a: Il passato e il
  presente delle principali teorie geometriche, welche mein Schüler
  Herr F r i t z S c h ü t t e angefertigt hat,
  begleite ich gern mit einem empfehlenden Vorworte, nachdem ich sie mit
  der Originalschrift und den handschriftlichen Zusätzen und Verbesserungen
  des Herrn Verfassers in Bezug auf ihre Richtigkeit verglichen habe.

Eine Geschichte der Geometrie unserer Zeit, in der jedes Jahrzehnt uns
  mehr vorwärts bringt, als es früher in einem Jahrhundert geschah, welche
  uns zu ungeahnten allgemeinen Anschauungen geführt hat, zu besitzen, ist
  der Wunsch aller Geometer; aber wir wissen auch alle, wie unvergleichlich
  schwerer die Aufgabe, eine solche zu schreiben, heute ist als vor fünfzig
  Jahren, wo der Aperçu historique von C h a s l e s erschien.

Herr L o r i a will seine »Chronik«,
  wie er seine Schrift in der Einleitung nennt, nur als eine Vorarbeit
  angesehen haben, welche zur Inangriffnahme des großen Werkes der
  Abfassung einer Geschichte der modernen Geometrie anspornen und diesem
  Werke dienen soll. Der Umfang, den er zunächst seiner Arbeit gegeben hat,
  bringt es, wie er selbst mehrfach bemerkt, freilich mit sich, daß die
  Darstellung bisweilen auf eine bloße Aufzählung von Namen und Schriften
  hinausläuft. Aber auch in diesem engeren Rahmen ist es, meine ich, dem
  Verfasser gelungen, dem Leser, als welchen
  ich mir in erster Linie einen Studierenden vorstelle, der schon etwas
  über die Anfänge hinaus ist, eine anschauliche Übersicht der
  hauptsächlichsten Untersuchungsrichtungen der Geometrie unserer Zeit
  vorzuführen; für alle Geometer aber werden die reichhaltigen
  Litteraturnachweise von großem Werte sein. Etwaige Lücken in denselben
  wird jeder, der unsere fast unübersehbare und den wenigsten vollständig
  zugängliche mathematische Litteratur kennt, dem Verfasser nicht
  anrechnen, und jede Mitteilung einer wesentlichen Verbesserung oder
  Ergänzung wird er gewiß gern entgegennehmen, um seine Schrift noch
  wertvoller zu machen, falls ihr eine neue Auflage beschieden würde.

Die Veränderungen, welche diese Übersetzung im Vergleich mit dem
  italienischen Originale aufweist, bestehen, außer stark vermehrten
  Litteraturnachweisen, in einer viel eingehenderen Besprechung der
  Differentialgeometrie im Abschnitte III und der Umarbeitung der auf die
  Gestalt der Kurven und der Oberflächen und die abzählende Geometrie
  bezüglichen Teile der Abschnitte II und III zu einem besonderen
  Abschnitte.



M ü n s t e r  i. W., Ende Mai 1888.




R. Sturm.
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Einleitung.

———

 


»Après six mille années d'observations l'esprit humain n'est pas
  épuisé; il cherche et il trouve encore afin qu'il connaisse qu'il peut
  trouver à l'infini et que la seule paresse peut donner des bornes à ses
  connaissances et à ses inventions.« — B o s s u e t.




Die Fortschritte der exakten Wissenschaft im allgemeinen und der
  Mathematik im besonderen[1]
  sind in diesen letzten Zeiten so beträchtlich gewesen, fortwährend folgen
  weitere nach, so schnell und unaufhaltsam, daß sich lebhaft das Bedürfnis
  fühlen macht, einen Rückblick auf den schon gemachten Weg zu werfen,
  welcher den Anfängern ein leichteres Eindringen in die Geheimnisse
  derselben und den schon Vorgeschrittenen ein sichereres Urteil gestattet,
  welches die Probleme sind, deren Lösung am dringendsten ist.

Der Wunsch, diesem Bedürfnisse zu entsprechen, soweit es die Geometrie
  anlangt, d. h. soweit es den höheren Teil unserer positiven Kenntnis
  betrifft — da, wie Pascal sagte, tout ce qui passe la géométrie
  nous surpasse — ist es, der mich veranlaßt, vorliegende Abhandlung
  zu schreiben.

Möge dieser unvollkommene Abriß die Veranlassung sein zu einer
  Schrift, die der Erhabenheit ihres Zieles würdig ist; möge diese dürftige
  Chronik der Vorläufer sein einer »Geschichte der Geometrie in unserem
  Jahrhundert«. 

 








I.


Die Geometrie vor der Mitte des 19. Jahrhunderts.

———

 

»Alle Entwickelungsstufen der Zivilisation sind so eng miteinander
  verknüpft, daß man vergebens versuchen würde, irgend einen Zweig der
  Geschichte von einer bestimmten Epoche ab zu studieren, ohne einen Blick
  auf die vorhergehenden Zeiten und Ereignisse zu werfen.«[2] Wenn das im allgemeinen wahr ist, so wird
  es doppelt der Fall sein »bei einer Wissenschaft, die so konservativ ist,
  wie die Mathematik, welche das Werk der vorhergehenden Periode nicht
  zerstört, um an dessen Stelle neue Bauten zu errichten«.[3] Daher ist es unerläßlich, daß ich, bevor
  ich an das eigentliche Thema dieser Abhandlung herantrete, d. h. bevor
  ich über die moderne Geometrie spreche, kurz angebe, auf welche Weise die
  Geometrie zu dem Standpunkte gelangt ist, von welchem ab ich vorhabe,
  ihre Entwickelung eingehender zu verfolgen.

Den ersten Ursprung der geometrischen Untersuchungen festzustellen,
  ist ein fast unausführbares Unternehmen. Die täglichen Erfahrungen jedes
  denkenden Menschen führen auf eine so natürliche Weise zur Vorstellung
  der einfacheren geometrischen Formen und zur Erforschung ihrer
  gegenseitigen Beziehungen, daß man vergebens versuchen würde, den Namen
  desjenigen zu nennen, der zuerst Geometrie betrieben hat, und anzugeben,
  zu welcher Zeit sie entstanden ist. Daher sind die Kenntnisse, welche man
  über die ersten Spuren dieser Disziplin hat, sehr unbestimmt; wer sich
  vornimmt, sie festzustellen, den umhüllt, wenn
  nicht völlige Finsternis, so doch nur ein wenig Dämmerlicht, welches ihm
  nur gestattet, die Umrisse bedeutenderer Bruchstücke, welche sich den
  Unbilden der Zeit entzogen haben, zu erkennen. So kann ein solcher
  feststellen, daß die ältesten geometrischen Studien von den Ä g y p t e r n gemacht sind, und kann die Erzählung Herodots
  wiederholen, nach welcher diesem Volke ein sehr wirksamer Antrieb, sich
  mit Geometrie zu befassen, durch die periodischen Überschwemmungen des
  Nils gegeben wurde, welche, indem sie die Grenzen zwischen den kleinen
  Besitzungen, in die Ägypten unter seine Einwohner verteilt war,
  verwischten, sie nötigten, dieselben jedes Jahr wieder herzustellen.[4] Die Haltbarkeit dieser
  Hypothese, um die Thatsache zu erklären, daß in Ägypten die Wissenschaft,
  von der wir handeln, eifrig betrieben sei, wird durch die praktische
  Natur der Gegenstände bewiesen, welche dort eingehender behandelt wurden:
  specielle Konstruktionen, Messungen von Längen, Flächeninhalten, Volumen
  u. s. f.[5]

Indem die Kenntnisse der Ägypter nach Griechenland übergingen,
  erhielten sie durch T h a l e s (640-540)[6] und die Anhänger der ionischen Schule,
  welche er gründete, eine wissenschaftlichere Gestalt. Thales ist in der
  That der erste, der sich damit beschäftigt hat, die von den Ägyptern
  entdeckten Sätze und einige andere streng zu beweisen. Jedoch erhob sich
  die Geometrie unter seinen Händen noch nicht zur wahren Wissenschaft;
  diese Würde erlangte sie erst durch die Untersuchungen des P y t h a g o r a s (nach einigen 569-470, 580-500 nach anderen) und
  seiner Schüler. Unglücklicher Weise aber bestand eine der Regeln, welche
  die Pythagoräer strenge beobachten mußten, darin, daß sie die Lehren,
  welche der Meister vortrug, geheim halten mußten; daher kam es, dass der
  geometrische Teil derselben allen, die nicht dieser Schule angehörten,
  unbekannt blieb. Aber nachdem das Haupt gestorben war, da suchten seine
  Anhänger, als sie bei den inneren Kämpfen, welche die Republiken
  Grossgriechenlands zerrissen, besiegt worden waren, Zuflucht in Athen und
  offenbarten dort, von der Not getrieben, die Geheimnisse, welche sie bis
  dahin so strenge verwahrt hatten. Und der wohlthätige Einfluß einer
  grösseren Verbreitung dessen, was die Pythagoräer von der Mathematik
  wußten, ist durch die wichtigen Forschungen offenbar geworden, welche in
  der Folgezeit die griechischen Gelehrten in der Periode, welche zwischen
  Pythagoras und P l a t o (429-348) liegt, gemacht haben. Sie können in drei
  Kategorien geteilt werden, benannt nach den berühmten Problemen: der
  Dreiteilung des Winkels, der Verdoppelung des Würfels, der Quadratur des
  Kreises, und führten zur Vervollkommnung des mehr elementaren Teiles der
  ebenen Geometrie.

P l a t o verdanken wir den ersten
  Anstoß zum methodischen Studium der Stereometrie, und das ist nicht das
  Einzige, wofür der göttliche Philosoph auf den Dank der Geometer Anspruch
  erheben könnte; denn ihm ist auch die analytische Methode zuzuschreiben,
  deren Macht allen bekannt ist, und seiner Schule (Akademie) die Lehre von
  den Kegelschnitten und, was nicht weniger wichtig ist, die von den
  geometrischen Örtern.

Aus diesen gedrängten Angaben[7] wird man leicht entnehmen können, daß die
  Bemühungen der angeführten Geometer zu einer Fülle von Eigenschaften der
  Figuren und zu Methoden, sie zu erklären, geführt und die Elemente für
  eine methodische Behandlung der Geometrie vorbereitet hatten. Daher dauerte es
  nicht lange, daß vollständige Zusammenstellungen dessen, was entdeckt
  war, erschienen. Von vielen kennen wir nur die Existenz; nur eine einzige
  ist uns vollständig erhalten worden, die Elemente des E u k l i d e s, und das glänzende Licht, welches von ihnen
  ausgeht, führt uns zu der Vermutung, daß alle die anderen
  Zusammenstellungen durch die Vergleichung mit ihnen verdunkelt sind.

Mit diesem Buche, welches nach zweitausend Jahren noch als einzig
  angesehen wird, »von dem man für die Entwickelung der Jugend diejenigen
  Resultate erhoffen kann, mit Rücksicht auf die bei allen zivilisierten
  Nationen der Unterricht in der Geometrie eine solch bedeutende Stellung
  in der Erziehung der Jugend inne hat«,[8] nimmt die wahre Wissenschaft der Geometrie
  ihren Anfang. Es ist das granitene Piedestal, auf welchem der großartige
  Bau der griechischen Mathematik sich erhebt, auf dessen Gipfel sich die
  anderen Werke Euklids und die unsterblichen Arbeiten von A r c h i m e d e s (287-212), E r a t o s t h e n e s (276-194) und A p o l l o n i u s (ca. 200 v. Ch.) befinden.[9]

Diese berühmten Gelehrten bezeichnen den Höhepunkt der griechischen
  Wissenschaft; nach ihnen beginnt die Periode des Verfalles, ja sogar,
  trotz einiger wichtiger Untersuchungen eines H i p p a r c h (161-126) und eines P t o l o m a e u s (125 bis ungefähr 200), trotz der Arbeit eines
  genialen Kommentators, wie P a p p u s war (derselbe lebte
  gegen Ende des dritten Jahrhunderts unserer Zeitrechnung),
  kommen wir nach und nach zu einer Periode völliger Unthätigkeit auf dem
  Gebiete der Geometrie.

Die Römer, die Eroberer und Gesetzgeber der Welt, scheinen jedes
  Untersuchungsgeistes zu entbehren, und wenn die Geometrie in der Epoche,
  in welcher sie herrschten, nicht ganz verfiel, so geschah das dank ihren
  Agrimensoren, welche jedoch bei ihren Operationen nur eine Genauigkeit zu
  erreichen suchten, die für die Bedürfnisse des täglichen Lebens
  ausreicht.[10]



Auch das Mittelalter kann keine Veranlassung geben zu einer längeren
  Erörterung. Die dichte Finsternis, welche in dieser Zeit die ganze
  Menschheit bedeckte, gestattete nicht das Auftreten eines Gelehrten, dem
  man irgend einen bemerkenswerten Fortschritt in der Geometrie verdankt.
  Man kann nur erwähnen, daß die vielfachen in dieser Zeit errichteten
  heiligen Bauwerke, die nach dem Ausspruche eines großen Dichters so
  zahlreich und kühn waren, weil sie die einzigen der menschlichen
  Intelligenz damals erlaubten Äußerungen darstellen, Kunde davon geben,
  daß derjenige Teil unserer Wissenschaft, der jedem Baumeister
  unentbehrlich ist, auch in dieser Zeit im allgemeinen bekannt war.

Diese für unsere Wissenschaft so traurige Zeit kann man als beendet
  ansehen mit Leonardo F i b o n a c c i (etwa 1180-1250); erst als von diesem
  ausgezeichneten Gelehrten die Algebra nach Europa übergeführt worden war,
  und seine hervorragenden Arbeiten ihren Einfluß ausübten, da hatte diese
  Periode der wissenschaftlichen Unthätigkeit ein Ende, und es beginnt eine
  neue Zeit, deren wir Italiener uns mit Stolz erinnern müssen, da in ihr
  unser Vaterland das Scepter der Mathematik inne hatte. Jedoch gravitierte
  diese Periode, wenn sie auch von großer Bedeutung für die analytischen
  Untersuchungen ist, nicht in merklicher Weise nach den geometrischen.
  C a r d a n o (1501-1576), S c i p i o F e r r o (?-1525), T a r t a g l i a (1500-1559), L u d o v i c o F e r r a r i (1522-1565) und andere
  weniger bedeutende, die dieser Periode angehören, haben den Ruhm, in
  unserem Lande die Entwickelung eines der wichtigeren Teile der Analysis,
  nämlich der Theorie der Gleichungen, bewirkt zu haben, sowie auch die
  Vervollkommnung einiger der schwierigsten Teile derselben gefördert zu
  haben, dank den öffentlichen wissenschaftlichen Herausforderungen, welche
  eine charakteristische Eigentümlichkeit dieser Zeit waren. Hingegen
  überlieferten sie die Geometrie ihren Nachkommen fast in
  demselben Zustande, in welchem sie dieselbe von den Griechen und den
  Arabern erhalten hatten.[11]

Nach dem Tode dieser tapferen Kämpen ging der Primat in der Mathematik
  über die Alpen und wurde von Frankreich infolge der Verdienste eines
  V i e t a (1540-1603) und eines
  F e r m a t (1590-1663) übernommen. Durch sie bereicherte sich
  die Geometrie mit Lösungen, die man vorher vergebens gesucht hatte. Auch
  wurden einige Werke des Apollonius, deren Verlust man beklagt hatte,
  wieder hergestellt.

Nicht viel später vermehrten P a s c a l (1623-1662) und D e s a r g u e s (1593-1662) das Erbteil
  der Geometrie mit originellen Gesichtspunkten, mit neuen Methoden und
  neuen Sätzen[12]. Aber die
  von ihnen ausgesprochenen Ideen blieben viele Jahre hindurch
  unfruchtbar, weil sie von dem analytischen Geiste, dessen überwiegender
  Einfluß sich schon geltend gemacht hatte, unterdrückt wurden.

Gleichwohl war im 17. Jahrhundert das Vorwiegen der Analysis noch
  nicht ein solches, daß es die Geometer die Probleme, deren Lösung man
  seit langer Zeit und so lebhaft gewünscht hatte, vergessen ließ. Zwischen
  den Bestrebungen dieser Zeit und den Wünschen der Gelehrten erhob sich in
  der Folge ein Wettkampf eigener Art, und aus dem Zusammenstoße
  verschiedenartiger Ansichten und Bestrebungen entsprang ein Funke, der
  fähig war, eine Flamme zu erregen, welche die kommenden Generationen
  erleuchten sollte;[13] es
  entstand die analytische Geometrie (1637).

Wenn man auch schon in einigen Methoden der griechischen Geometer, in
  einigen praktischen Regeln der Maler, der ägyptischen Astronomen und der
  römischen Agrimensoren Spuren von dem finden kann, was wir heute
  rechtwinkliges Cartesisches Koordinatensystem nennen; wenn auch schon die
  Araber und die italienischen Algebraiker aus der Renaissancezeit
  geometrische Betrachtungen auf die Lösung der Gleichungen angewandt
  hatten,[14] wenn auch schon
  V i e t a die Abscissen gebraucht
  hatte, um vermittelst Zahlen die Punkte einer Geraden zu bestimmen, wenn
  schließlich Nicolaus O r e s m e (ca. 1320-1382) und
  F e r m a t mehr oder weniger bewußt sich der Koordinaten
  bedient haben; so scheint doch ganz unbestreitbar D e s c a r t e s (1596-1650) der erste zu
  sein, welcher in ihrer ganzen Ausdehnung die volle Einsicht von der
  Möglichkeit, mit den algebraischen Rechnungszeichen die nach irgend einem
  Gesetze aufgebauten Formen des Raumes darzustellen, gehabt und der den
  ganzen Vorteil, den die Analysis und die Geometrie aus ihrer unerwarteten
  Vereinigung ziehen können, erkannt hat. Mit Recht wird daher Cartesius'
  Namen immer mit der Entdeckung der analytischen Geometrie verbunden
  bleiben.[15]

Die Leichtigkeit, mit welcher dieses neue Werkzeug Fragen zu lösen
  gestattete, welche die Alten für unangreifbar hielten, ließ die
  Zeitgenossen und unmittelbaren Nachfolger Descartes' die von Euklides,
  Archimedes und Apollonius eröffneten Wege ganz vergessen, so dass wir
  eine Zeitlang niemanden finden, der, um zu irgend einer wichtigen
  Wahrheit zu gelangen, sie eingeschlagen hätte.

Die kurz nach Descartes gleichzeitig von L e i b n i z (1646-1716) und N e w t o n (1642-1727) neu erfundenen Rechnungsarten betonten
  gerade diese Richtung, da sie bewirkten, daß man sich um diejenigen
  Probleme nicht bekümmerte, deren Lösung nicht geeignet war, die Allmacht
  der Methoden, welche die Welt diesen unsterblichen Geistern verdankt,
  hervortreten zu lassen, derartig, daß man sagen kann, daß mit Ausnahme
  der Philosophiae naturalis principia mathematica (1686) von N e w t o n und einiger Seiten von H u y g e n s (1629-1695),[16] von L a H i r e (1640-1718),[17] von H a l l e y (1656-1742),[18] M a c l a u r i n (1698-1746),[19] S i m p s o n (1687-1768),[20] von S t e w a r t (1717-1785)[21] keine mathematische Produktion jener
  Zeit dem angehört, was wir heute synthetische Geometrie zu nennen
  pflegen.[22]

Das hindert aber nicht, daß man diese Periode ohne Bedenken zu den
  erfreulichsten für die Geometrie rechnen muß. In der That ist der größere
  Teil der Probleme, welche von den Erfindern der Infinitesimalrechnung und
  ihren unmittelbaren Schülern aufgestellt oder gelöst worden, unter die
  wichtigsten der ganzen Geometrie zu rechnen, da sie die interessantesten
  und verstecktesten geometrischen und mechanischen Eigenschaften der
  Kurven und Oberflächen berühren. Wir sehen daher, daß nicht allein die
  Zahl der Kurven, welche einer näheren Betrachtung wert sind, sich
  ausserordentlich vermehrt,[23] sondern auch — was viel wichtiger
  ist —, daß die Betrachtung von Singularitäten einer Kurve und
  anderer neuer mit dieser verbundener Elemente eingefübrt wird, und daß
  infolge dessen Untersuchungsgebiete sich eröffnen, deren Existenz man
  vorher gar nicht geahnt hatte.

Die Leichtigkeit, welche die Cartesische Methode in der Auflösung
  einer so großen Anzahl von planimetrischen Aufgaben mit sich brachte,
  trieb natürlich die Geometer an, eine ähnliche für das Studium der Raumkurven
  und der Oberflächen zu schaffen. Daher entstand eine Verallgemeinerung
  dieser Methode, welche Descartes schon angedeutet hatte, und die S c h o o t e n (16..-1661)[24] in weiterer Ausführung veröffentlichte.
  Diese Andeutungen ließen bei P a r e n t (1666-1716) den Gedanken
  entstehen, eine Oberfläche durch eine Gleichung zwischen den drei
  Koordinaten eines ihrer Punkte darzustellen,[25] und bereiteten deshalb die analytische
  Geometrie dreier Koordinaten vor, welche im Jahre 1731 einen wesentlichen
  Teil der Mathematik zu bilden begann infolge einer klassischen Abhandlung
  von C l a i r a u t (1715-1765),[26] in welcher er im Alter von nur 16 Jahren
  mit einer seltenen Eleganz viele von den auf die Kurven doppelter
  Krümmung bezüglichen Problemen löste, welche ihre entsprechenden in der
  Ebene finden. Bald nach Clairaut schuf E u l e r (1707-1783) die analytische Theorie der Krümmung
  der Oberflächen (1760)[27]
  und wandte die analytische Methode an, um eine Klassifikation der
  Oberflächen zweiten Grades zu erhalten, gegründet auf analoge Kriterien,
  wie diejenigen, welche den Alten dazu gedient hatten, die Kurven zweiter
  Ordnung in Ellipsen, Parabeln und Hyperbeln zu unterscheiden. Endlich
  gehört der zweiten Hälfte des vergangenen Jahrhunderts das riesige Werk
  von M o n g e (1746-1818) an. Dieser
  verschaffte der analytischen Geometrie zweier Koordinaten das Aussehen,
  welches sie heute besitzt, indem er den methodischen Gebrauch der
  Gleichung einer Geraden einführte. Er stellte den wichtigen Begriff von
  Flächenfamilien auf und, indem er einige derselben behandelte
  (Regelflächen, abwickelbare, Röhrenflächen, »Surfaces moulures«),
  entdeckte er einen versteckten innigen Zusammenhang zwischen der Theorie
  der Oberflächen und der Integration der partiellen
  Differentialgleichungen, was Licht in diese, wie in jene Lehre
  brachte und den Geometern neue Gesichtspunkte enthüllte.[28]

Die geistige Bewegung, welche mit der Renaissancezeit begonnen und
  Italien an ihrer Spitze hatte, pflanzte sich, wie wir schon gesehen
  haben, zuerst unter Frankreichs Leitung fort, dann unter der von England
  und Deutschland. Aber gegen Ende des 18. Jahrhunderts, als Euler
  aufgehört hatte »zu rechnen und zu leben«,[29] stellte sich Frankreich wieder an die
  Spitze der mathematischen Welt. Nicht allein mit C l a i r a u t, d ' A l e m b e r t (1716-1783), L a g r a n g e (1736-1813), L a p l a c e (1749-1827), L e g e n d r e (1752-1833), P o i s s o n (1781-1840) und anderen
  gab es den Anstoß zum Studium der reinen und angewandten Analysis,
  sondern es kehrten auch mit M o n g e, C a r n o t (1753-1823) und P o n c e l e t (1788-1867) die Gelehrten zum Studium der
  geometrischen Formen zurück, in der Weise, wie es die Alten
  verstanden.

Monge schuf, indem er zu einem wissenschaftlichen Ganzen die wenigen
  Regeln vereinigte, welche die Baumeister und Maler sich geschaffen
  hatten, um die Bedürfnisse der Kunst zu befriedigen, und glücklich die
  Lücken ausfüllte, die sich zwischen ihnen noch bemerkbar machten, einen
  neuen Zweig der Geometrie, die darstellende Geometrie. Mit seinem
  klassischen Buche, welches er dieser Disziplin widmete,[30] und noch viel mehr mit seinen
  unvergleichlichen Vorlesungen, die er an der polytechnischen Schule
  hielt, brachte er das Studium der Geometrie, welches sich auf die direkte
  Anschauung der Figur stützt, zu Ehren[31] und, indem er die Vorstellung der
  geometrischen Figuren von drei Dimensionen erleichterte, machte er jene
  systematische Anwendung von stereometrischen Betrachtungen auf das
  Studium der ebenen Figuren möglich, welche Pappus schon erkannt hatte.[32]

Der Géométrie descriptive von Monge darf man die Géométrie
  de position von C a r n o t[33] an die Seite stellen, weil diese, indem
  sie mit jener das Ziel gemeinsam hat, der Geometrie diejenige
  Allgemeinheit zu verschaffen, welche man ausschließlich der Analysis
  zugetraut hatte, nicht weniger als jene dazu beitrug, den Aufschwung der
  reinen Geometrie vorzubereiten, welchen man von dem Erscheinen des
  Traité des propriétés projectives des figures (1822)[34] datieren kann.

Um zu überzeugen, wie bemerkenswert dieses Datum sei, wird es genügen,
  zu erwähnen, daß gerade in dem großen Werke von P o n c e l e t die Macht der Zentralprojektion als einer Methode
  der Demonstration und des Prinzips der Kontinuität als eines
  Untersuchungsmittels zum ersten Male gezeigt ist;[35] daß das tiefere Studium der Homologie
  zweier ebener oder räumlicher Systeme in demselben zum Begriffe der
  Korrespondenz zwischen zwei Mannigfaltigkeiten zweier oder dreier
  Dimensionen führte; daß die Kenntnisse der Alten über die Polarität in
  Bezug auf einen Kegelschnitt und die von der Mongeschen Schule gewonnenen
  über die Polarität in Bezug auf eine Fläche zweiter Ordnung, die dort zum
  ersten Male sich vereinigt finden, das Gesetz der Dualität vorbereiteten,
  welches, von S n e l l i u s (1581-1626)[36] und V i è t e[37] in
  der sphärischen Geometrie erkannt, bestimmt war, in seiner ganzen
  Allgemeinheit vier Jahre später von G e r g o n n e (1771-1859)[38] ausgesprochen zu werden;
  daß sich schließlich dort jene eleganten Untersuchungen über die
  Vielecke, die einem Kegelschnitt ein- und einem anderen umbeschrieben
  sind, finden, die J a c o b i (1804-1851), R i c h e l o t (1808-1875) und anderen Gelegenheit geben sollten,
  davon eine der elegantesten Anwendungen der Theorie der elliptischen
  Funktionen zu machen, welche man kennt.[39]

Die Abhandlungen, welche P o n c e l e t der Theorie der
  harmonischen Mittel, der reciproken Polaren und der Transversalen widmete,
  sowie andere weniger bedeutende von Gelehrten, welche zur M o n g e schen Schule gehörten, führen uns zum Jahre 1837, in
  welchem C h a s l e s' (1796-1880) Aperçu
  historique sur l'origine et le développement des méthodes en géométrie[40] veröffentlicht wurde. In diesem
  unübertrefflichen Werke brachte der Autor, nachdem er in
  bewunderungswerter Form alles, was das Erbteil der reinen Geometrie in
  seiner Zeit bildete, zusammengestellt hatte, die Rechte zur Geltung, die
  sie auf die Beachtung der Gelehrten hatte und welche von den blinden
  Anbetern der Analysis ihr versagt worden waren, und zeigte durch wichtige
  und originelle Untersuchungen, mit welchem Rechte er sich zum Beschützer
  der Sache der Geometrie gemacht hatte.[41]

Jedoch in dem Zeitraume, welcher zwischen dem Erscheinen des
  Ponceletschen Werkes und desjenigen von Chasles liegt, hatte sich
  Deutschland aus dem Schlafe gerüttelt, in welchen die einschläfernden
  Arbeiten der Schule der Kombinatoriker es versetzt hatten.
  Dieses Wiedererwachen bedeutete einen neuen Übergang des Szepters der
  Mathematik von Frankreich nach Deutschland.[42] In der That sehen wir durch die Arbeiten
  von Gelehrten wie M ö b i u s (1790-1868),[43] S t e i n e r (1796-1863),[44] P l ü c k e r (1801-1868)[45] und v o n S t a u d t (1798-1867)[46] die analytische Geometrie sich mit
  Methoden bereichern, von denen wir nicht wissen, ob wir mehr ihre Eleganz
  oder ihre Macht bewundern sollen, so der Barycentrische Calcul und die
  abgekürzte Bezeichnung; wir sehen die synthetische Geometrie Hilfsmittel
  erwerben für das Studium, der Kurven und Oberflächen, die bis dahin für
  dieselbe unerreichbar waren, sowie für die Gründung einer reinen
  Geometrie der Lage, die ganz und gar unabhängig ist von dem Begriffe des
  Maßes. Dank dem von C r e l l e (1780-1855) in dieser
  Zeit gegründeten Journal (1826), das bald zu verdientem Rufe gelangte,
  vorzüglich durch die Abhandlungen A b e l s (1802-1829), J a c o b i s und S t e i n e r s verbreiteten sich die
  eben angeführten Resultate schnell. Und so sehen wir hinter diesen Größen
  eine zahlreiche und glänzende Anzahl von Schülern, welche, indem sie
  Ähren lasen auf den Feldern, die von ihren Meistern bebaut waren, die
  Fruchtbarkeit des Samens zeigten, den jene ausgestreut hatten.

 

Hiermit will ich den Abriß der geistigen Bewegung, welche die neuesten
  geometrischen Untersuchungen vorbereitet hat, geschlossen haben und ich
  muß mich nun im einzelnen mit denselben befassen. Um mir nun die
  vorgenommene Aufgabe der Darlegung derselben zu erleichtern, werde ich
  meine Darstellung in verschiedene Teile teilen. Zuerst will ich mich mit
  der Theorie der ebenen Kurven und der Oberflächen beschäftigen, dann,
  nach einer kurzen Abschweifung zu den Untersuchungen über die Gestalt der
  Kurven und Oberflächen und über die abzählende Geometrie, werde ich mich
  mit den Studien über die Raumkurven befassen, um davon zur Darlegung des
  Ursprunges und der Entwickelung der Lehre von den geometrischen
  Transformationen überzugehen; darauf wende ich mich zur Geometrie der
  Geraden, um dann mit der Nicht-euklidischen Geometrie und der Theorie der
  Mannigfaltigkeiten von beliebig vielen Dimensionen zu schließen.[47]



 








II.


Theorie der ebenen Kurven.

———

 

Die allgemeine Theorie der ebenen Kurven entstand zugleich mit der
  cartesischen Geometrie. Es ist leicht die Gründe für die Thatsache
  anzugeben, daß das Erscheinen einer so wichtigen Theorie sich bis zu
  diesem Zeitpunkte verzögert hatte. In der That sind ja die Definition der
  Ordnung einer Kurve, die daraus folgende Einteilung der Kurven in
  algebraische und transcendente, der exakte Begriff einer in ihrer Ordnung
  allgemeinen Kurve ihrer Natur nach wesentlich analytische Begriffe. Sie
  synthetisch zu bestimmen, ist ein sehr schweres Problem, welches
  heutzutage erst den wiederholten Anstrengungen der Geometer zu weichen
  sich anschickt; dagegen, wenn man ein Koordinatensystem anwendet, eine
  wie leichte Sache ist es dann, diese fundamentalen Begriffe
  festzustellen, sie unter einander zu verbinden und aus ihnen interessante
  Folgerungen zu ziehen!

Die Wahrheit dieser Behauptung finden wir durch die Thatsache
  bestätigt, daß kurz nach Descartes wichtige Eigenschaften, die allen
  algebraischen Kurven gemeinsam sind, entdeckt wurden. Solche sind z. B.
  diejenigen, welche N e w t o n in den drei berühmten
  Theoremen, die in seiner Enumeratio linearum tertii ordinis (1706)
  enthalten sind, bekannt gemacht hat; ferner diejenigen, welche Newtons
  Schüler C o t e s (1682-1716) und M a c l a u r i n als eine
  Verallgemeinerung der von N e w t o n entdeckten Eigenschaften
  gaben;[48] schließlich die
  von W a r i n g (1734-1798)[49] gefundenen. Überdies wurden noch von
  M a c l a u r i n[50] und B r a i k e n r i d g e (etwa 1700, †
  nach 1759)[51] einige
  interessante organische Erzeugungsweisen von Kurven hinzugefügt, die
  ähnlich denjenigen waren, welche N e w t o n für die Kegelschnitte
  gegeben hat.[52] Endlich
  wurden von D e G u a (1712-1786)[53] Methoden für die Bestimmung der
  Singularitäten der durch Gleichungen definierten ebenen Kurven
  angegeben.

Es ist überflüssig zu sagen, daß die ersten methodischen Bearbeitungen
  der Theorie der ebenen Kurven unter dem Einflüsse der analytischen
  Geometrie stehen; wir verdanken solche E u l e r[54] und
  C r a m e r (1704-1752)[55]. Diese studierten dieselben von Grund
  auf (kurz nacheinander, der eine 1748, der andere 1750), indem sie sich
  vorzugsweise mit den Singularitäten befaßten, besonders mit den Fragen,
  welche man heute mit Hilfe der Geometrie des unendlich Kleinen löst. In
  dem Werke von Cramer, das in vielen Beziehungen zu bewundern ist, finden
  wir auch schon die ersten Untersuchungen über die Schnitte von Kurven und
  unter diesen auch den Hinweis auf das, was man später »das C r a m e r sche Paradoxon« genannt
  hat; das ist jener scheinbare Widerspruch zwischen der Zahl der Punkte,
  die zur Bestimmung einer Kurve von gegebener Ordnung nötig sind, und der
  Zahl der Schnitte zweier Kurven derselben Ordnung,[56] ein Widerspruch, welcher viele Jahre
  später (1818) von L a m é (1795-1870) durch das
  berühmte Prinzip aufgehoben wurde, welches seinen Namen trägt und das man
  als den Grundstein jenes gewaltigen Bauwerkes ansehen muß, welches aus
  einer Fülle von Lehrsätzen von G e r g o n n e,[57] P l ü c k e r,[58]
  J a c o b i,[59]
  C a y l e y[60]
  errichtet ist, und auf dessen Gipfel die geometrische Interpretation des
  berühmten A b e l schen Theorems[61] steht.

Nach den Arbeiten E u l e r s, C r a m e r s und dem Examen des
  différentes méthodes employées pour résoudre les problèmes de
  géométrie, in welchem L a m é mit großem Erfolge das
  vorhin angeführte Prinzip auseinandergesetzt und angewandt hatte, müssen
  wir uns zu P l ü c k e r wenden, um zu Arbeiten
  zu kommen, welche einen bemerkenswerten Fortschritt in der Theorie, die
  uns beschäftigt, bewirken. In dem im Jahre 1835 von diesem
  ausgezeichneten Geometer veröffentlichten System der analytischen
  Geometrie ist von der Methode der abgekürzten Bezeichnung Gebrauch
  gemacht und dieselbe für die Vervollständigung der Klassifikation der
  kubischen ebenen Kurven benutzt worden, welche so viele bedeutende
  Gelehrte unternommen hatten. In der vier Jahre später gedruckten Theorie der algebraischen Kurven[62] findet sich dann noch außer
  einer Aufzählung der ebenen Kurven vierter Ordnung,[63] welche B r a g e l o g n e (1688-1744)[64] und E u l e r[65] nur versucht hatten, die Aufstellung und
  Lösung einer Frage von sehr großer Wichtigkeit, derjenigen nämlich, die
  Beziehungen zwischen den Zahlen der gewöhnlichen Singularitäten einer
  ebenen Kurve zu finden. Schon P o n c e l e t hatte (1818) den
  Zusammenhang zwischen der Ordnung und der Klasse einer allgemeinen Kurve
  ihrer Ordnung gefunden und später den Einfluß eines Doppelpunktes
  bestimmt; indem er nun auf diese Resultate das Prinzip der Dualität
  anwandte, stieß er auf jenen anderen scheinbaren Widerspruch, welchen wir
  heute das Ponceletsche Paradoxon nennen, ohne daß es ihm gelang, dafür
  eine vollständige Erklärung zu finden. Das geschah durch P l ü c k e r vermittelst der
  berühmten nach ihm benannten Formeln, welche gestatten, drei
  Charakteristiken einer Kurve zu finden (Ordnung, Klasse, Zahl der
  Doppelpunkte, der Doppeltangenten, Zahl der Wendetangenten und der
  Rückkehrpunkte), wenn man die übrigen kennt.

Auf die Frage, welche in einem gewissen Sinne reciprok zu der durch
  die P l ü c k e r schen Formeln gelösten ist, ob jeder Lösung derselben
  eine wirkliche Kurve entspreche, mußte man negativ antworten, da neuere
  Untersuchungen dargethan haben, daß für gewisse Kurven (die
  rationalen Kurven) die Zahl der Rückkehrpunkte eine gewisse Grenze nicht
  übersteigen kann.[66]

Auf der anderen Frage, die Plückerschen Formeln auf eine Kurve
  auszudehnen, welche mit Singularitäten höherer Ordnung ausgestattet ist,
  beruhen die Untersuchungen von C a y l e y und anderen,[67] welche zu dem Schlüsse
  geführt haben, daß jede Singularität einer Kurve als äquivalent einer
  gewissen Anzahl von Doppelpunkten, Spitzen, Wendetangenten und
  Doppeltangenten betrachtet werden kann.

Ich füge noch hinzu, daß man durch J a c o b i,[68] H e s s e (1811-1874),[69] S a l m o n,[70] C a y l e y[71] und deren zahlreiche Kommentatoren[72] heute im Besitze eleganter
  Methoden ist, um analytisch die Wendepunkte einer durch eine Gleichung
  gegebenen Kurve, sowie die Berührungspunkte ihrer Doppeltangenten
  anzugeben.

Dank dem einen der überaus wertvollen Lehrbücher,[73] mit welchen S a l m o n so gewaltig zur Verbreitung der neuesten
  algebraischen und geometrischen Methoden beigetragen hat, ist es
  heutzutage leicht, sich über diese und viele andere Fragen, welche sich
  auf die analytische Theorie der ebenen Kurven beziehen, eine genaue
  Kenntnis zu verschaffen.



Man braucht aber nicht zu glauben, daß bei diesem Studium der
  fortwährende Gebrauch der Analysis unumgänglich sei; vielmehr erhob sich
  bald neben der Darlegung der Theorie der ebenen Kurven durch E u l e r, C r a m e r, P l ü c k e r, S a l m o n eine ebenso
  vollständige, aber mehr geometrische Theorie.

In einer berühmten Mitteilung, die im Jahre 1848 der Berliner Akademie
  gemacht wurde, zeigte S t e i n e r, indem er die Theorie der Polaren eines Punktes in
  Bezug auf eine Kurve wieder aufnahm, welche B o b i l l i e r (1797-1832) schon
  vordem[74] als eine
  Erweiterung der Diametralkurven Newtons und Cramers aufgestellt, und mit
  welcher auch G r a ß m a n n (1809-1877) sich beschäftigt hatte,[75] daß dieselbe als Grundlage für ein vom
  Gebrauche der Koordinaten unabhängiges Studium der ebenen Kurven dienen
  kann, und führte jene bemerkenswerten zu einer gegebenen Kurve
  covarianten Kurven ein, die heute seinen, Hesses und Cayleys Namen
  tragen. Diese kurzen Andeutungen, verbunden mit den Untersuchungen von
  S t e i n e r selbst, von C h a s l e s[76] und J o n q u i è r e s[77] über die Entstehung der algebraischen
  Kurven vermittelst projektiver Büschel von Kurven niederer Ordnung,
  dienten als Grundlage für die Introduzione ad una teoria geometrica
  delle curve piane,[78] in
  welcher C r e m o n a in einer einheitlichen Methode zugleich mit vielen
  neuen Resultaten alles auseinandersetzt, was wichtigeres von den
  analytischen Geometern, die ihm vorhergingen, erhalten worden war.

Bei dem außerordentlichen Interesse der Sache scheint es mir auch, daß
  man in die Reihe der schon zitierten Arbeiten auch die Serie von
  Abhandlungen zu stellen hat, in welchen C l e b s c h (1833-1872) zuerst die Algebra der linearen
  Transformationen auf die Geometrie angewandt hat, dann, nachdem er die
  Wichtigkeit des Begriffes des Geschlechtes einer Kurve ins Licht
  gestellt, die Anwendung der Theorie der elliptischen[79] und Abelschen Funktionen auf die
  Wissenschaft von der Ausdehnung darlegte und sie für das Studium der
  rationalen und elliptischen Kurven benützte.[80] Es ist wahr, daß B r i l l und N ö t h e r in einer Abhandlung,[81] deren Bedeutung von Tag zu Tag wächst,
  gezeigt haben, daß die Theorie der algebraischen Funktionen in vielen
  Fällen die der eben angeführten Transcendenten ersetzen kann, aber das
  vermindert nicht, sondern vergrößert vielmehr das Verdienst, welches man
  den Methoden von C l e b s c h zuerkennen muß, da die von hervorragenden Geistern
  gemachten Anstrengungen, den Gebrauch eines Hilfsmittels vermeiden zu
  können, der überzeugendste Beweis der Macht desselben sind.

Die bis jetzt besprochenen Arbeiten behandeln a l l g e m e i n e Eigenschaften der ebenen algebraischen Kurven.[82] Aber an sie reiht sich eine
  große Menge von schönen Spezialabhandlungen, welche eine bestimmte
  Kategorie von Kurven behandeln; auf diese wollen wir einen kurzen Blick
  werfen.

Unter ihnen sind vor allen zu bemerken die von M a c l a u r i n,[83] von S y l v e s t e r,[84]
  C a y l e y,[85]
  S a l m o n,[86]
  D u r è g e,[87]
  C r e m o n a,[88] von S t u r m,[89]
  von K ü p p e r,[90]
  G r a ß m a n n,[91]
  M i l i n o w s k i[92] und
  von anderen über die Kurven dritter Ordnung,[93] die Kapitel des Barycentrischen
  Calculs, dann verschiedene Arbeiten von E m.
  W e y r,[94]
  von C l e b s c h und vielen anderen[95] über die rationalen Kurven;
  die wichtigen Untersuchungen S t e i n e r s und C h a s l e s ' über die Kurven, die mit einem Centrum versehen
  sind,[96] und die von S t e i n e r über die dreispitzige
  Hypocykloide;[97] ferner die
  Arbeiten, welche dem Beweise oder der Verallgemeinerung der dort
  ausgesprochenen Eigenschaften gewidmet sind,[98] die interessanten Untersuchungen von
  B e r t i n i[99] über rationale Kurven, für welche man
  willkürlich die vielfachen Punkte bestimmen kann, die wichtigen Studien
  von B r i l l über die Kurven vom
  Geschlechte zwei,[100] dann
  die eleganten Abhandlungen von K l e i n und L i e[101]
  über die Kurven, welche eine infinitesimale Transformation in sich selbst
  zulassen, endlich die von F o u r e t über die Kurven, welche
  die eigenen reciproken Polaren in bezug auf unendlich viele Kegelschnitte
  sind,[102] und die von
  S m i t h (1826-1883) über die
  Singularitäten der Modularkurven.[103]



Neben diesen verdient dann noch eine hervorragende Stelle die
  Abhandlung von S t e i n e r über die einer ebenen kubischen Kurve[104] oder einer Kurve vierter
  Ordnung mit zwei Doppelpunkten eingeschriebenen Vielecke, auf welche die
  jüngsten Arbeiten von K ü p p e r[105] und S c h o u t e[106]
  von neuem die Aufmerksamkeit der Gelehrten gelenkt haben. Die Knappheit
  des Raumes nötigt mich, flüchtig hinwegzugehen über die Untersuchungen
  von C a y l e y On polyzomal Curves otherwise the Curves
  √u + √v + ... = 0;[107] von G r a ß m a n n, C l e b s c h,[108] S c h r ö t e r[109] und D u r è g e,[110] betreffend die Erzeugung ebener Kurven
  dritter Ordnung, über die von L ü r o t h,[111] von C a s e y,[112]
  D a r b o u x,[113] S i e b e c k,[114]
  von C r o n e,[115] Z e u t h e n[116]
  und noch anderen über einige spezielle ebene Kurven vierter Ordnung, über
  die von B a t t a g l i n i, die sich auf die syzygetischen Kurven dritter
  Ordnung beziehen,[117] und
  andere, welche auch eine besondere Erwähnung verdienen würden.



Was ich aber nicht mit Stillschweigen übergehen kann, das sind die
  Arbeiten von H e s s e über die Wendepunkte
  einer Kurve dritter Ordnung und über die Gleichung, welche zu deren
  Bestimmung dient;[118] dann
  die von demselben H e s s e,[119]
  S t e i n e r,[120] A r o n h o l d[121] (1819-1884) über die Doppeltangenten
  einer Kurve vierter Ordnung, welche eine hervorragende Stelle verdienen,
  da sie viele bemerkenswerte Eigenschaften derselben ins Licht gestellt
  haben; dieselben wurden darauf von G e i s e r[122] durch stereometrische Betrachtungen
  dargethan, von C l e b s c h[123]
  dagegen und R o c h[124]
  vermittelst der Theorie der Abelschen Funktionen untersucht.

 








III.


Theorie der Oberflächen.

———

 

Das Streben nach Verallgemeinerung, welches die geometrischen
  Untersuchungen leitete, seitdem sich der Einfluß der Analysis auf
  dieselbe mehr oder weniger offen geltend gemacht, trieb alsbald die
  Gelehrten dazu, sich mit den Erscheinungen des Raumes zu beschäftigen,
  welche Analogien mit den schon in der Ebene betrachteten darbieten. Daher
  sehen wir denn auch die Forschungen über die Oberflächen bald denen über
  die ebenen Kurven folgen. Die Theorie dieser Gebilde ist jedoch neueren
  Ursprungs.

Den griechischen Geometern waren in der That nur einige wenige
  besondere Oberflächen bekannt (die Kugel, die Cylinder und Kegel, Konoide
  und Sphäroide, die plektoidischen Oberflächen und wenige andere). Erst
  W r e n (1669), P a r e n t und E u l e r begannen sich mit den
  Oberflächen zweiten Grades zu beschäftigen, und wir müssen zur Schule von
  M o n g e gehen, um die
  Eigenschaften von grösserer Wichtigkeit dieser höchst bemerkenswerten
  Oberflächen anzutreffen.[125] Zu diesen ersten Eigenschaften wurden
  in unserem Jahrhundert durch das zahlreiche Heer von Geometern, welche
  die Flächen zweiter Ordnung einer besonderen Betrachtung unterwarfen,
  viele andere hinzugefügt, und dank den Arbeiten so ausgezeichneter
  Gelehrter, wie J a c o b i,[126] M a c C u l l a g h (1809-1847),[127] C h a s l e s,[128]
  H e s s e,[129] S e y d e w i t z (1807-1852),[130] S c h r ö t e r[131] konnte die Theorie der Oberflächen
  zweiter Ordnung in den mehr elementaren Unterricht eingeführt
  werden und methodisch auf analytischem sowohl wie synthetischem Wege
  behandelt werden.[132]

Aber nach der Lehre von den Oberflächen zweiten Grades entstand und
  entwickelte sich alsbald die der Oberflächen höherer Ordnung. C h a s l e s[133] und G e r g o n n e,[134] als die ersten, entdeckten an diesen
  Gebilden wunderbare Eigenschaften. P o n c e l e t bestimmte die Klasse
  einer in ihrer Ordnung allgemeinen algebraischen Oberfläche[135] und eröffnete so die
  Untersuchungen, welche zu den Beziehungen führen sollten, mit welchen
  S a l m o n[136]
  und C a y l e y[137]
  die Lösung der analogen Aufgabe zu derjenigen versuchten, welche P l ü c k e r durch seine berühmten
  Formeln gelöst hatte.

J a c o b i[138]
  und später R e y e[139]
  beschäftigten sich mit den Kurven und Gruppen von Punkten, die durch den
  Schnitt von algebraischen Oberflächen entstehen. C h a s l e s,[140] C r e m o n a,[141]
  R e y e,[139] E s c h e r i c h,[142] S c h u r,[143]
  mit ihrer Entstehung vermittelst projektiver oder
  reciproker Systeme von Oberflächen niederer Ordnung, G r a ß m a n n (1809-1877)[144] mit anderen Erzeugungsweisen; S a l m o n,[145]
  C l e b s c h,[146] S t u r m,[147]
  S c h u b e r t[148]
  und andere behandelten eine wichtige Klasse von Aufgaben, welche sich auf
  Gerade beziehen, die mit einer gegebenen Oberfläche Berührungen von
  vorher bestimmter Ordnung haben; schließlich entdeckte S c h u r vor kurzem eine lineare
  Konstruktion[149] für
  Flächen beliebiger Ordnung. Eine interessante Erweiterung der
  Polarentheorie der Oberflächen beliebiger Ordnung verdanken wir R e y e.[150]

Trotz dieser und anderer Arbeiten, die ich der Kürze halber
  stillschweigend übergehen muss, trotz der schönen Darlegungen, welche
  S a l m o n[151]
  und C r e m o n a[152] über sie gemacht haben, kann man doch
  nicht sagen, daß die Theorie der Oberflächen weit vorgeschritten sei. Die
  Fragen, die noch zu lösen bleiben, sind zahlreich und von fundamentaler
  Wichtigkeit, und die Mittel, die zur Überwindung der Schwierigkeiten,
  welche deren Lösung bietet, zur Verfügung stehen, sind noch nicht
  genügend vervollkommnet. Vielleicht ist das der Grund dafür, daß so viele
  Gelehrte sich zum Studium besonderer Flächen wandten, indem sie hofften,
  nicht nur auf diesem Felde eine reichlichere Ernte von Wahrheiten zu
  machen, sondern auch zu Untersuchungsmethoden zu gelangen, die der
  Verallgemeinerung fähig sind. — Und daß ihre Erwartungen
  teilweise nicht getäuscht worden sind, das beweisen die zahlreichen
  Resultate, die man schon über die Oberflächen dritten Grades, sowie über
  einige von der vierten Ordnung erhalten hat, über welche es mir noch
  obliegt, Bericht zu erstatten.

Es ist allgemein bekannt, daß die beiden hervorragendsten
  Eigenschaften einer Fläche dritter Ordnung die sind, 27 Gerade zu
  enthalten, und ein Pentaeder zu besitzen, welches zu Ecken die
  Doppelpunkte und zu Kanten die Geraden der Hesseschen Fläche jener
  Oberfläche hat. England und Deutschland können sich um die Ehre, sie
  entdeckt zu haben, streiten. Wenn auch schon im Jahre 1849 C a y l e y und S a l m o n[153] die Geraden einer kubischen Fläche
  bestimmt haben, und im Jahre 1851 S y l v e s t e r[154]
  das Pentaeder entdeckte, so ist doch nicht minder wahr, daß S t e i n e r unabhängig von ihnen die
  Existenz jener und dieses in seiner berühmten Mitteilung, welche er der
  Berliner Akademie im Jahre 1853 machte, behauptet hat.[155] Aber während die Studien der
  englischen Geometer fast gänzlich der Fortsetzung entbehren,[156] steht die Arbeit von
  Steiner an der Spitze einer langen Reihe von Schriften, durch welche die
  Theorie der Oberflächen dritter Ordnung schnell einen ungehofften Grad
  der Vollendung erhielt. Indem ich die Abhandlungen von S c h r ö t e r,[157]
  A u g u s t[158]
  u. s. w., in welchen einige der von Steiner ausgesprochenen Sätze
  bewiesen werden, nur kurz erwähne, will ich mich darauf beschränken, die
  Aufmerksamkeit der Leser auf die mit Recht berühmten Schriften zu lenken,
  die von C r e m o n a[159]
  und v o n S t u r m[160] über diese Oberflächen verfaßt und im
  Jahre 1866 von der Berliner Akademie mit dem Steiner-Preise gekrönt sind,
  Arbeiten, auf welche jeder zurückkommen muß, welcher sich mit diesen
  wichtigen geometrischen Gebilden vertraut machen will. Ich kann mich
  nicht aufhalten bei den verschiedenen Erzeugungsweisen einer Fläche
  dritter Ordnung, die G r a ß m a n n,[161] A u g u s t,[162] A f f o l t e r[163] und P i q u e t[164] den von Steiner angegebenen
  hinzugefügt haben, bei der Konstruktion dieser Flächen, welche L e P a i g e[165]
  gegeben hat, bei den vielen Sätzen, die sich auf die Verteilung der
  Geraden, der dreifach berührenden Ebenen und die Kurven einer kubischen
  Fläche beziehen und welche vor kurzem von C r e m o n a,[166] A f f o l t e r,[167] v o n S t u r m[168]
  und B e r t i n i[169] entdeckt wurden, endlich bei den von
  C r e m o n a,[170] C a p o r a l i,[171] R e y e[172] und B e l t r a m i[173] studierten Eigenschaften gewisser
  Hexaeder, welche mit einer Fläche dritter Ordnung verknüpft sind, sowie
  bei den von Z e u t h e n[174] betrachteten zwölf vollständigen,
  in sie einbeschriebenen Pentaedern. Ich will noch anführen, daß eine
  Einteilung dieser Oberflächen, die auf die Betrachtung der 27 auf ihr
  gelegenen Geraden sich stützt, von S c h l ä f l i gemacht ist[175] und eine neuere von
  R o d e n b e r g,[176] die sich auf das Pentaeder gründet,
  daß ferner ein genaues und eingehendes Studium der Regelflächen dritten
  Grades (von denen eine von Cayley entdeckt wurde) den Gegenstand
  wertvoller Arbeiten C r e m o n a s,[177] E m. W e y r s[178] und B e n n o K l e i n s[179] bildet, daß schließlich die sogenannte
  Diagonalfläche einen wichtigen Teil in einer Untersuchung von C l e b s c h über die Gleichungen
  fünftes Grades bildet[180]
  und daß andere besondere Fälle von C a y l e y[181] und E c k a r d t[182]
  in einigen wertvollen Abhandlungen betrachtet wurden. Wenn ich dann noch
  gesagt habe, daß die Untersuchungen von S a l m o n,[183] C l e b s c h,[184]
  G o r d a n[185]
  und d e P a o l i s[186] die geometrische Bedeutung
  für das Verschwinden der fundamentalen invarianten Formen der quaternären
  kubischen Form festgestellt haben, welche gleich Null gesetzt in
  homogenen Koordinaten eine Fläche dritter Ordnung darstellt, daß
  schließlich J o r d a n[187]
  von Grund auf die Natur der Gleichung studiert hat, welche zur Bestimmung
  der Geraden einer kubischen Fläche dient, dann glaube ich dem Leser genug
  Momente an die Hand gegeben zu haben, um daraus den (von mir eben
  angedeuteten) Schluß zu ziehen, daß die Theorie dieser geometrischen
  Gebilde, von welchem Punkte man sie auch betrachten mag, heute einen
  beachtenswerten Grad der Vollendung erreicht hat.

Solches kann man jedoch nicht von der Theorie der Oberflächen v i e r t e n Grades behaupten,
  vielmehr sind von ihnen nur wenige Klassen genauer studiert; über jede
  derselben werde ich kurz sprechen. An die erste Stelle will ich die
  Developpabele vierter Klasse setzen, die zweien Flächen zweiten Grades
  umbeschrieben ist, und die geradlinigen Flächen vierten Grades; jene
  wurde von P o n c e l e t[188]
  und C h a s l e s[189] untersucht, diese von demselben
  Chasles,[190] von C a y l e y[191]
  und vollständiger von C r e m o n a.[192]

Dann lasse ich die Oberflächen vierter Ordnung folgen, auf welchen
  Scharen von Kegelschnitten existieren und welche alle mit
  außerordentlichem Scharfsinne von K u m m e r[193] bestimmt wurden. Unter diesen sind
  zwei besonderer Erwähnung wert, da sie das Objekt zahlreicher
  Untersuchungen gewesen sind: die Oberfläche vierter Ordnung mit einem
  Doppelkegelschnitt und die römische Fläche von Steiner.

Von der ersteren entdeckte K u m m e r im Jahre 1864 die
  bemerkenswerte Eigenschaft, daß die ihr doppelt umgeschriebene
  Developpabele aus fünf Kegeln zweiter Ordnung besteht. Gleichzeitig fand
  M o u t a r d[194] dieselbe Eigenschaft für den Fall, daß
  die Doppelkurve der Oberfläche der unendlich entfernte imaginäre
  Kugelkreis ist,[195] und er
  bemerkte weiter gleichzeitig mit D a r b o u x,[196]
  daß in diesem Falle die Oberfläche zu einem dreifachen Systeme von
  orthogonalen Oberflächen, gebildet von Flächen derselben Art, gehören
  kann. Von jener Zeit ab wurden die Oberflächen vierter Ordnung, welche
  als Doppelkurve den unendlich entfernten imaginären Kugelkreis haben,
  wiederholt von D a r b o u x,[197]
  von L a g u e r r e (1834-1886)[198] und von C a s e y[199] studiert; hingegen diejenigen, welche
  als Doppelkurve einen beliebigen Kegelschnitt besitzen, von C r e m o n a,[200] G e i s e r,[201] S t u r m,[202]
  Z e u t h e n,[203] von C l e b s c h,[204]
  K o r n d ö r f e r,[205]
  B e r z o l a r i[206] und D o m s c h[207] — welcher auf sie die
  hyperelliptischen Funktionen anwandte — und diejenigen, welche
  einen Kuspidalkegelschnitt haben, von T ö t ö s s y.[208]
  Was die Klassifikation dieser Oberflächen betrifft, so möge es mir gestattet
  sein, meinen Namen anzuführen[209] neben dem meines teuern Freundes
  S e g r e.[210]

Die römische Fläche von Steiner hat wiederholt die Aufmerksamkeit der
  Geometer auf sich gezogen und zwar vorzüglich zweier Eigenschaften wegen;
  die eine derselben, nämlich von jeder Tangentialebene in zwei
  Kegelschnitten getroffen zu werden, wurde besonders von den Synthetikern
  betrachtet, die andere, dass die homogenen Koordinaten ihrer Punkte sich
  als ganz allgemeine ternäre quadratische Formen darstellen lassen,[211] wurde mehr von den
  analytischen Geometern verwertet. Wer Lust hat, alle Eigenschaften, die
  sie besitzt, kennen zu lernen,[212] wird dieselben in den synthetischen
  Abhandlungen von C r e m o n a,[213]
  S c h r ö t e r[214]
  und S t u r m,[215] auf den Seiten, welche R e y e ihr in seiner Geometrie der Lage
  (2. Bd.) gewidmet hat, und in den analytischen Abhandlungen von C a y l e y,[216]
  B e l t r a m i,[217]
  C l e b s c h,[218] E c k a r d t,[219]
  L a g u e r r e[220]
  und G e r b a l d i[221]
  finden.

K u m m e r verdanken wir auch die Kenntnis einer anderen
  wichtigen Klasse von Flächen vierter Ordnung; dieselbe besteht aus
  Oberflächen, die nicht singuläre Linien enthalten, sondern nur singuläre
  Punkte.[222] Wir werden in
  kurzem (§ VII) sehen, welche Untersuchungen Kummer zu diesen Oberflächen
  geführt haben; für jetzt genüge es, hervorzuheben, dass die
  interessanteste unter ihnen (welche man heute die Kummersche Oberfläche
  nennt) 16 singuläre Doppelpunkte und 16 singuläre Tangentialebenen hat
  und daß Specialfälle derselben die Wellenfläche von F r e s n e l[223] und das von C a y l e y 1846 untersuchte Tetraedroid[224] sind. Eine solche Oberfläche ist zu
  sich selbst dual.[225] Ihre
  asymptotischen Kurven wurden von K l e i n und L i e bestimmt[226] und R e y e[227] zeigte, daß jede die Grundkurve eine
  Büschels von Oberflächen vierter Ordnung ist; zwischen ihnen und den
  Thetafunktionen existiert eine innige Beziehung, welche C a y l e y und B o r c h a r d t (1817-1880)[228] entdeckt haben und die H. W e b e r[229] zusammen mit anderen entwickelt hat;[230] die algebraischen
  Fragen, welche sich an die Bestimmung ihrer Singularitäten knüpfen,
  wurden von J o r d a n[231]
  gelöst; endlich kann man dieselbe, wie R o h n[232] es gethan hat, vermittelst der Theorie
  der hyperelliptischen Funktionen[233] behandeln.

Indem ich die Oberflächen vierter Ordnung, welche als Doppelkurve
  einen in zwei getrennte oder zusammenfallende Gerade degenerierten
  Kegelschnitt haben und andere, mit denen Cayley[234] sich beschäftigt hat, übergehe, will
  ich noch die Monoide erwähnen,[235] die von R o h n studiert sind,[236] und diejenigen Flächen,
  welche, ohne geradlinig zu sein, eine gewisse Anzahl von Geraden
  enthalten. Dieselben sind der Ort der Punkte, in welchen vier
  entsprechende Ebenen von vier kollinearen Räumen sich schneiden; C h a s l e s hat ihre Ordnung
  bestimmt und S c h u r eine Menge eleganter
  Eigenschaften derselben gefunden.[237]

Ich will diesen Abschnitt meiner Musterung beschließen, indem ich noch
  einige Oberflächen von höherer als der vierten Ordnung anführe, welche
  die Gelehrten schon beschäftigten. Zuerst verdienen die geradlinigen
  Oberflächen erwähnt zu werden, welche im allgemeinen von C h a s l e s,[238] S a l m o n,[239] C a y l e y,[240] von P l ü c k e r,[241]
  L a G o u r n e r i e (1814-1883),[242] V o s s[243] und im besonderen von C h a s l e s,[244] C r e m o n a,[244] S c h w a r z,[245] L a G o u r n e r i e[246] (Regelflächen, die in bezug auf ein
  Tetraeder symmetrisch sind), von C l e b s c h,[247]
  A r m e n a n t e[248] (rationale und elliptische
  Regelflächen), von E m. W e y r[249]
  (Regelflächen, erzeugt durch die Verbindungslinien entsprechender Punkte
  zweier gerader Punktreihen in der Korrespondenz [m, n]),
  von E d. W e y r[250] (Oberflächen, erzeugt durch die
  Bewegung eines variabelen Kegelschnittes), von E c k a r d t[251] und C h i z z o n i[252] (Regelflächen, erzeugt durch die
  Verbindungslinien entsprechender Punkte zweier ebener projektiv bezogener
  Kurven). Dann folgen solche, die, wenn sie auch nicht Regelflächen sind,
  doch Gerade enthalten und die von S t u r m[253]
  und A f f o l t e r[254]
  untersucht sind, ferner die algebraischen Minimalflächen, bei welchen
  G e i s e r[255]
  und L i e[256] bemerkenswerte
  Eigentümlichkeiten fanden. Dann will ich noch einige Flächen nennen, die
  aus einer Oberfläche zweiten Grades abgeleitet sind (Ort der
  Krümmungscentren; Fusspunktflächen, Aspidalflächen etc.), sowie die Örter
  der Spitzen der Kegel zweiten Grades, die m Gerade berühren und
  durch (6-m) Punkte gehen, welche Flächen eingehend von C h a s l e s,[257] L ü r o t h,[258] H i e r h o l z e r[259] und von C a y l e y[260]
  studiert wurden, da sie zur Auflösung gewisser Probleme aus der Theorie
  der Charakteristiken der einfach unendlichen Systeme von Kegeln zweiter
  Ordnung dienten; schließlich diejenigen, welche unendlich viele lineare
  Transformationen zulassen, die
  kontinuierlich aufeinander folgen;[261] diejenigen, welche die eigenen
  reziproken Polaren in bezug auf unendlich viele Flächen zweiten Grades
  sind,[262] diejenigen,
  welche durch reciproke Cremonasche Systeme erzeugt werden,[263] und diejenigen, welche
  dieselben Symmetrie-Ebenen wie ein reguläres Polyeder besitzen.[264]

 

Die Untersuchungen über die Oberflächen, mit denen wir uns bis jetzt
  beschäftigt haben, behandeln Eigenschaften, welche vermittelst einer wohl
  bekannten Betrachtungsweise auf das Gebiet der projektiven Geometrie
  zurückgeführt sind oder sich darauf zurückführen lassen. Es giebt aber
  noch viele andere Untersuchungen, welche Eigenschaften von ganz anderer
  Art behandeln, die größtenteils auf keine Weise sich als projektiv
  betrachten lassen, da die Gruppe der Transformationen, die zu ihnen
  gehört, nicht die der projektiven Geometrie ist.[265] Diese bilden zusammen mit den Studien,
  die sich auf die Infinitesimaleigenschaften der Raumkurven beziehen (über
  welche wir einiges im folgenden Paragraphen sagen werden), einen sehr
  wichtigen Zweig der Geometrie für sich sowohl, als auch wegen der
  Anwendungen, welche man von ihnen in der Geodäsie und der mathematischen
  Physik machen kann; man kennt ihn unter dem Namen der
  Differentialgeometrie. Über die wesentlichen Punkte derselben wollen wir
  nun einiges sagen. Und da man den Ursprung dieses Teiles der Geometrie
  von dem Erscheinen der Application de l'Analyse à la Géométrie[266] von M o n g e datieren kann, und das
  spätere Werk, welches von grösserem Einflüsse war, das von G a u ß (1777-1855) ist, welches den Titel trägt:
  Disquisitiones generales circa superficies curvas,[267] so nehmen wir in unserer kurzen
  Darlegung die von Monge und Gauß angenommene Einteilung des Stoffes als
  Anhalt, indem wir zuerst besprechen, was diese selbst in Hinsicht auf die
  von ihnen behandelten Gegenstände geleistet haben, und dann vorführen,
  was ihre Nachfolger hinzugefügt haben.

Der erste Paragraph des Mongeschen Werkes bietet kein besonderes
  Interesse, da er nur die Bestimmung der Berührungsebenen und Normalen
  einer Oberfläche zum Zwecke hat; er kann also als Einleitung betrachtet
  werden. Die vier folgenden Paragraphen behandeln cylindrische
  Oberflächen, Kegel- und Rotationsflächen und solche, welche (um einen
  modernen Ausdruck zu gebrauchen) in einer linearen Kongruenz mit einer
  unendlich fernen Leitgeraden enthalten sind. Höchst bemerkenswert ist der
  folgende Paragraph, indem Monge dort bei der Besprechung der Enveloppen
  den wichtigen Begriff der Charakteristik und der Rückkehrkurve (arête
  de rebroussement) einer Enveloppe eingeführt hat; an diesen
  Paragraphen schließen sich die drei folgenden enge an; sie behandeln
  Röhrenflächen mit ebener Leitlinie (§ 7), Flächen, die als Linien größter
  Neigung gegen eine gegebene Ebene Gerade von konstanter Neigung haben (§
  8), und schließlich Enveloppen einer Oberfläche, die sich unter der
  Bedingung bewegt, daß ein mit ihr unveränderlich verbundener Punkt eine
  gegebene Kurve durchläuft (§ 9).[268] — Von da ab beginnt die Theorie
  der partiellen Differentialgleichungen die wichtige Rolle
  zu spielen, die Monge ihr in der analytischen Geometrie zugewiesen hat;
  von diesem Punkte an zeigt es sich, daß es in vielen Fällen für die
  Bestimmung der Natur einer Oberfläche nützlicher und bequemer ist, eine
  Differentialgleichung für sie zu haben, als eine solche in endlichen
  Ausdrücken. Beispiele hierfür bieten die Flächen, die in einem speziellen
  linearen Komplexe enthalten sind mit einer unendlich fernen oder
  endlichen Axe (von Monge im § 10 und § 11 behandelt), fernere Beispiele
  die abwickelbaren Flächen (§ 12), andere die im § 9 beschriebenen, andere
  schließlich die Örter beweglicher Kurven, von welchen ein Punkt eine
  feste Kurve durchläuft (§ 14).[269] — Die Theorie der Krümmung einer
  Oberfläche in einem Punkte,[270] sowie das Studium der Verteilung der
  Normalen derselben Fläche[271] führen zu einer neuen Art von Flächen,
  die der Betrachtung wert sind; jene und diese finden sich im § 15, der
  sicherlich einer der wichtigsten des Mongeschen Werkes ist. Der
  Spezialfall des Ellipsoides ist im § 16 behandelt, derselbe enthält die
  Bestimmung der Krümmungslinien dieser Fläche.[272] — Groß an Zahl und von großer
  Wichtigkeit sind die Fragen, zu denen die Theorie der Krümmung Anlaß
  giebt. Man kann z. B. die Oberflächen untersuchen, bei denen der eine
  Krümmungsradius für jeden Punkt denselben Wert hat; Monge fand (§ 18),
  daß dieselben von einer Fläche von konstanter Form eingehüllt werden, die
  sich in der vorhin (in den §§ 9 und 13) angegebenen
  Weise bewegt. Man kann dagegen auch voraussetzen, daß in jedem Punkte die
  beiden Krümmungsradien gleich und von gleichem Sinne seien: die
  Oberfläche ist dann eine Kugel. Wenn dagegen die beiden Krümmungsradien
  in jedem Punkte gleich, aber von entgegengesetztem Sinne sind, so ist die
  Fläche eine Minimalfläche.[273] Oder es sei in jedem Punkte einer der
  Krümmungsradien gleich groß (§ 21).[274]

An die Theorie der Krümmung schließen sich dann die Studien über die
  Röhrenflächen mit beliebiger Leitkurve (§§ 22 und 26) und über diejenigen
  Flächen, bei welchen alle Normalen eine gegebene Kugel (§ 23), einen
  gegebenen Kegel (§ 24) oder eine gegebene Developpabele (§ 25) berühren.
  — Für einige dieser Flächenfamilien hat Monge die Konstruktion
  angegeben, für alle die Gleichungen, sei es die Differentialgleichungen
  oder die endlichen, und, da er sich das Problem gestellt und gelöst hat,
  von jenen zu diesen zu gelangen, so verdient denn sein grosses Werk, daß
  es auch von denen, welche sich mit der Analysis des Unendlichen
  beschäftigen, eingehend studiert werde.

Kurz nach dem Erscheinen des Werkes von Monge wurde die
  Differentialgeometrie durch eine höchst wichtige Arbeit bereichert, die
  Developpements de Géométrie von C h.
  D u p i n (1813). In derselben
  wird unter anderem der Begriff der konjugierten Tangenten eines Punktes
  einer Oberfläche und der der Indikatrix eingeführt; dort sind die
  asymptotischen Linien (Haupttangentenkurven)[275] untersucht, und der berühmte Satz
  bewiesen, der unter dem Namen des Dupinschen Theorems allgemein bekannt
  ist.

Als Fortsetzung des Mongeschen Werkes kann man die zahlreichen
  Untersuchungen über Flächen mit ebenen oder sphärischen Krümmungslinien
  ansehen, die man D u p i n,[276]
  A l f r e d S e r r e t (1819-1885),[277] O. B o n n e t,[278]
  D i n i,[279]
  E n n e p e r (1830-1885),[280] D a r b o u x,[281] P i c a r t,[282] L e c o r n u,[283]
  D o b r i n e r,[284]
  V o r e t s c h[285]
  und anderen verdankt.

Von derselben Art, aber von größerer Allgemeinheit sind die wichtigen
  Untersuchungen von W e i n g a r t e n über solche Oberflächen,
  bei denen in jedem Punkte der eine Krümmungsradius eine Funktion des
  anderen ist,[286] welche
  Untersuchungen D i n i (a. O.), B e l t r a m i[287]
  und L i e[288] zur Bestimmung der
  windschiefen Oberflächen mit derselben Eigenschaft geführt haben.
  Dasselbe kann man von den Untersuchungen sagen, welche man ebenfalls
  W e i n g a r t e n verdankt[289] und die sich auf Oberflächen beziehen,
  deren Normalen eine andere vorgelegte Oberfläche berühren. — Dem §
  20 des Mongeschen Werkes können wir die zahlreichen Abhandlungen
  anschließen, welche die Minimalflächen behandeln. Wir führen zunächst die
  von S t e i n e r[290] und W e i e r s t r a ß[291] an, die sich mit der allgemeinen
  Theorie befassen, dann die von S c h e r k[292] und B o n n e t,[293] welche einige Spezialfälle derselben
  bearbeitet haben; S e r r e t[294] beschäftigte sich dann mit solchen,
  die durch zwei Gerade hindurch gehen, R i e m a n n[295]
  und W e i e r s t r a ß[296]
  mit solchen, die einen gegebenen Umriß haben, G e i s e r[297]
  mit algebraischen, N o e v i u s[298]
  mit solchen periodischen, welche unendlich viele Geraden und unendlich
  viele ebene geodätische Linien besitzen; C a t a l a n[299] mit solchen, die als geodätische Linie
  eine Parabel haben, H e n n e b e r g[300]
  mit denen, welche eine semikubische Parabel als geodätische Linie haben;
  B o n n e t[301]
  untersuchte solche, auf welchen sich eine Schar von ebenen
  Krümmungslinien befindet; B o u r[302] diejenigen, welche auf eine
  Rotationsfläche sich abwickeln lassen; S c h w a r z solche, die durch ein windschiefes Vierseit
  bestimmt sind[303] oder die
  von Kegeln eingehüllt sind,[304] und solche, die ohne algebraisch zu
  sein, doch algebraische Kurven enthalten;[305] E n n e p e r[306] untersuchte diejenigen, welche
  unendlich viele Kreise enthalten, u. s. w. Andere Fragen wurden von
  M a t h e t[307]
  behandelt, von B e l t r a m i,[308] von L i e,[309]
  K i e p e r t,[310] H e n n e b e r g,[311]
  R i b a u c o u r,[312] B i a n c h i[313]
  und P i n c h e r l e.[314] Schließlich ist die Theorie der
  Minimalflächen einer bemerkenswerten Erweiterung fähig, die von L i p s c h i t z[315] entdeckt wurde.

Wir gehen jetzt dazu über, kurz auseinander zu setzen, welches die
  hervorragenderen Stellen des zweiten Werkes sind, dem wir, wie schon
  gesagt, die wichtigsten Lehren der Differentialgeometrie verdanken, der
  Disquisitiones generales circa superficies curvas von G a u ß.

Schon zu Ende des ersten Paragraphen derselben finden wir einen höchst
  wichtigen Begriff, nämlich den der sphärischen Abbildung einer
  Oberfläche, dessen Fruchtbarkeit vielfache Anwendungen, die von ihm
  gemacht sind, dargethan haben. Kurz darauf (§ IV) treffen wir die zwei
  unabhängigen Veränderlichen, vermittelst derer man die Koordinaten der
  Punkte einer Oberfläche ausdrückt, d. h. die krummlinigen Koordinaten auf
  einer Oberfläche. (Vgl. auch die §§ XVII und XIX). Dann enthält § VI die
  Erweiterung der Betrachtung, die man gewöhnlich zur Grundlage der Theorie
  der Krümmung der ebenen und unebenen Kurven nimmt, auf den Raum, aus
  welcher Erweiterung der Begriff des Krümmungsmaßes einer Oberfläche in
  einem gewöhnlichen Punkte hervorgegangen ist.[316] Bekanntlich ist dasselbe
  gleich dem Produkte aus den beiden Hauptkrümmungsradien der Fläche in
  jenem Punkte[317] (§ VIII).
  Das Krümmungsmaß einer Oberfläche kann man sowohl durch die gewöhnlichen
  kartesischen Koordinaten (§§ VII und IX) als auch durch die krummlinigen
  Koordinaten der Oberfläche ausdrücken (§§ X und XI).[318]

Bei der Untersuchung dieses letzteren Ausdruckes bieten sich die
  Coefficienten E, F, G des Ausdruckes des
  Kurvenelementes dar, deren Bedeutung in der Theorie der Oberflächen, die
  auf eine andere abwickelbar sind[319] (§ XII), Gauß zuerst hervorgehoben
  hat. Dabei stellte er eine neue Betrachtungsweise der Oberflächen auf (§
  XIII), indem er dieselben als unendlich dünne, biegsame und unausdehnbare
  Körper ansah. Die folgenden Paragraphen der Abhandlung von Gauß behandeln
  die geodätischen Linien und haben die Bestimmung ihrer
  Differentialgleichungen zum Zwecke (§ XIV und XVIII), dann die
  Übertragung der Polarkoordinaten, des Kreises (§ XV), der Parallelkurven
  (§§ XVI), auf die Geometrie auf einer Oberfläche, sowie die Berechnung
  der totalen Krümmung eines geodätischen Dreiecks (§ XX). Die §§ XXI und
  XXII beziehen sich auf die Transformation des Ausdruckes für das
  Kurvenelement, die übrigen behandeln andere Fragen aus der Geodäsie und
  dürften daher unsere Aufmerksamkeit nicht auf sich ziehen.



Schon aus diesen flüchtigen Andeutungen ersieht man, wie reich an
  fundamentalen Begriffen die Abhandlung von Gauß ist. Die Entwickelungen,
  die sie gehabt, und die vielen Arbeiten, welche sie hervorgerufen, und
  von denen wir noch kurz zu sprechen haben, werden ihre Bedeutung noch
  klarer machen. Unter diesen Arbeiten muß man den schönen Ricerche di
  analisi applicata alla geometria, die B e l t r a m i im zweiten und dritten Bande des Giornale di
  Matematiche veröffentlicht hat, eine hervorragende Stelle einräumen,
  dann den Abhandlungen von demselben Verfasser Dalle variabili
  complesse su una superficie qualunque,[320] Teoria generale dei parametri
  differenziali[321] und
  Zur Theorie des Krümmungsmasses.[322] Bemerkenswert sind ferner die Studien
  von B o n n e t[323]
  und von D a r b o u x[324] über die sphärische Abbildung der
  Oberflächen, die sich an die ersten in den Disquisitiones
  enthaltenen Untersuchungen anknüpfen. Der Begriff der Krümmung führte zum
  Studium der Oberflächen mit konstanter (positiver oder negativer)
  Krümmung, dem so viele ausgezeichnete Geometer ihre Kräfte gewidmet
  haben. Unter diesen führen wir die zwei Arbeiten von B e l t r a m i an: Risoluzione del problema. Riportare i punti
  di una superficie sopra un piano in modo che le geodetiche vengano
  rappresentate da linee rette[325] und Saggio di una interpretazione
  della Geometria non-euclidea,[326] dann die Schriften von D i n i,[327]
  L i e,[328] B i a n c h i,[329] B ä k l u n d,[330]
  D a r b o u x[331] und D o b r i n e r.[332] Von derselben Art, aber allgemeiner,
  sind die Studien von C h r i s t o f f e l[333]
  über die Bestimmung der Gestalt einer Oberfläche mit Hilfe von auf ihr
  selbst genommenen Maßen und von L i p s c h i t z[334]
  über die Oberflächen, welche bestimmte auf die Krümmung bezügliche
  Eigenschaften haben, oder bei welchen der Ausdruck des Kurvenelements von
  vornherein festgesetzt ist.

An den Abschnitt der Gaußischen Abhandlung, welcher die geodätischen
  Linien behandelt, knüpfen sich einige Arbeiten von J o a c h i m s t h a l (1818-1861),[335] S c h e r i n g,[336] B e l t r a m i,[337] die von L i e[338] gemachte Einteilung der Oberflächen
  auf Grund der Transformationsgruppen ihrer geodätischen Linien und die
  Untersuchungen über geodätische Kurven von demselben Verfasser.[339] Mit demjenigen
  Abschnitte, welcher sich auf die Abwickelbarkeit der Oberflächen bezieht,
  steht eine wichtige Arbeit von M i n d i n g in enger Beziehung,[340] in der zum ersten Male die Frage
  aufgestellt ist, ob die Gleichheit der Krümmung in entsprechenden Punkten
  eine hinreichende Bedingung für die Abwickelbarkeit zweier Oberflächen
  sei: er gelangte für den allgemeinen Fall zu einem negativen Resultate,
  zu einem positiven dagegen für den Fall konstanter
  Krümmung. Dasselbe gilt von den Arbeiten von B o u r[341]
  (1832-1866), C o d a z z i[342] und B o n n e t,[343] welche für preiswürdige Antworten auf
  die im Jahre 1861 von der Pariser Akademie der Wissenschaften gestellte
  Frage erkannt worden sind. Derselbe Gegenstand oder verwandte Gegenstände
  wurden dann in den Abhandlungen von C h r i s t o f f e l,[344]
  v o n M a n g o l d t,[345]
  W e i n g a r t e n,[346]
  B r i l l,[347] M i n d i n g,[348]
  J e l l e t,[349]
  D i n i,[350]
  E n n e p e r,[351] R a z z a b o n i,[352]
  L e c o r n u,[353] B e l t r a m i[354] und vielen anderen behandelt.

Die schöne von Gauß gegründete Theorie der krummlinigen Koordinaten
  einer Oberfläche ließ den Wunsch entstehen, eine analoge Theorie für den
  Raum zu haben. Schon im Jahre 1837 stellte L a m é sie für einen Spezialfall auf, nämlich für den der
  elliptischen Koordinaten,[355] später wies er auf die orthogonalen
  krummlinigen Koordinaten hin[356] und konstruierte dann die Theorie
  derselben,[357] ohne ihre
  Anwendung[358] und
  Entwickelung[359] zu
  vernachlässigen. Die berühmten Leçons sur la théorie des coordonnées
  curvilignes et leurs diverses applications (Paris, 1859) von L a m é fassen zusammen und vervollständigen die glänzenden
  Resultate, die von Lamé in diesem Zweige der Geometrie erhalten waren. In
  der Folge haben sich viele andere mit demselben beschäftigt. Vor allen
  führe ich A o u s t an, der ihm viele und
  wichtige Arbeiten widmete,[360] dann B r i o s c h i,[361] C o d a z z i,[362]
  C h e l i n i (1802-1878),[363] D a r b o u x,[364] C o m b e s c u r e,[365] L e v y,[366] R o y e r[367]
  und noch andere. Hierzu sehe man noch die Schriften, welche dreifache
  Systeme orthogonaler Oberflächen behandeln und von denen ich nur
  diejenigen von B o u q u e t,[368]
  A. S e r r e t,[369]
  B o n n e t,[370]
  C a t a l a n,[371] M o u t a r d,[372]
  D a r b o u x,[373] C a y l e y,[374] R i b a u c o u r,[375]
W e i n g a r t e n,[376] S c h l ä f l i,[377] H o p p e,[378]
  B i a n c h i[379] und M o l i n s[380] nennen will.

Von den Arbeiten, welche spezielle Oberflächen behandeln, die nicht zu
  bis jetzt besprochenen Kategorien gehören, führen wir die von L i e[381] an, welche sich auf Oberflächen
  beziehen, die infinitesimale lineare Transformationen in sich selbst
  zulassen; dann die von E n n e p e r,[382]
  die sich auf Oberflächen mit speziellen Meridiankurven beziehen, ferner
  die von C a y l e y[383]
  und W e i n g a r t e n[384]
  und die von W i l l g r o d[385]
  über Oberflächen, welche durch ihre Krümmungslinien in unendlich kleine
  Quadrate geteilt werden; schließlich die von B i a n c h i[386] über Schraubenflächen.

Ein bemerkenswerter Fortschritt in der analytischen
  Infinitesimalgeometrie der Oberflächen wurde durch die Bemühungen d e S a l v e r t s geschaffen, der in
  einigen eleganten Arbeiten,[387] wahrscheinlich hervorgerufen durch die
  schönen Vorlesungen über die analytische Geometrie des Raumes von
  H e s s e, zeigte, wie man durch
  Benutzung der Gleichung einer Oberfläche in ihrer allgemeineren Form,
  f(x, y, z) = 0, ein bei weitem bequemeres
  System von Formeln für die Lösung gewisser Probleme aufstellen konnte,
  als wenn die Gleichung z = φ(x, y) zu Grunde gelegt wird.



Über Differentialgeometrie existieren noch einige gute Darlegungen.
  Eine verdankt man H o p p e; sie trägt den Titel: Elemente der
  Flächentheorie; eine andere wurde von B r i s s e unternommen;[388] die neuesten sind die von B i a n c h i in seinen sehr schönen
  Lezioni di geometria differenziale (Pisa, 1886) und die, welche
  D a r b o u x in seinen Leçons sur
  la théorie générale des surfaces begonnen hat, von denen wir schon
  den ersten Teil besitzen (Paris, 1887).

Wir wollen diesen Abschnitt beschließen, indem wir noch bemerken, daß
  die Zuhilfenahme der Analysis für das Studium der Infinitesimalgeometrie
  nicht notwendig ist; vielmehr haben B e r t r a n d[389] und B o n n e t[390] zuerst gezeigt, welchen Nutzen man bei
  diesen Studien auch aus synthetischen Betrachtungen ziehen kann. Außerdem
  enthalten der erste Band des Traité de calcul différential et
  intégral von B e r t r a n d und der Traité de
  géométrie descriptive von d e l a G o u r n e r i e[391]
  und eine große Zahl von überaus schönen Abhandlungen von M a n n h e i m[392]
  bemerkenswerte geometrische Untersuchungen, welche dem Zweige der
  Wissenschaft des Raumes, mit dem wir uns eben beschäftigt haben,
  angehören.



 








IV.


Untersuchungen über die Gestalt der Kurven

und Oberflächen. Abzählende Geometrie.

———

 

Bei der Besprechung der bedeutenderen Fortschritte, welche die Theorie
  der Kurven und die der Oberflächen gemacht, haben wir zwei wichtige
  Kategorien der Untersuchung übergangen, weil wir dieselben besser in
  einem besonderen Abschnitte unserer Arbeit zusammenfassen können.

Die erstere umfaßt eine Reihe von Studien besonderer Natur und hat zum
  Zwecke die Bestimmung der Gestalt, welche die Kurven und Oberflächen von
  gegebener Ordnung annehmen können, und ich halte es für angemessen, bei
  diesen eine Zeit lang zu verweilen.

Die Bestimmung der Gestalt der Kurven z w e i t e r Ordnung reicht schon in
  das Altertum. Für dieselbe bedurfte es auch nicht eines hervorragenden
  Geistes, wenn man bedenkt, daß die Alten jene Kurven als Schnitte eines
  Kreiskegels betrachteten.

Dagegen ist die Bestimmung der Gestalt, welche die Kurven d r i t t e r Ordnung annehmen können,
  nicht ohne Schwierigkeit. N e w t o n überwand diese, indem er
  lehrte, daß alle Kurven dritter Ordnung durch Projektion von fünfen
  derselben, welche er divergierende Parabeln nannte, erhalten werden
  können.[393] Zu dieser
  ersten Einteilung der Formen der Kurven dritter Ordnung fügte C h a s l e s[394] eine weitere hinzu, die, obwohl sie
  auf einem ganz anderen Gedanken beruhte, mit der von Newton eine nicht zu
  verkennende Analogie bietet. Nach ihr kann man die Formen der Kurven
  dritter Ordnung sämtlich auffinden durch Projektion von fünfen derselben,
  die symmetrisch in bezug auf ein Zentrum sind. Eine dritte Methode der
  Einteilung endlich stützt sich auf das konstante Doppelverhältnis der
  vier Tangenten, die man an die allgemeine Kurve dritter Ordnung von einem
  ihrer Punkte aus ziehen kann; diese wurde von D u r è g e entwickelt.[395]



Bei weitem grössere Schwierigkeit bietet das Studium der Gestalt der
  ebenen Kurven v i e r t e r Ordnung, die schon angeführten Arbeiten von B r a g e l o g n e, E u l e r und P l ü c k e r bilden hierzu einen wichtigen Beitrag. Es scheint
  aber nicht, daß man diese — dasselbe gilt auch von den schon
  genannten auf die kubische Kurve bezüglichen — als die Grundlage zu
  einer allgemeinen Theorie der Gestalt der ebenen Kurven ansehen darf;
  vielmehr muß man dieselben als die ersten Vorläufer jener Lehren
  betrachten, die man heute als eine feste Grundlage dieser Theorie
  ansieht. Solche Lehren gehören in das Gebiet der synthetischen Geometrie,
  zum Teil aber waren sie das Resultat der Anwendung der Abelschen
  Funktionen auf die Wissenschaft der Ausdehnung. Von den ersteren wurden
  einige von S t a u d t in seiner Geometrie der Lage[396] auseinandergesetzt und beziehen sich
  auf die Gestalten der ebenen Polygone und der Polyeder, die paaren und
  die unpaaren Züge der Kurven, die Rückkehrelemente der Figuren; andere
  wurden von T a i t[397]
  angegeben und von J. M e y e r entwickelt,[398] andere schließlich von H a r t angedeutet[399] und mit vielem Glücke von E. K ö t t e r verallgemeinert.[400] Die zweiten sind fast alle aus der
  Schule von K l e i n hervorgegangen. Da ich
  auf die vielen Einzelheiten dieses Gegenstandes nicht eingehen kann, so
  möge es hier genügen, unter den schon erhaltenen Resultaten einige
  besondere Sätze über die Kurve vierter Ordnung anzuführen, die man Z e u t h e n[401] und C r o n e[402]
  verdankt; dann eine sehr wichtige Relation zwischen den
  Zahlen der reellen und imaginären Singularitäten einer ebenen Kurve, zu
  welcher K l e i n geführt wurde,[403] als er die von P l ü c k e r[404] und Z e u t h e n vorgeschlagenen Klassifikationen der Kurven vierter
  Ordnung studierte; ferner einen sehr schönen Lehrsatz,[405] von H a r n a c k (1851-1888) entdeckt, welcher dadurch, daß er eine
  unerwartete Beziehung zwischen der Form einer Kurve und ihrem Geschlechte
  enthüllte, die Wichtigkeit des letzteren von neuem bestätigte.

Wenn so die Theorie der Gestaltlichkeit der ebenen Kurven noch weit
  entfernt vom Zustand der Reife ist, so kann man von den analogen
  Untersuchungen über die Oberflächen sagen, daß sie sich noch in ihrer
  Kindheit befinden. Allgemeine Untersuchungen auf diesem Felde existieren
  meines Wissens nicht, außer denjenigen, die von M ö b i u s in seiner Theorie der elementaren
  Verwandtschaften niedergelegt sind,[406] und welche, so scharfsinnig und
  interessant sie auch sind, einen geschickten Nachfolger erwarten lassen,
  welcher die ganze Fülle derselben zu Tage fördert. Dasselbe gilt für
  gewisse originelle Gesichtspunkte, die in den vielen Arbeiten von K l e i n zerstreut sind. Für den
  Fortschritt der Geometrie würde es von höchstem Interesse sein, beide
  weiter entwickelt zu sehen; unglücklicherweise wird aber diese Theorie
  wenig betrieben, in den letzten Jahren ist vielleicht Rohn[407] der einzige, der hierin
  einige Fortschritte gemacht hat, die wert sind, verzeichnet zu
  werden.



Wenn auch die allgemeine Theorie ein bis jetzt noch unbefriedigtes
  Bedürfnis ist, so fehlt es doch nicht an Spezialuntersuchungen. Die
  Bestimmung der Gestalt der Oberflächen zweiten Grades übergehe ich als zu
  einfach und führe die der Oberflächen dritter Ordnung an, die mit Erfolg
  von K l e i n,[408] S c h l ä f l i,[409] Z e u t h e n[410]
  gemacht ist, und neuerdings von B a u e r durch die Untersuchung der Gestalt der
  parabolischen Kurve vervollständigt wurde;[411] ferner die der Dupinschen Cykliden,
  die wir M a x w e l l[412] verdanken; dann die der Oberflächen
  vierter Ordnung mit Doppelkegelschnitt, die ebenfalls von Z e u t h e n[413] herrührt; die der Oberflächen vierter
  Ordnung mit Cuspidalkegelschnitt, die von C r o n e[414] ausgeführt ist; endlich die der
  Kummerschen Flächen und der Kegelflächen viertes Grades, welche der
  Gegenstand wichtiger Untersuchungen von R o h n[415] gewesen sind. Die reichhaltige
  Sammlung von Modellen von L u d w i g B r i l l, die sich jedes Jahr um
  neue und interessante Serien vermehrt, zeigt das Interesse, welches das
  gelehrte Deutschland für vorliegende Untersuchungen hat.[416]

Was die Gestalt der Kurven d o p p e l t e r Krümmung angeht, so existieren darüber bis jetzt
  noch keine allgemeinen Untersuchungen von Bedeutung; man kann sagen, daß
  sich dieselben auf die Beobachtungen beschränken, die C h r. W i e n e r[417]
und
  B j ö r l i n g[418]
  gemacht haben, indem sie die Modelle der gewöhnlichen Singularitäten
  einer Raumkurve konstruierten.

Eine zahllose Reihe wichtiger Untersuchungen hat die Bestimmung der
  Anzahl der geometrischen Gebilde zum Ziele, welche Bedingungen genügen,
  die hinreichen, eine endliche Zahl derselben festzulegen. Der B é z o u t sche Lehrsatz, welcher die
  Zahl der Lösungen eines bestimmten Systems von algebraischen Gleichungen
  angiebt, ist fast immer nicht verwendbar für die Lösung solcher Fragen,
  da, während dieser Satz auf allgemeine Gleichungen ihres Grades sich
  stützt, die Gleichungen, welche man bei dem Versuche, diese Probleme
  analytisch zu lösen, erhält, von spezieller Form sind. Wahrscheinlich ist
  das der Grund dafür, daß diese Probleme größtenteils bis in
  verhältnismäßig neuerer Zeit ungelöst geblieben sind.[419]

Auf C h a s l e s fällt der Ruhm, in
  seiner Methode der Charakteristiken ein feines und mächtiges
  Hilfsmittel gefunden zu haben (1864), mit dem er eine große Zahl von
  Problemen der angedeuteten Art für den Fall, daß die betrachteten Gebilde
  Kegelschnitte in einer Ebene sind, lösen konnte und einen Weg bahnte, um
  auch in dem Falle, wo die Gebilde beliebige sind, zur Lösung derselben
  zu gelangen.[420] Der
  Hauptgedanke desselben war die fortwährende Betrachtung der ausgearteten
  Kurven und der systematische Gebrauch der Charakteristiken eines
  einfach-unendlichen Systemes von Kegelschnitten, d. h. der Zahlen, die
  angeben, wie viele Kegelschnitte des Systemes durch einen gegebenen Punkt
  gehen, wie viele eine gegebene Gerade berühren.

Dadurch, daß man diese Begriffe weiter ausdehnte, konnte man
  Hilfsmittel erhalten, die auf andere Figuren anwendbar sind. C h a s l e s selbst entdeckte alsbald
  die Anwendung seiner Untersuchungen auf die Kegelschnitte im Raume[421] und auf die Flächen
  zweiter Ordnung.[422]
  Z e u t h e n und M a i l l a r d gaben neue Beispiele der Erweiterung, der eine in
  der wichtigen Abhandlung, die wir schon Gelegenheit hatten zu zitieren,
  Almindelige Egenskaber ved Systemer af plane Kurver,[423] der andere in seiner
  Dissertation Recherches des caractéristiques des systèmes élémentaires
  de courbes planes du troisième ordre;[424] andere findet der Leser
  in den Schriften von S t u r m über die kubischen Raumkurven[425] und denen von S c h u b e r t über die ebenen Kurven dritter Ordnung und dritter
  und vierter Klasse, im Raume betrachtet.[426] Ferner sind die von Chasles gemachten
  Betrachtungen enge mit denjenigen verbunden, welche in den wichtigen
  Abhandlungen von C a y l e y, On the curves which
  satisfy given conditions[427] enthalten sind, sowie in einigen
  Arbeiten von J o n q u i è r e s über Systeme von Kurven und Flächen.[428] Endlich gehören hierher
  noch die Untersuchungen von H i r s t[429]
  und S t u r m[430] über Systeme von Projektivitäten und
  Korrelationen, sowie die von Z e u t h e n[431]
  über die Plückerschen Charakteristiken der Enveloppen. Wir wollen noch
  bemerken, daß zwischen den Systemen ebener Kurven und den
  Differentialgleichungen erster Ordnung mit zwei Variabelen eine sehr
  innige Beziehung besteht, die sich zu erkennen giebt, indem die Integrale
  einer dieser Gleichungen ein System von Kurven darstellen. Die gegebene
  Differentialgleichung läßt jedem Punkte eine bestimmte Anzahl von ihm
  ausgehender Richtungen entsprechen und einer Geraden eine bestimmte
  Anzahl auf ihr liegender Punkte. Auf diese Beziehungen wurde C l e b s c h durch seine
  Untersuchungen über die Konnexe[432] (vgl. § VI) und unabhängig von F o u r e t[433]
geführt. In ähnlicher Weise kann man eine
  Beziehung zwischen den Differentialgleichungen erster Ordnung mit drei
  Variabelen und einem Systeme von Oberflächen aufstellen, wie dies
  ebenfalls F o u r e t[434]
  bemerkt hat. Dieser Zusammenhang ist von grosser Wichtigkeit, weil er
  gestattet, Sätze auf transcendente Kurven oder Oberflächen auszudehnen,
  von denen man glaubte, daß sie nur für algebraische Kurven oder
  Oberflächen gültig seien; so konnte F o u r e t den Satz über die Zahl
  der Kurven eines Systemes, welche eine gegebene algebraische Kurve
  berühren, auf Systeme von transcendenten Kurven ausdehnen,[435] konnte ferner die
  Ordnung des Ortes der Berührungspunkte eines einfach unendlichen Systemes
  von Oberflächen mit den Oberflächen eines doppelt unendlichen Systemes
  bestimmen,[436] ebenso die
  Ordnung des Ortes der Berührungspunkte der Oberflächen eines doppelt
  unendlichen Systemes mit einer gegebenen algebraischen Oberfläche[437] u. s. w.[438]

Trotz dieser und anderer Arbeiten, die ich der Kürze wegen übergehe,
  war die ganze Tragweite der C h a s l e s schen Betrachtungen noch
  nicht offenbar geworden; das geschah durch den letzten, von dem ich zu
  sprechen habe, durch H e r m a n n S c h u b e r t in seinem Kalkül der
  abzählenden Geometrie.[439] Dieses Buch, das noch viel zu wenig
  geschätzt wird, kann man mit Recht als
  dasjenige betrachten, welches zuerst von Grund auf das Problem
  behandelte, »zu bestimmen, wie viele geometrische Gebilde von gegebener
  Definition einer hinreichenden Zahl von Bedingungen genügen,« d. h. das
  Problem der abzählenden Geometrie. Dort sind die Korrespondenzprinzipien
  unter ihrem wahren Gesichtspunkte auseinandergesetzt,[440] dort ist klar erörtert, was man unter
  dem Charakteristikenproblem einer bestimmten Figur zu verstehen hat, und
  sind Methoden von außerordentlicher Macht für dessen Lösung gezeigt. Die
  Schubertschen Methoden sind dazu bestimmt, eines Tages das übliche
  Hilfsmittel für den Mathematiker zu werden, wie es augenblicklich die
  Cartesische Geometrie ist, und niemand wird mich der Übertreibung
  beschuldigen, der bedenkt, daß dieselben in einer Unzahl von Fällen zur
  Lösung des allgemeinen Problemes der Elimination dienen, d. h. die Zahl
  der Lösungen eines Systemes von algebraischen Gleichungen zu bestimmen.
  Daher müssen alle, Analytiker und Geometer, dem Werke von Schubert, durch
  welches er die abzählende Geometrie zu einer besonderen Disziplin erhoben
  hat, reiches Lob zollen, oder besser, anstatt es blos zu bewundern, sich
  vornehmen, die fruchtbaren Methoden
  desselben zu vervollkommnen und sie von Mängeln frei zu machen, d. h. sie
  von dem Tadel, der ihnen von einigen gemacht worden ist, daß sie nicht
  ganz strenge seien, zu befreien und sie selbst oder wenigstens die
  Anwendungen, deren sie fähig sind, zu vermehren.

Die auf die Theorie der Charakteristiken bezüglichen Andeutungen[441] würden eine
  unverzeihliche Lücke darbieten, wenn sie nicht einen Hinblick auf eine
  wichtige Frage böten, die zwischen einigen Geometern ventiliert wurde,
  und die man heute als schon gelöst betrachten darf. Geleitet nämlich
  durch einen Induktionsschluß, behauptete C h a s l e s, daß die Zahl derjenigen
  Kegelschnitte eines einfach unendlichen Systemes, welche einer neuen
  einfachen Bedingung genügen, ausgedrückt wird durch eine homogene lineare
  Funktion der Charakteristiken des Systemes, deren Koeffizienten einzig
  und allein von dieser Bedingung abhängen. D a r b o u x,[442] C l e b s c h,[443]
  L i n d e m a n n,[444] H u r w i t z und S c h u b e r t,[445] sowie noch andere glaubten diesen Satz
  beweisen zu können. Aber daß die von ihnen angeführten Gründe nicht
  beweiskräftig waren, wurde in einer Reihe von Arbeiten gezeigt, in
  welchen H a l p h e n[446] die Hinfälligkeit der Vermutung
  Chasles' klar legte und zeigte, wie man den vorher angeführten Satz
  modifizieren müsse. In der Theorie der Charakteristiken der Systeme von
  Flächen zweiten Grades hat man einen analogen Satz, den ebenfalls H a l p h e n[447] entdeckt hat. Jedoch glaube man nicht,
  daß diese Sätze von Halphen die Resultate zerstören, welche
  man erhalten, indem man den Chaslesschen Weg einschlug; vielmehr sind
  dieselben glücklicherweise meistenteils unabhängig von dem fraglichen
  Theorem, und für die anderen Fälle ist es leicht zu zeigen, welche
  Korrektionen man machen muß.[448]


V.


Theorie der Kurven doppelter Krümmung.

———

 

Die Theorie der ebenen Kurven kann man in zwei verschiedenen
  Richtungen verallgemeinern. Indem man die Thatsache ins Auge faßt, daß
  eine solche Kurve durch e i n e Gleichung zwischen den
  Koordinaten eines Punktes einer Ebene dargestellt wird, so ergiebt sich
  als Analogon im Raume die Theorie der Oberflächen, indem diese als durch
  e i n e Gleichung zwischen den Koordinaten eines Punktes im
  Raume darstellbar betrachtet werden, auf welche Betrachtung wir im
  Vorhergehenden eingegangen sind. Wenn man hingegen eine ebene Kurve als
  eine Reihe von einfach unendlich vielen Punkten ansieht, so kann man die
  Theorie ausdehnen, indem man die Beschränkung aufhebt, daß diese in einer
  Ebene gelegen seien: dann entsteht die Theorie der unebenen Kurven.

Das Studium der Infinitesimaleigenschaften derselben kann man leicht
  genug mit Hilfe von Methoden machen, die nicht sehr verschieden sind von
  denjenigen, die für die ebenen Kurven angewandt werden. Deshalb
  wurde dasselbe, wie ich schon sagte, vor mehr als einem Jahrhundert von
  C l a i r a u t unternommen und wurde hernach von L a n c r e t (1774-1807),[449] M o n g e,[450] T i n s e a u,[451]
  d e S a i n t - V e n a n t (1797-1886),[452] von F r e n e t,[453]
  A l f r e d S e r r e t[454] und P a u l S e r r e t, von L i o u v i l l e (1809-1882),[455] B e r t r a n d,[456] von P u i s e u x (1820-1883),[457] von L i e[458]
  und vielen anderen fortgesetzt.[459]

Aber abgesehen von dieser Betrachtungsrichtung bietet das Studium der
  übrigen allgemeinen Eigenschaften der unebenen Kurven sehr große
  Schwierigkeiten. Man vermutete eine Zeit lang, daß jede Kurve im Raume
  als der vollständige Schnitt zweier Oberflächen angesehen werden und
  daher durch ein System von z w e i Gleichungen zwischen den
  Koordinaten eines Punktes im Raume dargestellt werden könnte;[460] aber bald erkannte man
  die Existenz von Kurven, die nicht der vollständige Schnitt von
  Oberflächen sind, und die Notwendigkeit, dieselben nicht vermittelst
  zweier, sondern dreier Gleichungen darzustellen, die
  ebenso vielen durch dieselbe hindurchgehenden Oberflächen entsprechen.
  Man setzte voraus, daß die Kenntnis der Ordnung zur Einteilung der
  unebenen Kurven hinreichen würde, aber sobald man an die vierte Ordnung
  gekommen war, erkannte man, daß dieselbe nicht genüge.[461] Man hätte nun glauben sollen, daß die
  Ordnung und die Zahl der scheinbaren Doppelpunkte für den besagten Zweck
  hinreichen würden, aber als man an die neunte Ordnung herantrat, sah man,
  daß man sich geirrt habe.[462] Auch eine dritte Zahl, die niedrigste
  Ordnung der Kegel, die durch die von einem Punkte herkommenden Sehnen
  (Doppelsekanten) der Kurve gehen, konnte nur bei den Kurven von niederer,
  als der fünfzehnten Ordnung dazu verhelfen. So kam man denn zu dem
  Schlusse, daß es unmöglich sei, eine gegebene Kurve vermittelst einer
  bestimmten Menge von vornherein angebbarer Zahlen zu
  charakterisieren.

Ich habe diese Thatsachen anführen wollen, um zu zeigen, daß die
  a l l g e m e i n e Theorie der unebenen Kurven keine Ähnlichkeit mit
  irgend einem anderen Teile der Geometrie zeigt und, indem ich auf die
  erschreckliche Dunkelheit, die sie darbietet, hinwies, dem Leser das
  Mittel geben wollen, den Grund zu finden, warum die Kenntnisse, die wir
  über diese Gebilde haben, so wenig zahlreich und erst neueren Ursprunges
  sind.

Die ersten allgemeinen Resultate über die Kurven doppelter Krümmung
  verdanken wir C a y l e y, welcher ihnen zwei
  wichtige Abhandlungen gewidmet hat. In einer derselben stellte er die
  Formeln (analog denen von Plücker) auf, welche die Zahl der
  Singularitäten einer Raumkurve untereinander verbinden.[463] In der anderen führte er für das
  Studium der Raumkurven von der Ordnung n diejenigen
  bemerkenswerten Flächen ein, welche er »Monoide« nannte.[464]

Nach diesen Arbeiten müssen wir, um einen wirklich bemerkenswerten
  Fortschritt in der Theorie, welche uns beschäftigt, zu finden, uns zu
  H a l p h e n und N ö t h e r wenden, deren Abhandlungen[465], im Jahre 1882 von der Akademie zu
  Berlin mit dem Preise gekrönt, die Grundlage für eine allgemeine Theorie
  der Raumkurven sind; denn sie behandeln die Probleme: »alle voneinander
  verschiedenen Kurven von gegebener Ordnung zu bestimmen«, »anzugeben,
  welche Kurven es auf einer gegebenen Oberfläche giebt« und noch viele
  andere von nicht geringer Bedeutung. Diese beiden Arbeiten verschlingen
  sich so enge und durchdringen sich so innig, daß es sehr schwer wird, zu
  entscheiden, welcher Anteil jedem der beiden Autoren in den vielen
  gemeinsamen Resultaten zufällt, die sie enthalten. Wenn
  einerseits N ö t h e r die Theoreme, welche Ende des Jahres 1870 von
  H a l p h e n in den Comptes
  rendus und an anderen Stellen[466] ausgesprochen sind, ausbeuten konnte,
  so konnte dieser sich der Sätze bedienen, welche in der sehr bedeutenden
  Abhandlung von B r i l l und N ö t h e r, Über die
  algebraischen Funktionen und ihre Anwendung in der Geometrie[467] enthalten sind, und in
  derjenigen, in welcher N ö t h e r streng den
  Fundamentalsatz der Theorie der algebraischen Funktionen dargethan hatte,
  welcher in der Auseinandersetzung von H a l p h e n unumgänglich notwendig war.[468] Und man glaube nicht, daß die von den
  beiden Geometern bei ihrem Thema eingeschlagenen Wege im wesentlichen
  verschieden gewesen seien, vielmehr benutzten sie beide (wie Cayley
  geraten hatte) Monoide, und wenn der eine vorzugsweise Formeln und Sätze
  aus der Theorie der Abelschen Integrale gebraucht, so wendet der andere
  solche Lehrsätze über die algebraischen Funktionen an, welche zu
  denselben Eigenschaften führen. Jedenfalls steht es außer Zweifel, daß
  diese beiden hervorragenden Produktionen unseres Zeitalters bestimmt
  sind, die Grundlage für die zukünftigen geometrischen Untersuchungen zu
  bilden, und wenn bis jetzt sich ihr Einfluß noch nicht so allgemein
  geltend gemacht hat, so ist dieses vorzugsweise den großen
  Schwierigkeiten zuzuschreiben, die ihr Gegenstand noch immer darbietet,
  und vielleicht auch den Lücken, die in den Methoden vorhanden sind, die
  man zu Hilfe nehmen könnte, um jene zu überwinden.[469]



Aber vor der Begründung der allgemeinen Theorie wurden viele einzelne
  Kurven einem genaueren Studium unterworfen; da ich aber wünsche, mehr als
  getreuer, denn als glänzender Geschichtsschreiber angesehen zu werden, so
  muß ich hier eine Aufzählung der Arbeiten unternehmen, in welchen die
  hervorragenderen unter diesen Untersuchungen enthalten sind.



»Degli altri fia laudabile il tacerci,

Chè il tempo saria corto a tanto suono.«[470]





Unter ihnen verdienen den ersten Platz diejenigen, welche die
  kubischen Raumkurven behandeln. Über diese haben M ö b i u s[471]
  und C h a s l e s[472] verschiedene sehr schöne Eigenschaften
  aufgefunden; dieselben vermehrten sich mit solcher Schnelligkeit, daß
  S t a u d t[473]
  binnen kurzem die vollständige Analogie, die zwischen ihnen und den
  Kegelschnitten besteht, feststellen konnte; diese Analogie hat sich von
  Tag zu Tag mehr vervollkommnet, dank den Studien von S e y d e w i t z,[474] J o a c h i m s t h a l[475] C r e m o n a,[476]
S c h r ö t e r,[477] R e y e,[478] E m i l W e y r,[479]
  S t u r m,[480] H u r w i t z,[481]
  welche nicht allein die Aufstellung einer vollständigen synthetischen
  Behandlung dieser Kurven gestatten, sondern auch das Terrain für die so
  elegante analytische Auseinandersetzung ebneten, die mein innigst
  geliebter Lehrer E. d ' O v i d i o[482] und P i t a r e l l i[483]
  gemacht haben.

Dann will ich die Theorie der unebenen, auf einem einschaligen
  Hyperboloide gezeichneten Kurven anführen, für welche C h a s l e s[484] das Fundament gelegt hat, und die von
  unserem C r e m o n a[485] so sehr bereichert ist. Ferner will
  ich
  der vielen Eigenschaften erwähnen, welche P o n c e l e t,[486]
  C h a s l e s,[487] C r e m o n a,[488]
  R e y e,[489]
  P a u l S e r r e t,[490] L a g u e r r e,[491] M i l i n o w s k i[492] und viele andere über die Raumkurven
  vierter Ordnung erster Art gefunden haben, und die schönen Anwendungen,
  die sie für die Theorie der zweifach periodischen Funktionen geliefert
  haben, — H a r n a c k,[493]
  L a n g e,[494] W e s t p h a l,[495] L é a u t é[496] u. s. w. Auch kann ich die schönen
  Arbeiten von C r e m o n a,[497] von A r m e n a n t e,[498]
  B e r t i n i[499] und E m.
  W e y r[500]
  über die Raumkurven vierter Ordnung zweiter Art nicht stillschweigend
  übergehen, ferner nicht die von K l e i n und L i e über die durch unendlich viele lineare
  Transformationen in sich selbst transformierten Kurven,[501] noch auch die von F i e d l e r[502] angestellte Bestimmung der Kurven von
  nicht höherer als neunter Ordnung, die zu ihren eigenen
  Tangenten-Developpabelen dual sind. Und wie könnte ich es unterlassen,
  einen Blick auf die große Zahl von Kurven zu werfen, welche C r e m o n a und S t u r m[503] studiert haben, indem sie sich mit der
  Geometrie auf einer Oberfläche dritter Ordnung beschäftigten, dann auf
  die wichtigen Probleme, die von C l e b s c h und seinen Schülern über die rationalen,[504] elliptischen und
  hyperelliptischen[505]
  Kurven gelöst sind, und die eleganten Eigenschaften, welche B e r t i n i[506] an den rationalen Kurven fünfter
  Ordnung auffand, sowie W. S t a h l[507]
  bei denjenigen, deren Punkte auf einer Oberfläche zweiten Grades liegen,
  während die Oskulationsebenen eine solche zweiter Klasse berühren?

Indem der unerfahrene Leser so bedeutende und so verschiedene
  Untersuchungen aufzählen hört, wird er sich von einem gewissen Kleinmute
  bedrängt fühlen und sich fragen, wie es in kurzer Zeit möglich sei,
  dieselben, wenn auch nicht alle, so doch größtenteils sich anzueignen?
  Man beruhige sich. Die Übersicht ist für den Studierenden viel weniger
  schwierig, als es nach meiner Besprechung scheinen könnte. Die von den
  Geometern der ersten Hälfte unseres Jahrhunderts aufgestellten Prinzipien
  sind so fruchtbar, daß, wenn jemand sich dieselben gründlich zu eigen
  gemacht hat, er nicht allein selbst viele weitere Untersuchungen
  ableiten, sondern auch noch darnach streben kann, die Wissenschaft selbst
  weiter zu fördern. Und dieses — was sicherlich ein nicht zu
  unterschätzender Vorzug der heutigen Wissenschaft vor der unserer Väter
  ist — wurde in Kürze von einem ihrer Gründer mit den fortan
  klassischen Worten ausgesprochen: »Peut donc qui voudra dans l'état
  actuel de la science généraliser et créer en géométrie; le génie n'est
  plus indispensable pour ajouter une pierre à l'édifice«,[508] goldene Worte, welche
  jeder, der Mathematik betreiben will, sich einprägen muß; indem sie ihn
  auf einen wahrscheinlichen Sieg hoffen lassen, werden sie ihn anspornen,
  sich mutig den geistigen Kämpfen entgegenzustellen, die ihn erwarten.

 








VI.


Abbildungen, Korrespondenzen, Transformationen.

———

 

Bei dieser flüchtigen Musterung der neuesten geometrischen
  Entdeckungen gelangen wir nun zur Lehre von den Abbildungen,
  Korrespondenzen und Transformationen. — Es ist bekannt, daß
  zwischen zwei ebenen Punktfeldern eine Korrespondenz (Verwandtschaft)
  besteht, wenn jedem Punkte des einen eine Gruppe von Punkten des anderen
  zugeordnet ist; diese heißen dann die »entsprechenden« zu jenem. Wenn im
  speziellen Falle jeder Punkt des einen Feldes einen einzigen
  entsprechenden in dem anderen hat, so heißt die Korrespondenz
  »eindeutig«.

Die einfacheren Fälle der eindeutigen Korrespondenz sind die Homologie
  — von P o n c e l e t studiert (1822) — und die Kollineation
  (Homographie), von M ö b i u s (1827), M a g n u s (1833) und C h a s l e s (1837) studiert. In diesen Fällen entspricht nicht
  nur jedem Punkte ein Punkt, sondern auch jeder Geraden eine
  Gerade. — Ein Beispiel einer komplizierteren Korrespondenz wurde
  von S t e i n e r (1832) durch folgende
  Konstruktion erhalten:[509]
  Gegeben sind zwei getrennte Ebenen und zwei windschiefe Geraden; durch
  jeden Punkt der einen von jenen ziehe man die Gerade, welche die beiden
  gegebenen Geraden schneidet, und bestimme den Schnittpunkt mit der
  anderen Ebene. Indem man diesen Schnittpunkt dem in der ersten Ebene
  gewählten Punkte zuordnet, erhält man eine eindeutige Beziehung von der
  Art, daß jeder Geraden in der einen Ebene ein Kegelschnitt in der anderen
  entspricht. Läßt man nun die beiden Ebenen zusammenfallen, so erhält man
  eine Korrespondenz, welche im wesentlichen nicht von der durch P o n c e l e t[510]
  zwischen in bezug auf ein Kegelschnittbüschel konjugierten Punkten
  gefundenen verschieden ist, und welche auf analytischem Wege von P l ü c k e r[511] untersucht wurde, sodann von M a g n u s (1790-1861)[512] und von unserem S c h i a p a r e l l i,[513]
  synthetisch aber von S e y d e w i t z[514]
  und später von R e y e.[515] — Auf ein drittes Beispiel
  führte die Lösung einiger Probleme aus der mathematischen Physik; man
  gelangt dazu auf folgende Weise: Gegeben sei in einer Ebene ein fester
  Punkt, man associiert zwei mit ihm in gerader Linie gelegene Punkte,
  deren Abstände von ihm umgekehrt proportional sind. Man erhält dann eine
  eindeutige Korrespondenz, welche jede Gerade in einen Kreis, und jeden
  Kreis wieder in einen Kreis verwandelt. Diese wurde von Sir W i l l i a m T h o m s o n[516] als »Prinzip der
  elektrischen Bilder« studiert und ist unter dem Namen »Transformation
  durch reciproke Radien« oder »Inversion« allgemein bekannt.[517]

Alle diese Transformationen sind linear oder quadratisch, da sie eine
  Gerade in eine Kurve erster oder zweiter Ordnung verwandeln. Jedoch
  machte M a g n u s schon die Bemerkung, daß, wenn man eine
  quadratische Transformation wiederholt, man im allgemeinen eine solche
  höherer Ordnung erhält.[518] Diese wichtige Bemerkung blieb aber
  bis zu dem Zeitpunkte unfruchtbar (1863), in welchem C r e m o n a von den wenigen bisher
  erörterten Fällen zur allgemeinen Theorie der geometrischen
  Transformationen der ebenen Figuren überging.[519]



Um dem Leser die Bedeutung der Schriften, welche C r e m o n a dieser Theorie[520] gewidmet hat, zu zeigen,
  würde ich auseinanderzusetzen haben, auf welche Weise dieser große
  Geometer das Studium der eindeutigen Transformationen auf das eines
  homaloidischen Netzes von Kurven zurückgeführt hat, und die Bestimmung
  eines solchen Netzes auf die Lösung eines unbestimmten Systemes von
  linearen Gleichungen; aber da die Anlage meiner Abhandlung mir das nicht
  gestattet, so muß ich mich darauf beschränken, ihn davon durch den alten
  Beweis des »consensus omnium« zu überzeugen. Dann führe ich noch
  die Namen von Geometern an wie C a y l e y,[521] C l e b s c h,[522]
  N ö t h e r,[523]
  R o s a n e s,[524] S. R o b e r t s,[525]
  die sich bemüht haben, die (bei der ersten Behandlung des Stoffes
  unvermeidlichen) Lücken, die sich in den C r e m o n a schen Abhandlungen[526] fanden, auszufüllen; ferner die
  Arbeiten von R u f f i n i,[527] J o n q u i è r e s,[528] K a n t o r,[529] G u c c i a,[530] A u t o n n e,[531]
  welche mit dieser Lehre eng zusammenhängende Fragen behandeln,
  endlich die von H i r s t,[532]
  T. C o t t e r i l l[533] (1808-1881), von S t u r m,[534] S c h o u t e[535]
  und sehr vielen anderen, welche sich das bescheidenere Ziel gesetzt
  haben, die Verbreitung derselben durch geeignete Beispiele und elegante
  Formeln zu erleichtern.[536]

Unter den Arbeiten, welche sich an die von C r e m o n a anschließen, verdienen
  eine hervorragende Stelle diejenigen von B e r t i n i,[537] welche er den ebenen involutorischen
  Transformationen gewidmet hat, welche Arbeiten noch größere Einfachheit
  und Eleganz erhielten durch den Begriff der Klasse und andere Begriffe,
  die von C a p o r a l i[538]
  (1855-1886) eingeführt wurden, jenem ausgezeichneten Geometer, dessen
  frühen Verlust ganz Italien betrauert.[539]



Von ganz verschiedenem Charakter sind hingegen die eleganten
  Untersuchungen von L a g u e r r e über solche
  Transformationen, welche er »Transformationen durch reciproke Richtungen«
  nannte; da es nicht möglich ist, den Grundgedanken in wenigen Worten
  zusammenzufassen und die vielfachen Anwendungen, welche der Erfinder
  davon gemacht hat, anzudeuten, verweisen wir den Leser auf die
  Originalarbeiten des hervorragenden französischen Geometers.[540]

Von der Theorie, die wir jetzt besprechen, bildet auch die Lehre von
  den »isogonalen Transformationen« einen Teil, welcher sich auf die
  geometrische Darstellung der komplexen Zahlen stützt und deren
  Nützlichkeit (welche vielleicht grösser ist für die mathematische
  Physik als für die reine Geometrie) M ö b i u s,[541] S i e b e c k,[542]
  D u r è g e,[543]
  B e l t r a m i,[544]
  V o n d e r - M ü h l l,[545]
  F. L u c a s,[546] W e d e k i n d[547] und neuerdings H o l z m ü l l e r[548]
  dargethan haben.[549]



Den Begriff der eindeutigen Korrespondenz zwischen zwei Ebenen kann
  man auf verschiedene Weise verallgemeinern; die Weisen, die sich so
  ziemlich von selbst darbieten, sind folgende:

Vor allem, ohne die Ebene zu verlassen, kann man eine Korrespondenz
  aufstellen zwischen jedem Punkte derselben und einer Kurve eines doppelt
  unendlichen Systemes in derselben oder auch einer anderen Ebene;[550] diese Art der
  Korrespondenz ist eine Erweiterung der Korrelation (Reciprocität)
  zwischen zwei Feldern; angegeben von P l ü c k e r, wurde dieselbe von C l e b s c h[551] entwickelt und veranlaßte die Theorie
  der Konnexe.[552]



Wenn man dann zum Raume übergeht, kann man eine Korrespondenz zwischen
  den Punkten zweier Oberflächen aufstellen (insbesondere zwischen den
  Punkten einer krummen Oberfläche und denen einer Ebene) oder zwischen den
  Punkten zweier Räume.

Die Darstellung einer Oberfläche auf einer Ebene kann man bis ins
  Altertum zurückverfolgen, da schon H i p p a r c h und P t o l o m a e u s (und wahrscheinlich andere vor ihnen) sich die
  Aufgabe der Herstellung geographischer Karten gestellt und Lösungen
  derselben mitgeteilt haben, die auf derjenigen Projektion beruhen, welche
  man heute die stereographische nennt. — Die Projektion von M e r c a t o r (1512-1594), die Untersuchungen von L a m b e r t (1728-1777) und L a g r a n g e, die berühmte Antwort von G a u ß auf eine von der dänischen Akademie gestellte
  Frage[553] zeigen, wie die
  täglichen Bedürfnisse der Geographie und Navigationskunde unaufhörlich
  die Gelehrten angetrieben haben, sich mit dem Probleme der eindeutigen
  Darstellung der Oberfläche unseres Planeten auf einer Ebene zu
  beschäftigen.[554] —
  Die erste Abbildung einer Oberfläche auf einer anderen jedoch, die nur in
  der Absicht gemacht wurde, um eine derselben leichter studieren zu
  können, verdanken wir Gauß, der 1827 in seinen berühmten Disquisitions
  generales circa superficies curvas es als sehr vorteilhaft erkannte,
  die Punkte einer beliebigen Oberfläche den Punkten
  einer Kugelfläche entsprechen zu lassen, indem man zwei solche Punkte
  zuordnet, deren Normalen einander parallel sind.[555] Eine besondere Eigentümlichkeit dieser
  Korrespondenz ist die, daß, um Eindeutigkeit zu erhalten, es fast immer
  nötig ist, nur den Teil der Oberfläche abzubilden, den man gerade ins
  Auge faßt; wir wollten diese Eigenschaft nicht stillschweigend übergehen,
  da deren Anführung uns Gelegenheit giebt, den Unterschied hervorzuheben,
  der zwischen der sphärischen Abbildung und den Abbildungen besteht,
  welche von P l ü c k e r,[556] C h a s l e s[557]
  und C a y l e y[558]
  für das Studium der Geometrie auf einer Fläche zweiten Grades, denen, die
  von C l e b s c h[559] und C r e m o n a[560]
  für das Studium der Geometrie auf einer kubischen Fläche, und von denen
  endlich, die von späteren Geometern für die Untersuchung anderer Flächen
  vorgeschlagen sind.

Die erste Arbeit, welche ex professo die Theorie der
  Abbildungen dieser Art behandelt, verdankt man C l e b s c h.[561] Die zahlreichen Beispiele, durch
  welche der Verfasser in dieser Arbeit, sowie in einigen älteren und
  späteren[562] die
  allgemeine Theorie illustrierte, haben zur Aufstellung der Geometrie auf
  einer grossen Zahl von Flächen mit vielen Einzelheiten geführt. Ferner
  haben die fast gleichzeitigen Abhandlungen von C r e m o n a[563] und N ö t h e r,[564] sowie die ihnen folgenden von A r m e n a n t e,[565] K l e i n,[566]
  K o r n d ö r f e r,[567]
  C a p o r a l i[568]
  und von noch anderen[569]
  im Verlaufe weniger Jahre diese Zahl außerordentlich vermehrt.[570] Man kann sich eine
  ziemlich genaue Vorstellung von dem Reichtum dieses Zweiges der Geometrie
  machen, wenn man die schöne Abhandlung von C a p o r a l i über die dreifach unendlichen linearen Systeme
  ebener Kurven liest,[571]
  in welcher er einerseits die Theorie der Abbildung einer Oberfläche auf
  eine Ebene auf das Studium solcher Systeme anwandte, andererseits in
  derselben wertvolle Hilfsmittel der Untersuchung fand.

Bei dem Studium der Abbildung einer Oberfläche bietet sich von selbst
  eine wichtige Frage dar, nämlich die, ob sie alle eindeutig auf eine
  Ebene abbildbar sind, oder allgemeiner: ob zwei Oberflächen sich als
  Punkt für Punkt einander entsprechend darstellen lassen. Und
  da man leicht erkannte, daß die Antwort auf diese Frage eine negative
  sei, so wurde man natürlich auf die andere Frage geführt: Welche
  Oberflächen lassen sich eindeutig auf einer Ebene abbilden? Oder
  allgemeiner: Welche Oberflächen kann man eindeutig auf einer gegebenen
  abbilden? — Die analoge Frage für zwei (ebene oder unebene) Kurven
  wurde von C l e b s c h vermittelst der
  Betrachtung des Geschlechtes und der Moduln gelöst. Diese Analogie
  veranlaßte nun C l e b s c h, die Lösung des vorhin angegebenen Problems in
  einer Ausdehnung des Begriffes des Geschlechtes auf die Oberflächen[572] zu suchen. Dieser
  Versuch wurde jedoch nach meinem Dafürhalten nicht von gutem Erfolge
  gekrönt, und auch heute muß man trotz der nach C l e b s c h angestellten Versuche
  ausgezeichneter Mathematiker wie C a y l e y,[573] N ö t h e r,[574] Z e u t h e n[575]
  die Frage als noch ungelöst betrachten; um das zu beweisen, genügt es zu
  sagen, daß, wenn es auch bekannt ist, daß alle Oberflächen zweiter und
  dritter Ordnung (die nicht Kegelflächen sind) eindeutig auf einer Ebene
  abbildbar sind, doch noch nicht alle Oberflächen vierter Ordnung bestimmt
  sind, welche dieselbe Eigenschaft haben.[576] Die allgemeineren
  Resultate, die man auf diesem Gebiete kennt, waren, wenn ich nicht irre,
  von N ö t h e r[577]
  erhalten; dieser gelangte durch eine überaus elegante analytische
  Betrachtung bei jeder Oberfläche, welche eine einfach unendliche Schar
  rationaler Kurven enthält, zu einer Abbildung derselben auf einem
  Kegel.

Die Schwierigkeit aber, auf welche man bei der eindeutigen Abbildung
  gewisser Oberflächen auf eine Ebene stieß, ließen bei C l e b s c h den Gedanken entstehen,
  zwischen einer Oberfläche und einer Ebene eine vielfache Korrespondenz
  aufzustellen, oder auch (wie er an die R i e m a n n schen Flächen denkend
  sagte) eine Fläche auf eine vielfache Ebene abzubilden und dann diese auf
  eine einfache Ebene zu beziehen.[578] Diese Idee, deren Keime sich
  vielleicht bis zu der von C h a s l e s[579]
  vorgeschlagenen Verallgemeinerung der stereographischen Projektion
  zurückverfolgen lassen, konnte nicht mehr vollständig von ihrem Urheber
  entwickelt werden; jedoch blieben die von ihm gegebenen Andeutungen nicht
  unfruchtbar, vielmehr entstand aus ihnen die Theorie der doppelten ebenen
  Transformationen, welche d e P a o l i s aufgestellt und durch vielfache Anwendungen
  erläutert hat.[580]

Die zweite Verallgemeinerung der C r e m o n a schen Transformationen
  veranlaßte die Theorie der rationalen Transformationen im Räume. Zwei
  Beispiele einer solchen Korrespondenz boten sich in der Homographie
  zweier Räume (und deren Spezialfällen) dar und — wie M a g n u s,[581]
  H e s s e[582] und C r e m o n a[583]
  bemerkt haben — in der Transformation, die man erhält durch drei zu
  demselben Räume korrelative (reciproke) Räume, indem man jedem Punkte
  jenes Raumes den Schnitt der Ebenen zuordnet, die ihm in
  diesen entsprechen. Die allgemeine Theorie entstand jedoch erst um das
  Jahr 1870 durch die Bemühungen C a y l e y s,[584]
  N ö t h e r s[585] und C r e m o n a s,[586] obwohl schon M a g n u s[587]
  Ende 1837 dieselbe angestrebt und ihre Wichtigkeit eingesehen hatte.

Von den bemerkenswerten Arbeiten, in welchen diese Gelehrten unsere
  Theorie im allgemeinen begründeten, ist ohne Zweifel die wichtigste jene,
  die wir der Feder unseres berühmten Landsmannes verdanken. Geleitet durch
  die Analogie, welche diese Disziplin mit der der eindeutigen
  Korrespondenz zwischen zwei Ebenen darbietet, zeigte er, wie jene sich
  auf das Studium der dreifach unendlichen homaloidischen Systeme von
  Oberflächen zurückführen läßt. Darauf setzte er auf eine sehr schöne
  Weise auseinander, wie man unendlich viele solcher Systeme erhalten
  könne, wenn man die ebene Abbildung e i n e r Oberfläche kennt, und zeigte zuletzt durch
  treffende Beispiele, wie man die Theorie der rationalen Transformationen
  auf die Abbildung vieler Flächen auf andere zurückführt, insbesondere auf
  die ebene Abbildung einiger von ihnen. Diese Anwendung, vereint mit der
  obenerwähnten Methode, zeigt klar, wie man aus der ebenen Abbildung einer
  Oberfläche nicht nur die Abbildungen von unendlich vielen anderen
  erhalten kann, sondern auch unzählig viele rationale Transformationen des
  Raumes.

Ungeachtet der Schriften, durch welche England, Deutschland und
  Italien so mächtig zur Gründung und Erweiterung dieser Theorie
  beigetragen haben, kann man doch nicht sagen, daß dieselbe den Grad der
  Vollendung erreicht habe, den andere erlangt haben. Das kommt
  vielleicht daher, daß die schwierigsten Fragen, welche sich in derselben
  darbieten, innig mit der Bestimmung der Singularitäten der Oberflächen
  zusammenhängen, und über diese — wir müssen es leider gestehen
  — sind unsere Kenntnisse noch sehr beschränkt. Darin hat man
  vielleicht die Erklärung der Thatsache zu suchen, daß die Geometer, die
  auf jene oben erwähnten folgten, sich mehr mit der Erläuterung der
  Methoden ihrer Meister, als mit der Vervollkommnung derselben und der
  Ausfüllung ihrer Lücken beschäftigt haben.[588] Und dennoch — wenn auch das
  Studium der Figur selbst ohne Zweifel dem der transformierten vorzuziehen
  ist — giebt es bei dem heutigen Standpunkte der Wissenschaft sehr
  wenige Theorien, die so sehr es verdienen, daß man sie in allen ihren
  Einzelheiten vervollkommne, als gerade diese. In der That, um die Worte
  eines großen Mannes zu gebrauchen, »wenn man über das Verfahren der
  Algebra nachdenkt und den Grund der gewaltigen Vorteile aufsucht, die sie
  der Geometrie bietet, sieht man da nicht, daß sie dieselben der
  Leichtigkeit verdankt, mit welcher man anfänglich eingeführte Ausdrücke
  Transformationen unterziehen kann, Transformationen, deren Geheimnis und
  deren Mechanismus die wahre Wissenschaft bilden und die das ständige Ziel
  der Analysten sind? Ist es darum nicht natürlich, zu versuchen, in die
  reine Geometrie analoge Transformationen einzuführen, welche direkt auf
  die vorgelegten Figuren und ihre Eigenschaften hinsteuern?[589]

Auf das allgemeine Studium der Transformationen folgt das solcher
  Transformationen, bei denen man einen gewissen Zweck im Auge hat,[590] z. B. die Verwandlung
  der Figuren in sich selbst oder ihre Zurückführung zur ursprünglichen
  Figur, wenn die Transformationen mehrmals hintereinander angewandt
  werden. Es existieren in der That auch schon einige gute Arbeiten, in
  welchen die Kollineationen und Korrelationen behandelt sind, welche eine
  Fläche zweiter Ordnung, einen linearen Komplex[591] oder eine kubische Raumkurve[592] in sich selbst
  transformieren, sowie über die cyklischen Projektivitäten.[593]



Wir wollen diesen Abschnitt unserer Arbeit beschließen, indem wir noch
  einige Worte über die vielfachen Transformationen zwischen zwei Gebilden
  zweiter und dritter Stufe sagen, auf welche ich nur im Vorübergehen
  hinweisen konnte, indem ich einige Abhandlungen von P a o l i s anführte. Der erste, der sich mit ihnen
  beschäftigte, war C h r. W i e n e r,[594] welcher sie untersuchte, indem er eine
  eindeutige Korrespondenz in der Ebene herstellte zwischen den Geraden
  einer Ebene und den Kurven eines linearen Systemes; dann ist einem
  Punkte, betrachtet als Schnitt zweier Geraden, die Gruppe der Grundpunkte
  des Büschels zugeordnet, der durch die entsprechenden Kurven konstituiert
  wird. Diese Art und Weise, vielfache Transformationen zu erzeugen, wurde
  von T o g n o l i[595] auf den Raum ausgedehnt; derselbe ließ
  jedem Punkte, betrachtet als Schnitt dreier Ebenen, die Grundpunkte
  desjenigen Netzes entsprechen, das durch die drei den drei Ebenen
  entsprechenden Oberflächen eines dreifach unendlichen linearen Systemes
  bestimmt wird. Solche Untersuchungen haben sich bis jetzt jedoch noch
  nicht als sehr fruchtbar gezeigt. Ziemlich wichtig dagegen sind die schon
  genannten Untersuchungen von P a o l i s über die doppelten
  Transformationen. Das zeigen die Arbeiten, in denen V i s a l l i[596] und J u n g[597] die vielfachen Transformationen
  untersucht haben und welche die Fortsetzungen jener sind.

Mit einigen speziellen vielfachen Transformationen des Raumes haben
  sich R e y e[598]
  und S e g r e[599] beschäftigt und von ihnen elegante
  Anwendungen gemacht. A s c h i e r i[600] übertrug eine spezielle ebene
  zweifache Transformation, welche P a o l i s bearbeitet hatte, auf
  den Raum und dehnte auch die Anwendungen, die jener davon gemacht hatte,
  auf die Nicht-Euklidische Geometrie aus. Allgemeine Untersuchungen auf
  diesem Gebiete haben wir jedoch keine außer den wenigen, die in einer
  kurzen Arbeit von R e y e[601] aufgezeichnet sind, und den sehr
  wichtigen über die doppelten Transformationen des Raumes von P a o l i s.[602]
  Wir zweifeln nicht, daß diese und jene als Grundlage einer allgemeinen
  Theorie der zweifachen Transformationen, die wir noch erwarten, dienen
  können; und wir erwarten dieselbe mit Ungeduld, da wir sicher sind, daß
  dieselbe der Geometrie nicht geringere Dienste leisten wird, als die sehr
  bekannten, die ihr durch die birationalen Transformationen geleistet
  sind, und jene, die, wie P a o l i s bemerkt, die doppelten
  leisten können.

Neben die vielfachen Korrespondenzen zwischen zwei Räumen von Punkten
  (oder Ebenen) kann man die zwischen einem Punktraume und einem
  Ebenenraume stellen. Untersucht wurden dieselben für den Fall, daß durch
  jeden Punkt die entsprechenden Ebenen gehen und in jeder Ebene die
  entsprechenden Punkte liegen. Zusammen betrachtet bilden die zwei Räume
  ein höheres Nullsystem oder Punktebenensystem. Die Theorie dieser Systeme
  ist in diesen letzten Jahren besonders durch die Arbeiten von A m e s e d e r,[603]
  von S t u r m[604] und V o ß[605]
  hervorgetreten, während R e y e[606] das Verdienst zukommt, den Begriff des
  gemeinen Nullsystemes[607]
  zuerst, doch in einer anderen Weise — die entsprechenden Elemente
  sind nicht Punkte und Ebenen, sondern Flächen zweiter Ordnung und zweiter
  Klasse — erweitert zu haben.



 








VII.


Geometrie der Geraden.

———

 

Die griechische Geometrie betrachtet den Punkt als das erzeugende
  Element aller Figuren; die analytische Geometrie des Cartesius machte die
  Bestimmung des Punktes zur Grundlage aller ihrer Rechnungen. Das Prinzip
  der Dualität führte nun die Gelehrten zu dem Schlüsse, daß die Gerade in
  der Ebene und die Ebene im Raume mit gleichem Rechte und gleichem
  Erfolge, wie der Punkt, die Rolle spielen könne, die bis jetzt dieser in
  der Geometrie inne gehabt, und führte in der Folge dazu, die Gerade und
  die Ebene als Elemente der Ebene und des Raumes anzunehmen und ein neues
  System der (synthetischen und analytischen) Geometrie aufzustellen. Das
  Verdienst dieses bemerkenswerten Fortschrittes gebührt größtenteils
  P l ü c k e r.[608]

Aber ganz auf P l ü c k e r fällt der Ruhm, ein drittes die räumlichen Gebilde
  erzeugendes Element — die Gerade — eingeführt und auf eine
  solche Betrachtung eine neue Geometrie des Raumes begründet zu haben.
  Dieser berühmte Gelehrte kehrte, nachdem er fast zwanzig Jahre hindurch
  die Geometrie verlassen hatte, um seine bedeutenden Geisteskräfte der
  Physik zu widmen, zu der Wissenschaft zurück, die ihm ursprünglich seinen
  Ruhm gesichert hatte, um sie mit einer neuen und wichtigen Disziplin zu
  beschenken, mit »der Geometrie der Geraden«.

Die ersten Mitteilungen über diesen Gegenstand, die im Jahre 1865 der
  Königlichen Gesellschaft zu London[609] von dem großen deutschen Geometer
  gemacht wurden, enthalten die Sätze über einige allgemeine Eigenschaften
  der Komplexe, Kongruenzen und Regelflächen und einige spezielle
  Eigenschaften der linearen Komplexe und Kongruenzen;[610] die Beweise derselben sind nur
  angedeutet und sollen, nach Angabe des Autors, vermittelst der
  Koordinaten einer Geraden im Raume geführt werden, die er als einen
  eigenen Gedanken eingeführt hatte, die man später aber als Spezialfall
  dessen erkannte, was schon C a y l e y[611] aufgestellt hatte, um vermittelst
  einer einzigen Gleichung eine beliebige Kurve im Raume darstellen zu
  können.

Diese Mitteilungen veranlaßten plötzlich eine Reihe wichtiger
  Arbeiten, in denen B a t t a g l i n i nicht nur, was Plücker
  behauptet hatte, sondern auch viele Lehrsätze bewies, die sich auf die
  Komplexe zweiten und höheren Grades beziehen.[612] — Indessen hatte P l ü c k e r schon die von ihm skizzierten Gedanken ausgeführt und in dem
  Werke vereinigt, welches den Titel trägt: Neue Geometrie des Raumes,
  gegründet auf die Betrachtung der geraden Linie als Raumelement.[613]

Von diesem Buche zu sagen, daß es in allen seinen Teilen gleich
  wichtig und interessant sei, würde eine der Wahrheit nicht entsprechende
  Behauptung sein. Plücker schätzte nicht die Eleganz der Rechnung, an die
  wir durch L a g r a n g e, J a c o b i, H e s s e, C l e b s c h gewöhnt sind; er teilte
  sicherlich nicht mit L a m é[614] die Ansicht, daß »die Bezeichnung für
  die Analysis das sei, was die Stellung und Wahl der Worte für den Stil
  ist«; bei ihm brauchte die Rechnung nur der einen Bedingung zu genügen,
  nämlich schnell zur Lösung der ins Auge gefaßten Probleme zu führen.
  Dieser Mangel, der allen Arbeiten von Plücker gemeinsam ist, macht sich
  lebhafter in dem letzten Werke bemerklich, welches einen Wettstreit
  eingehen sollte mit Mustern der Eleganz, wie den Vorlesungen über
  analytische Geometrie des Raumes von H e s s e und den Vorlesungen
  über Dynamik von J a c o b i, die kurz vorher (1861
  und 1866) herausgekommen waren. Außer diesem nicht geringen Mangel ist
  ein anderer noch bedeutenderer dadurch entstanden, daß Plücker lange Zeit
  hindurch es vernachlässigt hatte, den Fortschritten der Geometrie
  nachzugehen. Infolge dieser einseitigen Ausbildung finden wir in seinem
  Buche eine Menge von Untersuchungen, die uns nicht mehr interessieren, da
  sie unter andere allgemeinere, schon gemachte fallen, eine große Anzahl
  von Spezialfällen, von deren Wichtigkeit wir uns nicht überzeugen können,
  eine Menge von komplizierten Formeln, deren Nutzen wir nicht einsehen.
  Trotz dieser Fehler — die ich anführen muß, um die geringe Anzahl
  der Leser, die sie heute findet, zu begründen — kann man nicht
  verkennen, daß die letzte Arbeit von Plücker reich an originellen Blicken
  ist, und es würde die Lektüre derselben jedem zu raten sein, der das
  Studium dieses Teiles der Geometrie unternehmen will, wenn nicht die
  Nachfolger Plückers seine Untersuchungen in besserer
  Form auseinandergesetzt und mit anderen Methoden ausgeführt, und jene
  Gedanken, die er nur hingeworfen hat, größtenteils entwickelt hätten.

Plücker hatte nicht die Zeit, die Theorie der Komplexe zweiten Grades
  zu vollenden, da der Tod ihn traf, als er gerade im Begriffe stand, den
  zweiten Teil seines Buches zu veröffentlichen; aber die Untersuchungen,
  die er unvollendet zurückließ, wurden von seinem Schüler F. K l e i n[615] zu Ende geführt. Ihm verdanken wir
  nicht nur den allgemeinen Begriff der Koordinaten einer Geraden und eine
  Anzahl sehr schöner Lehrsätze über die Komplexe zweiten Grades, sondern
  auch verschiedene allgemeine und außerordentlich fruchtbare Ideen über
  die Geometrie der Geraden. In der That ist es K l e i n, der, einen Gedanken
  seines Lehrers präzisierend, die Bemerkung machte, daß man die Geometrie
  der Geraden ansehen könne als das Studium einer quadratischen
  Mannigfaltigkeit von vier Dimensionen, enthalten in einem linearen Raume
  von fünf Dimensionen, und zeigte, daß jeder Komplex durch eine einzige
  Gleichung zwischen den Koordinaten einer Geraden darstellbar ist. Daß
  diese Bemerkung und dieser Lehrsatz von der größten Bedeutung für den
  Fortschritt der Geometrie der Geraden seien, wurde in glänzender Weise
  durch die schönen Untersuchungen meines lieben Freundes S e g r e[616] gezeigt, die mit denen von K l e i n innig
  zusammenhängen.

Gleichzeitig mit Klein beschäftigten sich P a s c h,[617] Z e u t h e n,[618]
  D r a c h,[619] später auch P a o l i s[620]
  wiederholt mit der Geometrie der Geraden, indem sie
  verschiedene Fragen derselben vermittelst homogener Koordinaten
  behandelten. C l e b s c h[621] wandte auf diese Theorie die Methode
  der abgekürzten Bezeichnung an; im Jahre 1873 vervollständigte W e i l e r[622]
  die Einteilung der Komplexe zweiten Grades nach den Begriffen, die K l e i n in seiner Dissertation
  angegeben hatte. V o ß[623]
  studierte in einer Reihe sehr wichtiger Abhandlungen die Singularitäten
  der Systeme von Geraden; H a l p h e n bestimmte die Zahl der Geraden des Raumes, welche
  vorher aufgestellten Bedingungen genügen;[624] N ö t h e r,[625] K l e i n[626]
  und C a p o r a l i[627]
  beschäftigten sich mit der Abbildung der Komplexe ersten und zweiten
  Grades auf den gewöhnlichen Raum, A s c h i e r i mit der einiger
  spezieller Komplexe;[628]
  L i e stellte den
  innigen Zusammenhang, der zwischen der Geometrie der Kugel und der
  Geometrie der Geraden besteht, ins Licht;[629] R e y e endlich studierte die
  Formen der allgemeinen quadratischen Komplexe.[630] Nur mit Hilfe der synthetischen
  Geometrie wurde unsere Theorie von C h a s l e s studiert[631] — schon 1839 —, von R e y e,[632]
von S i l l d o r f,[633] S c h u r,[634]
  B e r t i n i,[635] von d ' O v i d i o[636] und von W. S t a h l;[637] B u c h h e i m[638] bediente sich der Quaternionen, um die
  hauptsächlichsten Eigenschaften der linearen Kongruenzen zu beweisen,
  während viele Fragen aus der Infinitesimalgeometrie, die sich auf Systeme
  von Geraden beziehen, glücklich in einigen Abhandlungen von M a n n h e i m,[639]
  L i e,[640] K l e i n,[641]
  P i c a r d[642]
  und K ö n i g s[643]
  gelöst wurden. Schließlich wurden einige spezielle Komplexe studiert von
  A s c h i e r i,[644]
  P a i n v i n,[645] von R e y e,[646] L i e,[647]
  W e i l e r,[648]
  R o c c e l l a,[649]
  von H i r s t,[650] V o ß,[651]
  G e n t y,[652] M o n t e s a n o,[653]
  von S e g r e und von mir.[654]

Neben der reichhaltigen Schar von Schriften, die wir dem von Plücker
  gegebenen Anstoße verdanken, müssen wir noch eine andere ebenso glänzende
  erwähnen, die aber von ganz anderer Art ist. Sie umfaßt die
  Arbeiten von D u p i n,[655] M a l u s[656]
  (1775-1811) und Ch. S t u r m[657]
  (1803-1855), B e r t r a n d,[658]
  T r a n s o n[659] über die Normalen von Oberflächen und
  über die mathematische Theorie des Lichtes, dann die von H a m i l t o n (1805-1865) über Systeme von Strahlen.[660] Diese Arbeiten finden
  ihre Krönung in zwei berühmten Abhandlungen, die von K u m m e r in den Jahren 1857 und 1866 veröffentlicht
  sind.

In der ersteren, die im Journal für Mathematik[661] abgedruckt ist, hat sich K u m m e r die Aufgabe gestellt, durch eine einheitliche und
  einfachere Methode die Resultate von H a m i l t o n darzulegen und sie in
  den Punkten, wo sie mangelhaft erschienen, zu vervollständigen.[662]

In der zweiten,[663] die
  noch wichtiger ist, stellte er sich, nach einigen schönen allgemeinen
  Untersuchungen über die Zahl der Singularitäten eines Systemes von
  Strahlen und seiner Brennfläche, und löste die Frage, alle algebraischen
  Systeme von Strahlen erster und zweiter Ordnung zu bestimmen, d. h.
  solche, bei denen durch jeden Punkt des Raumes e i n e r oder z w e i Strahlen des Systemes hindurchgehen.

Ich möchte wünschen, daß mir hinreichender Raum zu Gebote stände, um
  den Leser in den Stand zu setzen, die ausgezeichneten Verdienste dieser
  klassischen Arbeit hoch zu schätzen, um ihn an der tiefen
  Bewunderung teilnehmen zu lassen, die ich für sie empfinde; ich möchte
  ihn sehen lassen, mit welch ausserordentlicher Gewandtheit der Verfasser
  zur Bestimmung aller Strahlensysteme erster und zweiter Ordnung zu
  gelangen weiß, zu den Gleichungen, die sie und ihre Brennflächen
  darstellen (welches jene Oberflächen vierter Ordnung mit Doppelpunkten
  sind, die ich Gelegenheit hatte, im Abschnitt III zu erwähnen), zu den
  Singularitäten der Systeme, den Konfigurationen, die sie bilden, zum
  Zusammenhange zwischen ihnen und den Singularitäten der Brennfläche
  u. s. w. Aber da die Bemessenheit des Raumes es mir verbietet, so muß ich
  mich darauf beschränken, den Wunsch auszusprechen, daß dieser mein kurzer
  Überblick es bewirken könne, daß bei jedwedem das Verlangen entsteht, die
  Untersuchungen K u m m e r s selbst kennen zu lernen und den Weg zu verfolgen,
  den er mit solchem Glücke eingeschlagen hat; ich spreche diesen Wunsch
  aus, da mich die Beobachtung schmerzlich bewegt, daß in den zwanzig
  Jahren, die schon seit dem Erscheinen der K u m m e r schen Arbeit verflossen
  sind, es noch nicht gelungen ist, eine solche Theorie, die sich so
  fruchtbar an schönen Resultaten gezeigt hat, in einer bemerkenswerten
  Weise zu fördern.[664]



 








VIII.


Nicht-Euklidische Geometrie.

———

 

Die letzte Kategorie von Arbeiten, mit denen ich mich zu beschäftigen
  habe, umfaßt eine Reihe von Untersuchungen, die zu lebhaften Diskussionen
  Veranlassung gegeben haben und — wunderbar zu sagen — eine
  Zeit lang die Mathematiker in zwei Feldlager geteilt haben, »das eine
  gewappnet gegen das andere«;[665] heutzutage bilden sie denjenigen Teil
  der Wissenschaft des Raumes, den man »Nicht-Euklidische Geometrie« und
  »Theorie der beliebig ausgedehnten Mannigfaltigkeiten« oder
  »Geometrie von n Dimensionen«[666] nennt.

Jeder weiß, daß unter allen Sätzen, die in den Elementen des
  E u k l i d enthalten sind, es einen giebt,[667] der nur schlecht dazu paßt, wie es der
  griechische Geometer gethan hat, unter die Axiome oder die Postulate
  gestellt zu werden.[668]
  Derselbe ist von großer Wichtigkeit im Euklidischen System, da auf ihn,
  wie man sagen kann, die ganze Theorie der Parallelen gegründet ist. Weil
  es nun nicht auf Grund unmittelbarer Anschauung gerechtfertigt ist, ihn
  unter diejenigen Sätze zu zählen, für welche es vergeblich ist, einen
  Beweis zu fordern, so kam man auf die Frage, ob er in der That
  unbeweisbar sei, und ob man nicht, wenn das der Fall sein sollte, ihn
  unterdrücken und durch einen anderen ersetzen könne, dessen Wahrheit
  offenbarer sei?

Diese Fragen sind ein natürlicher Ausfluß unseres Zeitalters, von
  welchem eine der hervorragendsten Eigentümlichkeiten (wie H u m b o l d t bemerkt) die unparteiliche Kritik alles dessen ist,
  was uns die Vergangenheit hinterlassen hat; sie müssen als der erste
  Ursprung der Nicht-Euklidischen Geometrie angesehen werden.

Die ersten wichtigen Studien auf diesem Gebiete wurden gegen Ende des
  vergangenen Jahrhunderts von L e g e n d r e[669] gemacht. Dieselben
  stellten den Zusammenhang klar, der zwischen dem Postulate des Euklid und
  dem Satze besteht, der sich auf die Winkelsumme eines Dreiecks bezieht,
  und führten L e g e n d r e dazu, nicht nur jenes Postulat durch ein anderes
  viel wichtigeres zu ersetzen, sondern auch eine Geometrie zu entwerfen,
  die von eben demselben Postulate unabhängig ist.[670]

Nahe zur selben Zeit wie L e g e n d r e, befaßte sich G a u ß mit dieser Frage. Gleichwohl hat er niemals irgend
  eine Arbeit auf diesem Gebiete veröffentlicht; seine Korrespondenz mit
  S c h u m a c h e r[671]
  und mit W o l f g a n g B o l y a i (1775-1856)[672] und einige
  bibliographische Artikel von ihm[673] bezeugen nicht nur das
  Interesse, das er dafür besaß, sondern bekunden auch die reiche Ernte von
  Wahrheiten, die er auf diesem, wie auf den anderen von ihm bebauten
  Feldern eingebracht hat. Und als die Schriften von L o b a t s c h e w s k y (1793-1856)[674] und J o h a n n B o l y a i (1802-1860)[675] über diesen Gegenstand
  erschienen, da sanktionierte der Fürst der deutschen Mathematiker mit
  seiner Autorität die Ergebnisse, welche dieselben erhalten hatten. Man
  kann diese Ergebnisse zusammenfassen, indem man sagt, daß dieselben die
  Grundlage einer neuen Geometrie sind, die vollständig unabhängig ist von
  dem Postulate des Euklid (die Nicht-Euklidische Geometrie, oder imaginäre
  oder auch Pangeometrie), die in gewissen Punkten mit der gewöhnlichen
  Geometrie übereinstimmt, jedoch in vielen anderen sich von ihr
  unterscheidet, — eine Geometrie, die eine Zeit lang einige als
  absurd verbannt haben wollten, da sie den von einer nur oberflächlichen
  Sinneswahrnehmung bezeugten Erscheinungen widerspricht, die aber heute
  allgemein angenommen ist, da ihr logischer Wert außer Zweifel gestellt
  ist.[676]



Zu diesem Siege der Logik über den übertriebenen Empirismus haben in
  sehr wirkungsvoller Weise einige Schriften von großer Bedeutung
  beigetragen, die R i e m a n n (1827-1866), von H e l m h o l t z und B e l t r a m i in den Jahren 1867 und
  1868 veröffentlichten.

Die R i e m a n n sche Schrift: Über die Hypothesen, welche der
  Geometrie zu Grunde liegen[677] — zwölf Jahre vor ihrer
  Veröffentlichung geschrieben — war und ist noch durch die
  Allgemeinheit der Begriffe und die Knappheit der Form selbst für
  diejenigen, welche in der Mathematik schon vorgeschritten sind, von
  schwierigem Verständnisse. Jedoch ein großer Teil der Ideen, welche
  dieselbe enthält, verbreiteten sich sehr bald, da sie, durch ein
  glückliches Zusammentreffen, auch von H e l m h o l t z ausgesprochen wurden, und dieser sie nicht nur den
  Mathematikern in rein wissenschaftlicher Form darlegte,[678] sondern auch in populären Vorträgen
  und Artikeln in verschiedenen Zeitschriften auch außerhalb des engeren
  Kreises der Geometer behandelte.[679] Keinen geringeren Einfluß aber als die
  Schriften des berühmten Verfassers der Physiologischen Optik übte
  der klassische Saggio di interpretazione della Geometria
  non-euclidea[680] von
  B e l t r a m i aus. Gerade die Schärfe und analytische Eleganz,
  welche diese Schrift auszeichnen, lenkte die Aufmerksamkeit der Geometer
  auf dieselbe; das glänzende und überraschende Resultat, daß die Sätze der
  Nicht-Euklidischen Geometrie ihre Verwirklichung auf den Oberflächen mit
  konstanter negativer Krümmung fanden, machte einen tiefen Eindruck auch
  auf diejenigen, welche jeder nicht durch das Experiment bewiesenen
  Behauptung allen Wert absprachen, und sicherte den Triumph der neuen
  Anschauungen; endlich — die dort verteidigten gesunden Prinzipien
  einer wissenschaftlichen Philosophie und die glänzende Form, in welcher
  die Abhandlung geschrieben ist, ließen und lassen noch bei allen eine
  lebhafte Bewunderung für unseren berühmten Landsmann entstehen, durch
  dessen Bemühung wiederum einmal die Wahrheit den Sieg davontrug.

Daß die Arbeiten dieser drei großen Gelehrten einen wohlthätigen
  Einfluß auf die ganze Geometrie ausgeübt haben, hat sich zur Evidenz
  durch die Änderung gezeigt, welche sich in bezug auf die Art und Weise
  vollzogen hat wie man heutzutage die ihr zu Grunde liegenden Sätze
  betrachtet.[681] Wenn
  früher die Geometer den Philosophen die Sorge überließen, zu entscheiden,
  ob die Wahrheiten, mit denen sie sich beschäftigten, notwendige oder
  zufällige seien, und dahin neigten, dieselben als notwendige zuzulassen,
  so streben sie jetzt, nachdem die empirische Grundlage der Geometrie
  erkannt ist, fortwährend darnach, genau festzusetzen, welche Thatsachen
  man der Sinneswahrnehmung entnehmen muß, um eine Wissenschaft der
  Ausdehnung zu gründen.[682]
  Wer die schönen Vorlesungen über neuere Geometrie (Leipzig,
  1882) von P a s c h liest, die neueren
  Lehrbücher prüft und diese und jene mit den älteren Büchern vergleicht,
  wird wesentliche Unterschiede finden.

In den älteren Werken giebt der Lehrer die Voraussetzungen, die er
  nicht beweist, als notwendige, ewige und unanfechtbare Wahrheiten, in den
  neueren führt er sozusagen den Schüler dazu, die nötigen Erfahrungen
  auszuführen, um die Prämissen der späteren Deduktionen festzustellen. In
  den älteren Arbeiten stellt der Verfasser die Euklidische Geometrie als
  die einzig denkbare hin, in den neueren als eine der unendlich
  vielen, die man aufstellen könnte. Und diese Unterschiede bezeichnen
  einen thatsächlichen Fortschritt, da sie zeigen, daß die Gelehrten sich
  von einem alteingewurzelten und schädlichen Vorurteile frei gemacht
  haben; und für den Fortschritt der Wissenschaft hat die Erkenntnis eines
  Irrtums eine nicht geringere Wichtigkeit, als die Entdeckung einer
  Wahrheit.

Kurz nach der Veröffentlichung der Arbeit von B e l t r a m i erschien eine von F. K l e i n,[683] die auch von großer Wichtigkeit ist;
  aber um die Stellung zu kennzeichnen, welche dieselbe in der Geschichte
  der Nicht-Euklidischen Geometrie einnimmt, muß ich mich einige Jahrzehnte
  rückwärts wenden.

Es ist bekannt, daß infolge des Traité des propriétés projectives
  des figures eine Unterscheidung aufgestellt wurde zwischen den
  Eigenschaften der Figuren, die erhalten bleiben, wenn diese projiziert
  werden, und solchen, die nicht erhalten werden; es ist ferner bekannt,
  daß unter den ersteren alle Lagen-Eigenschaften, aber nur einzelne
  metrische Eigenschaften begriffen sind. Nun stellten die Geometer sich
  die Frage, ob es nicht möglich sei, die metrischen Eigenschaften der
  Figuren so auszusprechen, daß sie bei der Projektion sämtlich erhalten
  werden. Für einige Arten der Projektion haben C h a s l e s und P o n c e l e t die Frage gelöst, indem sie den Begriff der
  unendlich fernen Kreispunkte der Ebene und des unendlich entfernten
  imaginären Kreises einführten; für andere wurde die Lösung von L a g u e r r e[684]
  gegeben, dem es gelang, den Begriff des Winkels projektiv zu machen; aber
  derjenige, welcher die Lösung in ihrer ganzen Allgemeinheit gab, war
  C a y l e y[685]
  (1859), der in dem sechsten von seinen berühmten Memoirs upon
  Quantics zeigte, daß jede metrische Eigenschaft einer ebenen Figur
  als in einer projektiven Beziehung zwischen dieser und
  einem festen Kegelschnitte enthalten betrachtet werden könne.

Nun besteht der Hauptzweck der angeführten Abhandlung von K l e i n eben darin, die innige
  Beziehung zwischen den Schlüssen C a y l e y s und denen, zu welchen B o l y a i und L o b a t s c h e w s k y gelangt waren, herzustellen; auf welche lichtvolle
  Weise dieses Ziel erreicht ist, das beweist der große Ruhm, zu dem diese
  Schrift alsbald gelangte.[686]

An diese Schriften schließen sich viele andere; an die von Riemann und
  Beltrami einige interessante Arbeiten von d e
  T i l l y,[687] G e n o c c h i,[688] v o n E s c h e r i c h[689]
  und B i a n c h i;[690] an die von Klein verschiedene
  Abhandlungen von B a t t a g l i n i,[691] d ' O v i d i o,[692] d e P a o l i s[693]
  und A s c h i e r i,[694]
  C a y l e y,[695]
  L i n d e m a n n,[696] S c h e r i n g,[697] von S t o r y,[698]
H. S t a h l[699]
  und V o ß,[700] von H. C o x[701] und A. B u c h h e i m.[702]

Die mathematische Litteratur der allerneuesten Zeit jedoch ist nicht
  sehr reich an Forschungen auf diesem Gebiete;[703] es hat den Anschein, als wenn jenes
  Zeitalter, welches man das heroische nennen könnte, und durch welches
  jede Disziplin einmal hindurchgeht, schon von der Nicht-Euklidischen
  Geometrie durchlaufen sei. Sollten vielleicht die unermüdlichen Arbeiter
  der beiden Jahrzehnte 1860-1880 die Minen in jeder Richtung so gründlich
  durchwühlt haben, daß sie keine goldführende Ader mehr bergen?

 








IX.


Geometrie von n Dimensionen.

———

 

Die Theorie der beliebig ausgedehnten Mannigfaltigkeiten oder die
  Geometrie von n Dimensionen verdankt ihren Ursprung der
  Unterstützung, welche die Algebra von der Geometrie erhielt, seitdem
  Cartesius jene auf diese anzuwenden gelehrt hat. In der That ist diese
  Unterstützung eine begrenzte, da nur die analytischen Thatsachen, welche
  mit der Theorie der Funktionen einer, zweier oder dreier Variabelen
  verknüpft sind (oder mit der Theorie der binären, ternären oder
  quaternären Formen), einer den Sinnen zugänglichen Darstellung fähig sind.
  Aber der Geist der Verallgemeinerung, der, wie ich schon sagte, einer der
  mächtigsten Antriebe zu den modernen geometrischen Untersuchungen war und
  noch fortwährend ist, bewog die Geometer, die Fesseln zu brechen, welche
  die Natur ihrem Vorstellungsvermögen angelegt zu haben schien, und von
  beliebig ausgedehnten Räumen zu sprechen.[704]

Und sie sprachen davon, ehe sie sich noch mit der mehr
  philosophischen, als mathematischen Frage beschäftigt hatten, ob in der
  That solche Räume existieren; und sie thaten dies mit Recht, da sie nur
  so, ohne ein vielleicht unlösbares Problem in Angriff zu nehmen, ihr Ziel
  erreichen konnten; durch eine kühne Einbildungskraft verschafften sie
  sich die (sinnlich wahrnehmbaren oder übersinnlichen) Darstellungen
  vieler analytischer Resultate.[705]

Um zu zeigen, daß man wirklich in der angegebenen Weise zu einer
  solchen Theorie gekommen ist, begnüge ich mich damit, die Thatsache
  anzuführen, daß dieselbe von Analysten wie C a u c h y[706]
  (1789-1857) und R i e m a n n[707]
  aufgestellt wurde; daß sie sich noch bei vielen anderen minder
  bedeutenden mehr oder weniger versteckt findet in der Absicht, für die
  Theoreme der Analysis ausdrucksvollere Fassungen zu erhalten; ferner daß
  L a g r a n g e schon Ende des vergangenen Jahrhunderts die
  Bemerkung machte, »daß man die Mechanik als eine Geometrie von vier
  Dimensionen ansehen könne«, in welcher die Zeit als
  vierte Koordinate fungiert.[708]

Dieser Begriff des beliebig ausgedehnten Raumes ist jedoch seinem
  Ursprunge und seiner Bestimmung nach wesentlich analytisch. P l ü c k e r, dem das Schicksal einen
  so wichtigen Anteil an der Förderung der modernen Geometrie zugeteilt
  hat, war es vorbehalten, diesem Begriffe ein geometrisches Gewand zu
  geben, indem er beobachtete, daß man unserem Raume eine beliebige Anzahl
  Dimensionen zuerteilen kann vermittelst einer passenden Wahl des
  geometrischen Gebildes, welches man als erzeugendes Element des Raumes
  auffaßt; so wird er drei Dimensionen haben, wenn man den Punkt oder die
  Ebene wählt, vier, wenn man die Gerade oder die Kugel nimmt, neun, wenn
  man die Fläche zweiten Grades nimmt, u. s. w.[709]



Dieser Gedanke ist weniger abstrakt als der vorhergehende, und
  leichter zu begreifen; dessen ungeachtet verbreitete er sich viel
  langsamer, als der erstere, wahrscheinlich deswegen, weil sein Urheber
  nicht Worte genug machte, um seine Wichtigkeit zu zeigen. Der andere
  hingegen wurde besonders infolge der berühmten Abhandlung von R i e m a n n, Über die Hypothesen,
  welche der Geometrie zu Grunde liegen, in vielen Richtungen weiter
  entwickelt, und die mathematische Litteratur über diesen Gegenstand ist
  von einer schon beträchtlichen Reichhaltigkeit und wächst noch von Tag zu
  Tag.

Zur Rechtfertigung dieser Behauptung erinnere ich an die schon
  genannten Abhandlungen von H e l m h o l t z, führe die von B e l t r a m i,[710] S c h l ä f l i,[711] N e w c o m b,[712]
  S t r i n g h a m,[713] das neue Buch von K i l l i n g[714] an und die darauf folgenden
  Untersuchungen von S c h u r,[715]
  die enge mit der R i e m a n n schen Abhandlung
  zusammenhängen; die Untersuchung von B e t t i[716]
  über den Zusammenhang eines Raumes von n Dimensionen; die von
  C l i f f o r d,[717]
  B e l t r a m i,[718]
  J o r d a n,[719]
  von L i p s c h i t z,[720] M o n r o,[721]
  S c h e e f f e r (1859-1885),[722] H e a t h[723] und K i l l i n g[724]
  über die Kinematik und Mechanik eines solchen Raumes;[725] ferner die von J o r d a n[726]
  und B r u n e l[727]
  über die verschiedenen Berührungs- und Schmiegungsräume, welche eine
  Kurve in einem Raume von n Dimensionen zuläßt,[728] die von C r a i g[729] über die metrischen Eigenschaften der
  Oberflächen in einem solchen Raume, die von K r o n e c k e r,[730] von B e e z,[731] L i p s c h i t z,[732]
  C h r i s t o f f e l,[733] von B r i l l,[734]
  S u w o r o f f[735]
  und V o ß[736] über die Krümmung eines
  beliebig ausgedehnten Raumes; die von K r o n e c k e r und T o n e l l i[737]
  über das Potential; die von L i e,[738]
  K l e i n,[739] J o r d a n[726] und L i p s c h i t z[740]
  über die Erweiterung des Dupinschen und des Eulerschen Lehrsatzes; sodann
  die konforme Abbildung einer Oberfläche des vierdimensionalen Raumes auf
  den gewöhnlichen Raum, die von C r a i g[741]
  studiert wurde, endlich die von L i p s c h i t z gegebene Verallgemeinerung des berühmten Problemes
  der drei Körper.[742] Zum
  Schlusse wollen wir die Aufmerksamkeit des Lesers lenken
  auf die Erweiterungen gewisser Begriffe, einiger Sätze und Formeln der
  elementaren Geometrie, die vorzüglich von R u d e l,[743] H o p p e,[744]
  S c h l e g e l[745]
  und M e h m k e[746]
  gemacht sind; dazu gehören auch die Untersuchungen von S t r i n g h a m,[747] H o p p e,[748]
  S c h l e g e l,[749]
  S c h e f f l e r,[750] R u d e l,[751]
  O. B i e r m a n n,[752]
  P u c h t a[753]
  und anderen über die regulären Körper des vierdimensionalen Raumes, die
  soweit gediehen, daß sie S c h l e g e l gestatteten, Modelle der
  Projektionen dieser Körper auf unseren Raum herzustellen.[754]

Außer dieser Richtung wurde eine andere nicht weniger fruchtbare von
  den Bearbeitern der Mannigfaltigkeiten von n Dimensionen verfolgt,
  welche projektiv ist, während die erstere wesentlich metrisch
  ist.—Eine kurze Andeutung, die von C a y l e y im Jahre 1846 gegeben wurde[755] über eine Methode, um die
  Konfigurationen von Punkten, Geraden und Ebenen zu untersuchen, kann man
  als die erste ansehen, welche auf diese neue Richtung hinwies. Aber es
  scheint, wie B a i l l y[756]
  bemerkt hat, »daß die Ideen, wie wir, ein Kindesalter und eine erste Zeit
  der Schwäche haben; sie sind nicht von Geburt an produktiv, sondern
  erhalten erst mit dem Alter und mit der Zeit ihre Fruchtbarkeit«. Daher
  sehen wir denn mehr als 30 Jahre verfließen, ehe der geniale Gedanke des
  großen englischen Geometers, in der richtigen Weise entwickelt, die
  synthetische Geometrie der Räume von n Dimensionen, welche wir
  heute besitzen, hervorrief.

Als Einleitung zu derselben muß man die wichtige Arbeit von C l i f f o r d ansehen: On the classification of loci,[757] in welcher das
  allgemeine Studium der Kurven in beliebigen linearen Räumen in Angriff
  genommen ist; jeden Augenblick kommen in demselben Operationen vor, die
  wirkliche Erweiterungen derer sind, die man in der gewöhnlichen
  projektiven Geometrie zu machen pflegt. Jedoch kann man sagen, daß dieser
  neue Zweig der Geometrie mit der Abhandlung beginnt, die V e r o n e s e der Behandlung der projektiven Eigenschaften der
  Räume von n Dimensionen durch die Prinzipien des Schneidens und
  Projizierens gewidmet hat.[758] In derselben läßt der berühmte
  Verfasser, R i e m a n n folgend, einen Raum von
  n Dimensionen entstehen, indem er von demselben einen solchen, der
  eine Dimension weniger hat, von einem außerhalb gelegenen Punkte
  projiziert, und indem er sich dieser Erzeugungsweise
  bedient, gelangt er zur Erweiterung des grösseren Teiles der Theorien der
  gewöhnlichen Geometrie der Lage.[759] Die Fruchtbarkeit der in dieser
  grundlegenden Abhandlung erörterten Prinzipien wurde durch viele
  interessante Arbeiten, welche die Fortsetzung derselben bilden, ins Licht
  gestellt; dieselben bereichern noch von Tag zu Tag ein Lehrgebiet, in
  welchem Italien eine hervorragende Stelle einnimmt. Unter ihnen will ich
  — abgesehen von denen, die V e r o n e s e selbst publiziert hat,[760] — die
  Untersuchungen von S e g r e anführen über die Theorie der quadratischen Gebilde
  in einem Raume von n Dimensionen und ihre Anwendung auf die
  Geometrie der Geraden,[761]
  über die kollinearen und reciproken Korrespondenzen,[762] über die Büschel von Kegeln zweiten
  Grades,[763] über die
  Regelflächen,[764] über die
  Oberflächen vierter Ordnung mit Doppelkegelschnitt[765] und über die Theorie der
  Systeme von Kegelschnitten,[766] dann die von B e r t i n i[767] und A s c h i e r i,[768] die verwandte Gegenstände behandeln;
  die Schriften von d e l
  P e z z o über die Oberflächen in
  einem n-dimensionalen Raume.[769] Noch viele andere müßte ich nennen,
  aber



Io non posso ritrar di tutti appieno;

Perocchè sì mi caccia il lungo tema,

Che molte volte al fatto il dir vien meno.[770]





Jedoch Arbeiten, welche zu verschweigen mich keine Betrachtung
  verleiten könnte, sind die — viel früher als die von V e r o n e s e erschienenen — von N ö t h e r über die eindeutigen Korrespondenzen zwischen zwei
  n-dimensionalen Räumen (1869, 1874),[771] jene ebenfalls älteren von H a l p h e n (1875) über die Schnitte
  der Mannigfaltigkeiten, die in einem beliebigen linearen Raume enthalten
  sind,[772] von d ' O v i d i o über die Metrik eines solchen Raumes
  (1876),[773] endlich die
  neuerlichen von S c h u b e r t über die abzählende
  Geometrie eines Raumes von solcher Beschaffenheit.[774]

 








Schluss.

———

 

Hiermit scheint es mir angemessen, die vorgenommene Musterung zu
  beschließen. Freilich sind viele wirklich interessante Untersuchungen
  derselben entgangen, da sie unter keiner der Kategorien, in welche ich
  die von mir besprochenen Arbeiten eingeteilt habe, Platz finden konnten.
  So konnte ich nicht über die Theorie der projektiven Koordinaten
  berichten, die von C h a s l e s[775]
  erhalten wurden, als er die gewöhnlichen Cartesischen Koordinaten einer
  kollinearen Verwandlung unterzog, die dann direkt von S t a u d t[776]
  aufgestellt wurde und vollständiger von F i e d l e r;[777]
dann habe ich nicht über die Methode der
  symbolischen Bezeichnung berichtet, da diese mehr Mittel als Zweck für
  den Geometer ist; die Theorie der Berührungstransformationen (L i e) und der
  Differential-Invarianten (H a l p h e n) habe ich stillschweigend übergangen, da sie auf
  der Grenze zwischen der Geometrie und der Theorie der
  Differentialgleichungen stehen; über die sogenannte Analysis situs
  habe ich mich einer Besprechung enthalten, da eben diese Lehre von R i e m a n n geschaffen und von
  seinen Schülern betrieben wurde, um Probleme der Funktionentheorie zu
  lösen. Dann haben sich meiner Darlegung die schönen Auseinandersetzungen
  von B a t t a g l i n i und B a l l entzogen über die Kräfte
  und Bewegungen,[778] von
  C h a s l e s, A r o n h o l d, M a n n h e i m und B u r m e s t e r über die kinematische
  Geometrie und von R e y e über die
  Trägheitsmomente, da sie bisher[779] mehr zur Mechanik als zur Geometrie
  gehörig angesehen wurden. Gleiches gilt von den interessanten
  Experimenten P l a t e a u s (1801-1883) in bezug auf die Minimalflächen, deren
  Besitz die Physiker für sich beanspruchen, von den schönen Untersuchungen
  über die Polyeder (M ö b i u s, B r a v a i s, J o r d a n, H e ß), welche den Übergang von der Geometrie zur
  Mineralogie bilden, und den neuesten Arbeiten über die geometrische
  Wahrscheinlichkeit (C r o f t o n, C z u b e r, C e s à r o), welche ich geneigt wäre unter die Anwendungen der
  Geometrie zu rechnen. Dann habe ich nicht über die Methode der
  Äquipollenzen gesprochen (B e l l a v i t i s) und die Theorie der
  Quaternionen (H a m i l t o n), da beide sich bis
  jetzt noch nicht von so großer Fruchtbarkeit erwiesen
  haben, um als notwendiges Hilfsmittel des Geometers angesehen zu
  werden.

Ungern mußte ich hinweggehen über die Theorie der Kugelsysteme, die
  mit großem Erfolge von L i e und R e y e bearbeitet ist. Ich habe
  keinen Blick auf die Theorie der Konfigurationen werfen können (R e y e, K a n t o r, J u n g, M a r t i n e t t i), da dieselbe gerade
  noch im Stadium ihrer Bildung begriffen ist, und auf die mehr den
  Elementen angehörige Erweiterung der Lehre vom Dreiecke, zu welcher
  Arbeiten von B r o c a r d[780] die Anregung gegeben haben. Kurz
  erwähnen will ich noch zwei Reihen von Untersuchungen über Maximal- und
  Minimalfiguren, von denen die einen (P a i n v i n, P. S e r r e t, L e b e s g u e, B o r c h a r d t, K r o n e c k e r) das Problem von L a g r a n g e, das Tetraeder größten
  Inhalts zu finden, von dem die Inhalte der Seitenflächen gegeben sind,
  und Erweiterungen, bez. Umgestaltungen desselben behandeln,[781] die anderen (L i n d e l ö f, B e r n e r, E d l e r, S t u r m, S c h w a r z, L a n g e, C e r t o) sich an die berühmten
  Aufsätze von S t e i n e r[782] anschließen.[783]

Keinesfalls aber darf mit Stillschweigen übergangen werden, daß es
  unserem Jahrzehnte vergönnt gewesen ist, die alte Frage der Quadratur des
  Kreises zur endgiltigen Erledigung zu bringen. Nachdem im vergangenen
  Jahrhundert L a m b e r t[784] die Zahl π
  als irrational nachgewiesen, verblieb immer noch der Nachweis, daß π auch nicht Wurzel einer algebraischen
  Gleichung mit rationalen Koeffizienten sei; denn erst damit ist
  dargethan, daß die Quadratur des Kreises nicht vermittelst einer
  endlichen Anzahl von Konstruktionen, welche mit Hilfe des Lineals und des
  Zirkels ausführbar sind, vollzogen werden könne. Dieser Beweis wurde,
  unter Benutzung H e r m i t e scher Vorarbeiten über die
  Exponentialfunktion, 1882 von L i n d e m a n n[785]
  erbracht.

Trotz der aufgezählten und unzähliger anderer Unvollkommenheiten des
  Bildes, das ich über den heutigen Zustand der Geometrie zu entwerfen
  versucht habe, wird dennoch der Leser, wenn er einen Blick auf dasselbe
  wirft, von tiefer Verwunderung betroffen sein, nicht allein über die
  gewaltige Entwickelung der Mathematik in diesen letzten fünfzig Jahren,
  sondern auch über die neue, schönere, verlockendere Gestalt, welche sie
  mehr und mehr annimmt.

Die geometrischen Figuren, die eine Zeit lang als fest, unbeweglich,
  leblos erschienen, bekamen eine unerwartete Lebendigkeit durch die
  Theorie der geometrischen Transformationen, vermöge derer sie sich
  bewegen, sich in einander verwandeln, gegenseitige Beziehungen enthüllen
  und unter sich bisher unbekannte Verwandtschaften herstellen.

Ferner glaubte man eine Zeit lang, daß wir als dreidimensionale Wesen,
  die in einem Raume leben, in welchem wir nur drei Dimensionen wahrnehmen
  können, dazu verurteilt wären, ewig nur die Mannigfaltigkeiten von nicht
  mehr als drei Dimensionen zu studieren. Jetzt aber ist es uns erlaubt und
  fast unsere Pflicht, von dieser Idee als einem gefährlichen Vorurteile
  uns frei zu machen, und die Fülle von Arbeiten, die wir vor uns
  bewundern, belehren alle diejenigen, welche ihre Augen nicht von der
  neuen Sonne wegwenden wollen, über die Wichtigkeit dieses
  Fortschrittes.

Endlich ist, kann man sagen, der Kampf zwischen der Geometrie und der
  Analysis, der sich gegen Ende des vergangenen
  Jahrhunderts erhoben und zu Anfang dieses fortgesetzt hat, nunmehr
  beendigt; weder die eine, noch die andere hat den Sieg davon getragen,
  aber jede hat auch den Ungläubigsten gezeigt, daß sie bei jeglichem
  Ringen als Siegerin hervorgehen könne. Der Mécanique analytique,
  in welcher L a g r a n g e mit Freuden konstatierte, daß er es soweit gebracht
  habe, jegliche Figur zu vermeiden, hat ein Lehrbuch der Mechanik einen
  glänzenden Bescheid gegeben, welches das Motto trägt: »Geometrica
  geometrice«; dem hundertjährigen Dienste, welchen die Algebra der
  Geometrie bot, können sich heute die zahllosen und unvergleichlichen
  Vorteile entgegenstellen, welche jene von dieser zog; schließlich wird
  man doch an Stelle der analytischen oder pseudosynthetischen Theorie der
  Kurven und Oberflächen in Kurzem die rein synthetische Theorie setzen
  können, die man gegenwärtig aus dem von S t a u d t[786] gelieferten Materiale errichtet.

Und zu dieser Periode des Friedens oder vielmehr des edlen Wetteifers
  der Analysis und Geometrie müssen sich alle Glück sagen, da jeder
  Fortschritt der einen einen entsprechenden in der anderen nach sich zieht
  oder dazu auffordert. Das entspricht dem heutigen
  Standpunkte der gesamten Wissenschaft, denn nun funktionieren, wie S p e n c e r sagt, die verschiedenen
  Disziplinen als Hilfskünste, die einen für die anderen.

Diese Stellung der modernen Mathematik jedoch legt jedem, der sie mit
  Erfolg betreiben will, eine schwere Verpflichtung auf, nämlich die, nicht
  die eine der beiden Disziplinen, welche sie zusammen bilden, um die
  andere zu vernachlässigen und sich in der Handhabung der Wissenschaft der
  Zahlen ebensowohl, als in derjenigen der Ausdehnung auszubilden.[787]

Um heiteren Mutes diese vermehrten Anstrengungen auf uns zu nehmen,
  dazu hilft uns die Betrachtung, »daß die Analysis und Synthesis im Grunde
  genommen gleichsam immer vereinigt in unseren Arbeiten sind und zusammen
  das vollständigste Werkzeug des menschlichen Geistes bilden. Denn unser
  Geist macht keine Fortschritte, als nur mit der Hilfe von Zeichen oder
  Bildern, und wenn er zum ersten Male in schwierige Fragen einzudringen
  sucht, so hat er nicht einen Überfluß an diesen beiden Mitteln und jener
  besonderen Kraft, die er oft genug nur aus ihrem Zusammenwirken
  schöpft.«[788]

Indem wir uns also der Beschränktheit unserer Kräfte bewußt sind,
  werden wir nur ein kleines Feld wählen, auf dem wir unsere Thätigkeit
  üben, aber nicht vergessen, daß wir, um alle Früchte, die es zu bieten
  fähig ist, einzuernten, das Recht und sozusagen die Pflicht haben, alle
  die Hilfsmittel prüfend anzuwenden, welche der menschliche Geist während
  so vieler Jahrhunderte unausgesetzter Thätigkeit angehäuft hat, und die
  jedem zu Gebote stehen, der die Klugheit hat, sie zu Rate zu ziehen, und
  das Geschick, sie anzuwenden.
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	Annali di Matem.: Annali di Matematica pura ed applicata.

	Berliner Abh.: Mathematisch-physikalische Abhandlungen der Akademie
der Wissenschaften zu Berlin.

	Berliner Ber.: Monatsberichte, bez. seit 1882 Sitzungsberichte oder
auch: Mathematisch-naturwissenschaftliche Mitteilungen derselben
Akademie.



	Bologna Mem.: Memorie 	[image: right brace]	 dell' Accademia di Scienze dell' Istituto di Bologna.

	Bologna Rend.: Rendiconti



	Bull. sciences math.: Bulletin des sciences mathématiques (bis 1884:
et astronomiques).

	Bull. Soc. math.: Bulletin de la Société mathématique de France.

	Cambridge Journ.: Cambridge and Dublin mathematical Journal.



	Cambridge Proc.: Proceedings 	 [image: right brace]
	 of the Philosophical Society of Cambridge.

	Cambridge Trans.: Transactions



	Comptes rendus: Comptes rendus hebdomadaires des séances de l'Académie
des sciences (de Paris).

	Gergonnes Ann.: Annales de Mathématiques.

	Giorn. di Matem.: Giornale di Matematiche.



	Göttinger Abh.: Abhandlungen 	 [image: right brace]
	 der Gesellschaft der Wissenschaften zu Göttingen.

	Göttinger Nachr.: Nachrichten von 



	Grunerts Arch.: Archiv der Mathematik und Physik.

	Journ. Éc. polyt.: Journal de l'École polytechnique.

	Journ. für Math.: Journal für die reine und angewandte Mathematik.



	Irish Proc.: Proceedings 	 [image: right brace]
	 of the Irish Academy.

	Irish Trans.: Transactions 



	

Leipziger Ber.: Berichte über die Verhandlungen der Gesellschaft der
Wissenschaften zu Leipzig.



	Lincei Atti: Atti 	 [image: right brace]
	 dell' Accademia dei Lincei.

	Lincei Mem.: Memorie 

	Lincei Rend.: Rendiconti 

	Lincei Trans.: Transunti 



	Liouvilles Journ.: Journal de Mathématiques pures et appliquées.

	Lombardo Rend.: Rendiconti dell' Istituto Lombardo di scienze e lettere.

	Math. Ann.: Mathematische Annalen.

	Mém. prés.: Mémoires présentés par divers savants à l'Académie des
sciences (de Paris).



	Münchener Abh.: Abhandlungen 	 [image: right brace]
	 der Akademie der Wissenschaften zu München.

	Münchener Ber.: Sitzungsberichte 



	Napoli Rend.: Rendiconti dell' Accademia delle scienze fisiche e
matematiche di Napoli.

	Nouv. Ann.: Nouvelles Annales de Mathématiques.

	Phil. Mag.: London, Edinburgh and Dublin philosophical Magazine.



	Phil. Trans.: Philosophical Transactions	 [image: right brace]
	 of the Royal Society of London.

	Proc. Roy. Soc.: Proceedings 



	Prager Abh.: Abhandlungen 	 [image: right brace]
	der böhmischen Gesellschaft der Wissenschaften.

	Prager Ber.: Sitzungsberichte 



	Proc. math. Soc.: Proceedings of the London mathematical Society.

	Quart. Journ.: Quarterly Journal of pure and applied Mathematics.



	Torino Atti: Atti 	 [image: right brace]
	 dell' Accademia delle scienze di Torino.

	Torino Mem.: Memorie 



	Wiener Ber.: Sitzungsberichte der mathematisch-naturwissenschaftlichen
Klasse der Akademie der Wissenschaften zu Wien.
Zweite Abteilung.

	Zeitschr. f. Math.: Zeitschrift für Mathematik und Physik.


———

Die arabische Ziffer bezieht sich auf den Band (Teil, Jahrgang), beim
  Journ. Éc. polyt. auf das Heft, die römische auf die Serie
  (Reihe).



 








Verzeichnis der verstorbenen Geometer, deren Lebenszeit

angegeben ist.

———

 

Die Zahl ist die der Seite, auf welcher sie steht.

Abel 20 — d'Alembert 14 — Apollonius 6 —
  Archimedes 6 — Aronhold 31.

Baltzer 53 — Bellavitis 60 — Benedetti 9 —
  Bobillier 26 — Bolyai, J. 109 — Bolyai, W. 108
  — Borchardt 43 — Bour 56 — Bragelogne 24 —
  Braikenridge 22.

Caporali 84 — Cardano 8 — Carnot 14 —
  Cauchy 116 — Chasles 17 — Chelini 57 —
  Clairaut 13 — Clebsch 27 — Clifford 26 —
  Cotterill 84 — Côtes 21
  — Cramer 22 — Crelle 20.

Desargues 9 — Descartes 10 — Dirichlet 119
  — Dupin 15.

Enneper 50 — Eratosthenes 6 — Euler 13.

Ferrari 8 — Fermat 9
  — Ferro 8 — Fibonacci 8.

Gauß 47 — Gergonne 16 — La Gournerie 44
  — Graßmann 26 — De Gua 22.

Hachette 15 — Halley 11 — Hamilton 104 —
  Harnack 63 — Hesse 25
  — Hipparch 6 — La Hire 11 — Hoüel 109 —
  Huygens 11.

Jacobi 16 — Joachimsthal 55.

Lacroix 15 — Lagrange 14 — Laguerre 40 —
  Lamarle 125 — Lambert 88 — Lamé 23 —
  Lancret 72 — Laplace 14
  — Legendre 14 — Leibniz 11 — Liouville 72 —
  Lobatschewsky 109.

Mac Cullagh 33 — Maclaurin 11 — Magnus 81 —
  Mascheroni 9 — Mercator 88 — Möbius 18 —
  Monge 13.

Newton 11.

Oresme 16.

Pappus 6 — Parent 13
  — Pascal 9 — Plateau 125 — Plato 5 —
  Plücker 19 — Poisson 14
  — Poncelet 14 — Ptolomaeus 6 — Puiseux 72 —
  Pythagoras 5.

Richelot 16 — Riemann 110.

Saint-Venant 72 — Scheeffer 118 — Schooten 13 —
  Serret, A. 50 — Seydewitz 33 — Simpson 11 —
  Smith 29 — Snellius 16
  — Spottiswoode 124 — Staudt 19 — Steiner 18 —
  Stewart 11 —Sturm, Ch. 104.

Tartaglia 8 — Thales 4
  — Transon 81.

Vieta 9.

Waring 22 — Wren 32.







Berichtigung. S. 97 Z. 7 v. o. lies viel- statt
  zwei-.

 








Noten.

———

 


[1] »It is difficult to give an idea of
  the vast extent of modern mathematics. This word »extent« is not the
  right one: I mean extent crowded with beautiful detail — not an
  extent of mere uniformity such as an objectless plain, but of a tract of
  beautiful country seen at first in the distance, but which will bear to
  be rambled through and studied in every detail of hillside and valley,
  stream, rock, wood and flower.« (Rede von C a y l e y i. J. 1883 vor der »British Association for the
  Advancement of Science« gehalten.)

Bei dieser Gelegenheit führen wir noch folgendes Urteil von E. D u b o i s - R e y m o n d über den Charakter der modernen Wissenschaft an:
  »Nie war die Wissenschaft entfernt so reich an den erhabensten
  Verallgemeinerungen, nie stellte sie in ihren Zielen, ihren Ergebnissen
  eine grössere Einheit dar. Nie schritt sie rascher, zweckbewußter, mit
  gewaltigeren Methoden voran, und nie fand zwischen ihren verschiedenen
  Zweigen lebhaftere Wechselwirkung statt.« (Über die wissenschaftlichen
  Zustände der Gegenwart, Reden, Bd. II, S. 452.)

[2] Histoire des sciences
  mathématiques en Italie par G. L i b r i, 1838. Bd. I, S. 3.

[3] H a n k e l, Die Entwickelung der
  Mathematik in den letzten Jahrhunderten (Tübingen. II. Aufl. 1885).
  S. 7.

[4] Diese Thatsache könnte man als ein
  neues Moment ansehen, wie sich — nach einem berühmten Ausspruche
  Humboldts — der Einfluß, den die tellurischen Erscheinungen auf die
  Richtung unserer wissenschaftlichen Untersuchungen ausüben, geltend
  macht.

[5] Vgl. E m i l W e y r, Über die Geometrie
  der alten Ägypter (Wien, 1881).

[6] Für die Mathematiker, welche vor
  1200 gelebt haben, sind die hier niedergeschriebenen Jahreszahlen aus den
  Vorlesungen über die Geschichte der Mathematik von M. C a n t o r (I. Bd. Leipzig, 1880) entnommen. Die erste Zahl in
  der Klammer bezieht sich auf das Geburtsjahr, die zweite auf das
  Todesjahr.

[7] In Bezug auf größere Einzelheiten
  sehe man B r e t s c h n e i d e r, Die Geometrie und
  die Geometer vor Euklides (Leipzig, 1870).

[8] B e t t i und B r i o s c h i, Vorrede zu Gli
  elementi di Euclide (Florenz, 1867). Eine gegenteilige Ansicht hat
  L a c r o i x in seinem wohlbekannten
  Buche Essais sur l'enseignement en général et sur celui des
  mathématiques en particulier (4. Aufl. 1883. S. 296)
  ausgesprochen.

[9] Um zu zeigen, wie glänzend und
  bewunderungswürdig die noch immer verkannte griechische Mathematik
  gewesen sein muß, genüge es, die Thatsache anzuführen, daß die Theorie
  der Kegelschnitte, ein hauptsächlicher Gegenstand des Studiums der alten
  Geometer, von ihnen zu solcher Vollendung gebracht wurde, dass man im
  wesentlichen nur weniges hinzuzufügen hätte, um sie auf den Stand zu
  bringen, auf dem sie sich heute befindet. Die Bewunderung für jene wird
  noch jeden Tag grösser durch die historischen Forschungen gelehrter
  Mathematiker [z. B. Z e u t h e n (s. das Werk Die Lehre von den Kegelschnitten im
  Altertume, deutsch von F i s c h e r - B e n z o n. Kopenhagen, 1886), P.
  T a n n e r y (s. Bull. des
  sciences math. und Mém. de la Société de Bordeaux) und
  andere], welche das Vorurteil zu beseitigen suchen, daß die Griechen
  keine Untersuchungsmethoden gehabt hätten, die vergleichbar sind mit
  denen, auf welche unsere Zeit so stolz ist, und die als Ersatz dafür die
  Ansicht aufzustellen streben, daß es ihnen nur an den nötigen Formeln zur
  Darstellung der Methoden selbst gefehlt habe.

[10] Ich kann nicht umhin, die
  beredten Worte, welche der berühmte Geschichtsschreiber der Mathematik in
  Italien bei dieser Gelegenheit geschrieben hat, anzuführen: »...... mais
  bientôt le Romain arrive, il saisit la science personnifiée dans
  Archimède, et l'étouffe. Partout où il domine la science disparaît:
  l'Étrurie, l'Espagne, Carthage en font foi. Si plus tard Rome n'ayant
  plus d'ennemis à combattre se laisse envahir par les sciences de la
  Grèce, ce sont des livres seulement qu'elle recevra; elle les lira et les
  traduira sans y ajouter une seule découverte. Guerriers, poètes,
  historiens, elle les a, oui; mais quelle observation astronomique, quel
  théorème de géométrie devons-nous aux Romains?« (L i b r i a. O. S. 186.)

Um zu zeigen, in welchem Ansehen unsere Vorfahren die Mathematik
  hielten, genüge es mitzuteilen (vgl. H a n k e l, Zur Geschichte der
  Mathematik im Altertum und Mittelalter, Leipzig, 1874. S. 103), daß
  sie dieselbe oft mit Astrologie und den verwandten Künsten
  zusammenwarfen. Es darf uns daher nicht Wunder nehmen, wenn wir in dem
  Codex Justinians unter den gesammelten Bestimmungen unter dem Titel »De
  maleficis et mathematicis et ceteris similibus« folgendes finden: »Ars
  autem mathematica damnabilis interdicta est omnino.« Wenn man in
  demselben Codex etwas weiter die Wendung findet: »Artem geometriae
  discere atque exercere publice interest,« so muß man sich hüten, sie als
  eine Übersetzung des Ausspruches Napoleons I. anzusehen: »L'avancement,
  le perfectionnement des Mathématiques sont liés à la prospérité de
  l'État,« denn es ist fast sicher, daß der römische Gesetzgeber den
  praktischen Teil der Geometrie meinte.

[11] Unter den Fragen der G e o m e t r i e, welche die
  italienischen Gelehrten des 16. Jahrhunderts sich gegenseitig stellten,
  finden sich solche von einiger Wichtigkeit, da sie die »Geometria del
  compasso« (Geometrie des Kreises) entstehen ließen, welcher gerade in
  dieser Zeit B e n e d e t t i (?-1590) eine Schrift
  widmete, und die in neuerer Zeit von M a s c h e r o n i (1750-1808) und S t e i n e r gepflegt wurde.

[12] P a s c a l entdeckte an der Cykloide eine Fülle
  bemerkenswerter Eigenschaften, wies auf die Perspektivität als eine für
  das Studium der Kegelschnitte sehr günstige Methode hin, bewies den
  berühmten Lehrsatz von dem »Hexagramma mysticum,« wie er es nannte,
  u. s. w.

D e s a r g u e s führte die g e m e i n s a m e Betrachtung der drei Kegelschnitte ein, den
  wichtigen Begriff des unendlich fernen Punktes einer Geraden, den Begriff
  der Involution von sechs Punkten, löste mehrere wichtige Fragen, die sich
  auf die Kegelschnitte beziehen, u. s. w.

In den Werken von D e s a r g u e s (vgl. die von P o u d r a 1864 besorgte Ausgabe)
  findet sich auch eine Methode vorgeschlagen, um einige projektive
  Eigenschaften der Kurven zu untersuchen, welche darauf beruht, daß man
  dieselbe durch Systeme von Geraden ersetzt. Descartes und Poncelet
  betrachteten die Schlüsse, die auf einer solchen Substitution beruhen,
  als der Strenge entbehrend (vgl. Traité des proprietés
  projectives, Bd. II, S. 128). Jedoch wurde das von D e s a r g u e s vorgeschlagene Verfahren
  in der neueren Zeit wiederholentlich von demselben P o n c e l e t (a.a.O. Bd. I, S. 374), von J o n q u i è r e s (in verschiedenen Abhandlungen in den Annali di
  Matem., Journ. f. Math. und in den Math. Ann.), von C r e m o n a (s. die Introduzione
  ad una teoria geometrica delle curve piane) gebraucht, und gehört
  heute zu den wertvollen Untersuchungsmethoden, die wir dem »Prinzip der
  Erhaltung der Anzahl« verdanken.

[13] Vgl. E. D u b o i s - R e y m o n d, Kulturgeschichte und Naturwissenschaft, in
  den Gesammelten Reden, Bd. I 1886, S. 207-208.

[14] F a v a r o, Notizie storico-critiche sulla costruzione
  delle equazioni. Memorie di Modena, 18, 1879.

M a t t h i e s s e n, Grundzüge der
  antiken und modernen Algebra der litteralen Gleichungen (Leipzig,
  1878), 7. Abschnitt.

[15] Über den Ursprung der
  analytischen Geometrie sehe man G ü n t h e r, Die Anfänge und die Entwickelungsstadien des
  Coordinatenprincipes (Abhandlungen der naturforsch. Gesellsch. zu
  Nürnberg, 6) und über Cartesius die Rede von J a c o b i, ins Französische übersetzt und veröffentlicht in
  Liouvilles Journ. 12 unter dem Titel: De la vie de Descartes et
  de sa méthode pour bien conduire la raison et chercher la vérité dans les
  sciences.

[16] Siehe z. B. den Traité de la
  lumière (Leyden, 1691).

[17] Sectiones conicae in novem
  libros distributae (Paris, 1685), Mémoires sur les
  Epicycloides (Anciennes Mémoires de l'Académie des sciences,
  9), Traité des roulettes etc. (ebendas., 1704).

[18] Man sehe die von ihm bewirkte
  Herausgabe von griechischen Werken nach, sowie seine Versuche, verloren
  gegangene Bücher (wie das achte Buch von Apollonius' Kegelschnitten)
  wieder herzustellen.

[19] Vergl. sein Buch A complete
  System of Fluxions (Edinburgh, 1742).

[20] Treatise on conic
  Sections (1735).

[21] General theorems of
  considerable use in the higher parts of mathematics (Edinburgh,
  1746); Propositiones geometricae more veterum demonstratae
  (Edinburgh, 1763).

[22] Hinsichtlich der von S i m p s o n und S t e w a r t gemachten Versuche, die
  griechische Geometrie wieder aufleben zu machen, sehe man B u c k l e, Geschichte der Civilisation in England
  (deutsch von A. R u g e), Bd. I, Kap. 5.

[23] Die von den Griechen
  hauptsächlich untersuchten Kurven sind: der Kreis, die Ellipse, die
  Hyperbel, die Parabel, die Archimedische Spirale, die Diokles'sche
  Cykloide, die Konchoide des Nikomedes, die Quadratrix des Hippias und
  Dinostratus, die Schraubenlinien, die Spirallinien und einige andere. Zu
  diesen fügten die neuen Rechnungsarten hinzu: das Folium und die Ovale
  von Descartes, die Tschirnhausensche Quadratrix, die Cykloide, die Hypo-
  und Epicykloiden, die logarithmische Spirale, die Kettenlinie, die
  Sinuscurve, die Logarithmuscurve und unzählige andere.

[24] Siehe das fünfte Buch seiner
  Exercitationes geometriae.

[25] P a r e n t, Essai et Recherches de Mathématiques et de
  Physique (II. Aufl. 1713), Bd. 2.

[26] Traité de Courbes à double
  courbure. 4

[27] Recherches sur la courbure
  des surfaces (Berliner Abh.).

[28] Abhandlungen der Akademie von
  Turin (1770-1773) und von Paris (1784); Feuilles d'analyse appliquée à
  la géométrie (Paris, 1795), oder Applications de l'Analyse à la
  Géométrie (Paris, 1801).

[29] Ausspruch von d ' A l e m b e r t.

[30] Leçons de géométrie
  descriptive (Paris, 1794).

[31] In Bezug auf M o n g e sehe man D u p i n, Essai historique sur
  les services et les travaux scientifiques de Gaspard Monge (Paris,
  1819); A r a g o, Notices
  biographiques.

Über die Geschichte des Ursprunges und der Entwickelung der
  darstellenden Geometrie sehe man den ersten Abschnitt des 1. Bandes des
  Werkes von C h r.
  W i e n e r, Lehrbuch der darstellenden Geometrie
  (Leipzig, 1884, 1887), in welchem der Studierende eine Menge
  interessanter Einzelheiten finden wird, sei es über die Studien, welche
  diese Disziplin vorbereiteten, sei es über die Untersuchungen, welche die
  Nachfolger von Monge gemacht haben.

Monge hatte als Mitarbeiter bei seinem reformierenden Werke einige
  seiner Kollegen [unter anderen L a c r o i x (1765-1843) und H a c h e t t e (1769-1834)], sowie
  viele von seinen Schülern an der polytechnischen Schule. Der Kürze halber
  beschränke ich mich darauf, den anzuführen, »der über die anderen wie ein
  Adler fliegt«, C h a r l e s D u p i n (1784-1873), vorzüglich wegen seiner klassischen
  Développements de géométrie (1813), die noch von allen gelesen
  werden müssen, welche auch nur eine mäßige Kenntnis des heutigen
  Zustandes der Geometrie erlangen wollen.

[32] Monge's Einfluß läßt sich noch
  in den neuesten Arbeiten bemerken; zum Beweise genüge es, die Idee
  anzuführen, die Schranken, durch welche die Alten die Planimetrie von der
  Stereometrie getrennt hatten, niederzureißen, und den glücklichen
  Versuch, den neuerdings (1884) D e P a o l i s in seinen goldenen Elementi di Geometria
  (Turin) gemacht hat, dieselbe auszuführen.

[33] »La Géométrie de position de
  Carnot n'aurait pas, sous le rapport de la métaphysique de la Science, le
  haut mérite que je lui ai attribué, qu'elle n'en serait pas moins
  l'origine et la base des progrès que la Géométrie, cultivée à la manière
  des anciens, a fait depuis trente ans en France et en Allemagne« (A r a g o, Biographie de
  Carnot).

[34] Zweite Auflage, 1865, 1866.

[35] Den Ursprung dieses Prinzipes
  betreffend, sehe man die Note von C. T a y l o r, On the history of
  geometrical continuity (Cambridge Proc., 1880 und 1881).

[36] Doctrina triangulorum
  canonicae u. s. w. (Leyden, 1627).

[37] Variorum de rebus
  mathematicis responsorum liber VIII. (Opera Vietae, 1646).

[38] Gergonnes Ann. 17.

[39] J a c o b i, Journ. für Math. 3; R i c h e l o t, das. 5, 38; R o s a n e s und P a s c h, ebendas. 64; L é a u t é, Comptes rendus,
  79; F e r g o l a, P a d e l e t t i und T r u d i, Napoli Rend. 21;
  S i m o n, Journ. für Math.
  81; G u n d e l f i n g e r, das. 83; H a l p h e n, Liouvilles Journ. III, 5; Bull. de la
  Soc. philom. VII, 3. Man sehe auch die interessante Abhandlung von
  H u r w i t z: Über
  unendlich-vieldeutige geometrische Aufgaben, insbesondere über die
  Schliessungsprobleme (Math. Ann. 15) und die Note von F o r s i t h, On in- and
  circumscribed polyhedra (Proc. Math. Soc. 1883).

[40] In deutscher Übersetzung von
  S o h n c k e: Geschichte der
  Geometrie, hauptsächlich in Bezug auf die neueren Methoden (Halle,
  1839), jedoch ohne das Mémoire sur deux principes généraux de la
  science (vgl. die folgende Note). Das französische Original erschien
  1875 in 2. Auflage.

[41] Unter den Arbeiten, welche das
  Werk von C h a s l e s bilden, verdient eine
  besondere Erwähnung die Abhandlung (für welche ursprünglich der Aperçu
  historique als Einleitung dienen sollte) Sur deux principes
  généraux de la Science, welche die allgemeine Theorie der Homographie
  (Kollineation) und der Reciprocität enthält, sowie die Untersuchung der
  beiden Fälle, in welchen diese involutorisch ist, und die Anwendung
  dieser Transformationen auf das Studium der Flächen zweiten Grades und
  der geometrischen Oberflächen überhaupt, sowie auf die Verallgemeinerung
  des cartesischen Koordinatensystems. Auch müssen noch die Noten
  erwähnt werden, da sie eingehende historische Studien und geometrische
  Untersuchungen von großer Bedeutung enthalten. Unter den letzteren will
  ich diejenigen anführen, in denen die Theorie des Doppel- oder
  anharmonischen Verhältnisses und der Involution, die anharmonischen
  Eigenschaften der Kegelschnitte, die Fokaleigenschaften der Flächen
  zweiten Grades, viele Lehrsätze über die kubischen Raumkurven, glückliche
  Versuche, die Sätze von Pascal und Brianchon auf die Flächen zweiten
  Grades auszudehnen, eine Verallgemeinerung der stereographischen
  Projektion u. s. w. auseinandergesetzt sind.

[42] Dieser Übergang ging nicht
  friedlich von statten, war vielmehr mit einer Reihe lebhafter
  Diskussionen verbunden, in welchen P o n c e l e t , C h a s l e s und B o b i l l i e r zu Gegnern hatten P l ü c k e r, S t e i n e r und M a g n u s und deren
  Hauptschauplatz das Bulletin von F é r u s s a c war. — Hier würde
  es am Orte sein, den Anteil zu bestimmen, der jedem dieser Gelehrten in
  den Wissensgebieten zukommt, an denen sie zusammen arbeiteten; aber dafür
  würde die Feder eines competenteren und gelehrteren Mannes, als ich bin,
  nötig sein. Im Übrigen sind nach meinem Dafürhalten gewisse Produktionen
  der menschlichen Intelligenz eine natürliche Frucht ihrer Zeit; daher
  darf es nicht wunder nehmen, wenn sie gleichzeitig aus verschiedenen
  Köpfen hervorgegangen scheinen, und darum braucht man auch keine
  Erklärung dieser Thatsache in der »mala fides« dieses oder jenes zu
  suchen. Daß solches wirklich bei der Erfindung der Differentialrechnung
  eingetreten ist, steht heute außer allem Zweifel. Daß dies ebenso bei der
  modernen Geometrie eingetreten ist, kann die Thatsache beweisen, daß
  dieselbe hervorgegangen ist aus einem allseitig gefühlten Bedürfnisse
  (man vergleiche dazu den Ausspruch D u p i n s [Développements de
  géométrie], der als Motto auf dem Traité des propriétés
  projectives des figures steht, mit der Vorrede der Systematischen
  Entwickelung und mit dem Aperçu historique an verschiedenen
  Stellen) nach allgemeinen Methoden, die als Ariadnefaden dienen sollten
  zur Führung in dem Labyrinthe von Hilfssätzen, Lehrsätzen, Porismen und
  Problemen, die von den Vorfahren überliefert sind.

[43] Die hauptsächlichste Arbeit von
  M ö b i u s auf dem Gebiete der reinen Geometrie ist die mit
  dem Titel: Der barycentrische Calcul (Leipzig, 1827); dort sind
  die bisherigen Kenntnisse über den Schwerpunkt (Barycentrum) eines
  Systemes von Punkten einer neuen und wichtigen Rechnungsart zu Grunde
  gelegt; diese führt zu einem neuen Koordinatensystem, dessen Anwendung
  auf das Studium der Raumkurven und ebenen Kurven und der Oberflächen der
  Verfasser darlegt. In demselben werden ferner methodisch und in großer
  Ausführlichkeit wichtige geometrische Transformationen, die heute noch
  fortwährend Anwendung finden, betrachtet. Viele spätere Abhandlungen von
  Möbius sind als Anhänge zum barycentrischen Calcul zu betrachten. (Siehe
  die beiden ersten Bände der Gesammelten Werke von Möbius,
  herausgegeben auf Veranlassung der Sächsischen Gesellschaft der
  Wissenschaften, Leipzig, 1885-1887.)

[44] Ich meine das Werk:
  Systematische Entwickelung der Abhängigkeit geometrischer Gestalten
  von einander (Berlin, 1832), in dem »der Organismus aufgedeckt ist,
  durch welchen die verschiedenartigsten Erscheinungen in der Raumwelt
  miteinander verbunden sind«. — Die späteren Schriften von Steiner
  und diejenigen anderer, welche sich auf das angeführte Werk stützen,
  zeigen, welches Recht der Verfasser desselben dazu hatte, den Inhalt
  durch die schon angeführten Worte zu charakterisieren. Steiners
  Gesammelte Werke sind auf Veranlassung der Akademie der
  Wissenschaften zu Berlin herausgegeben (Berlin, 1881, 1882).

[45] Des Näheren will ich hier nur
  die drei Bücher anführen: Analytisch-geometrische Entwickelungen
  (Essen, 1828-1831), System der analytischen Geometrie (Berlin,
  1835), Theorie der algebraischen Kurven (Bonn, 1839), sowie die
  mit ihnen zusammenhängenden Abhandlungen, die in Gergonnes Ann.
  und im Journ. für Math. veröffentlicht sind.

[46] Das Werk, in welchem S t a u d t sein System der Geometrie dargelegt hat, wurde im
  Jahre 1847 zu Nürnberg veröffentlicht unter dem Titel: Geometrie der
  Lage. Die ungemeine Knappheit des Stiles ist vielleicht die Ursache
  der großen Schwierigkeit, auf welche die Verbreitung desselben stieß;
  heute erst sind, dank den von R e y e (in erster Auflage
  1866-1868 erschienenen und) unter demselben Titel veröffentlichten
  Vorlesungen die in demselben enthaltenen Ideen allen bekannt, die sich
  mit Geometrie beschäftigen. In Italien wird jetzt zuerst von allen
  Ländern eine Übersetzung desselben angefertigt.

Nicht weniger wichtig sind die Beiträge zur Geometrie der Lage
  (in 3 Heften), welche S t a u d t seiner Geometrie der
  Lage 1866-1860 folgen ließ. Wir beschränken uns darauf,
  hervorzuheben, daß dort die einzige strenge, allgemeine und vollständige
  Theorie der imaginären Elemente in der projektiven Geometrie
  auseinandergesetzt ist; diese Theorie wurde in verschiedener Weise von
  mehreren Geometern, L ü r o t h (Math. Ann. 8,
  11), A u g u s t (Progr. der Friedrichs-Realschule in Berlin,
  1872) und S t o l z (Math. Ann. 4)
  erläutert; über die eng mit ihr zusammenhängende Rechnung mit den
  »Würfen« sehe man außer den erwähnten Abhandlungen von L ü r o t h noch zwei Arbeiten von S t u r m (Math. Ann. 9)
  und S c h r ö d e r (ebendas. 10).

[47] Ohne Zweifel ist diese
  Einteilung etwas willkürlich; vielleicht wird mancher, indem er bedenkt,
  daß gewisse Theorien mit demselben Rechte zu mehr als einem von den
  folgenden Abschnitten gehören können, dieselbe unpassend finden.
  Gleichwohl schmeichle ich mir, daß die meisten nach reiflicher Prüfung
  des besprochenen Gegenstandes finden werden, daß die von mir gewählte
  Einteilung nicht ohne bemerkenswerte Vorteile ist.

[48] C ô t e s, Harmonia
  mensurarum (1722); M a c l a u r i n, De linearum geometricarum proprietatibus
  generalibus tractatus. (Ins Französische übersetzt von d e J o n q u i è r e s und seinen Mélanges
  de Géométrie pure [Paris, 1856] angehängt.)

[49] Miscellanea analytica
  etc. (1762); Proprietates geometricarum curvarum (1772); Phil.
  Trans. 1763-1791.

[50] Geometria organica
  (1720).

[51] Phil. Trans. 1735;
  Exercitationes Geometriae de descriptione linearum curvarum
  (1733).

[52] Übrigens hat, wie C. T a y l o r (Cambridge Proc. 3) bemerkte, Newton selbst
  seine organische Erzeugungsweise der Kegelschnitte in der Enumeratio
  linearum tertii ordinis auf Kurven höherer Ordnung ausgedehnt.

[53] Usage de l'analyse de
  Descartes (1740).

[54] Introductio in analysin
  infinitorum. 2. Bd.

[55] Introduction à l'analyse des
  lignes courbes algébriques.

[56] Kurz vor der Veröffentlichung
  des C r a m e r schen Werkes fand E u l e r (man sehe die
  Berliner Abh. 1748), daß von den neun Grundpunkten eines Büschels
  ebener Kurven dritter Ordnung einer durch die acht übrigen bestimmt
  ist.

[57] Gergonnes Ann. 17,
  19.

[58] Journ. für Math. 16;
  Theorie der algebraischen Curven (wo S. 12-13 sich eine kurze
  Geschichte dieser Sätze findet).

[59] Journ. für Math. 15.

[60] Cambridge Journ. 3; vgl.
  B a c h a r a c h, Math. Ann.
  26.

[61] R i e m a n n, Journ. für Math.
  54; C l e b s c h, das. 58; R o c h, ebendas. 64; C l e b s c h und G o r d a n, Theorie der
  Abelschen Funktionen (Leipzig, 1866); B r i l l und N ö t h e r, Über die algebraischen Funktionen u. s. w.
  (Math. Ann. 7); C r e m o n a, Bologna Mem. 1870; C a s o r a t i, C r e m o n a und B r i o s c h i, Lombardo Rend.
  II, 2.

[62] In diesem Werke ist mit
  ersichtlicher Bevorzugung von dem »Prinzipe der Abzählung der Konstanten«
  Kenntnis gegeben und Gebrauch gemacht; wir wollen dasselbe erwähnen, da
  sich darauf eine Untersuchungsmethode stützt, deren ganze Bedeutung
  aufzuheben nicht gelingen wird, obwohl sich Beispiele von Irrtümern
  anführen lassen, zu denen es führen kann, wenn es ohne die notwendige
  Vorsicht angewandt wird.

Mit der Theorie der ebenen Kurven befassen sich auch die beiden
  folgenden Bücher, deren Existenz ich aus einer Anführung Plückers kenne
  (Theorie der algebraischen Curven, S. 206); A. P e t e r s, Neue Curvenlehre 1835; C. C. F. K r a u s e, Novae theoriae linearum curvarum originariae et
  vere scientificae specimina quinque prima. Edidit Schröder,
  1835.

[63] S. auch eine Abhandlung P l ü c k e r s, Liouvilles Journ. 1.

[64] Mém. prés.
  1730-31-32.

[65] S. die in Note 54 citierte Introductio.

[66] Hierzu siehe C l e b s c h, Vorlesungen über
  Geometrie, S. 352; M a l e t, Hermathema, 1880; P e l l e t, Nouv. Ann. II., 20, 1881.

[67] C a y l e y, Quart. Journ. 7 und Journ. für Math.
  64; L a G o u r n e r i e, Liouvilles Journ. II, 14; N ö t h e r, Math. Ann. 9; Z e u t h e n, das. 10; H a l p h e n, Comptes rendus
  78, Liouvilles Journ. II, 2, Mém. prés. 26; J. S. S m i t h, Proc. math. Soc.
  6; B r i l l, Math. Ann. 16;
  R a f f y, das. 23. — An
  diese Frage knüpft sich die Untersuchung der Zahl der Schnitte zweier
  Kurven, welche von einem ihnen gemeinsamen vielfachen Punkte absorbiert
  werden. Hierzu sehe der Leser die interessante Abhandlung von Z e u t h e n, Acta math.
  1.

[68] Journ. für Math. 40; vgl.
  C l e b s c h (das. 63).

[69] Journ. für Math. 36, 40,
  41.

[70] Phil. Mag. Oktoberheft
  1858.

[71] Phil. Trans. 1859.

[72] z. B. D e r s c h, Math. Ann. 7.

[73] A Treatise on higher plane
  curves (1852); ins Deutsche übertragen durch Fiedler (Leipzig,
  1873)

[74] Gergonnes Ann. 19.

[75] Journ. für Math. 24.
  — Die Theorie der Polaren in bezug auf Kurven und Oberflächen wurde
  in der letzten Zeit auf eine bemerkenswerte Weise von C l i f f o r d (1845-1879) (Proc. math. Soc. 1868 oder
  Mathematical Papers of Clifford, 1882, S. 115) und von R e y e (Journ. für Math. 72, 78) verallgemeinert.
  D e P a o l i s widmete ihr eine
  interessante Schrift, welche in den Lincei Mem. 1885-1886
  veröffentlicht ist.

[76] Comptes rendus, 1853.

[77] Essai sur la génération des
  courbes géométriques, 1858 (Mém. prés. 16). Vgl. H ä r t e n b e r g e r, Journ. für Math. 58; O l i v i e r das. 70, 71; S c h o u t e, Nieuw Archief voor
  Wiskunde, 4, und die allerneuesten Untersuchungen von J o n q u i è r e s über die Maximalzahl der vielfachen Punkte, die man
  bei einer ebenen Kurve beliebig annehmen kann (Comptes rendus
  105).

[78] Veröffentlicht im Jahre 1862 in
  den Bologna Mem. Möge es mir gestattet sein, hier den Wunsch
  auszusprechen, daß der berühmte C r e m o n a, dessen Interesse für die Verbreitung der
  geometrischen Studien bekannt ist, seine berühmten Schriften über die
  Theorie der Kurven und Oberflächen durch neue Ausgaben allen zugänglich
  machen wolle. — Diese Schriften sind in deutscher Übersetzung von
  C u r t z e unter dem Titel: Einleitung in eine geometrische
  Theorie der ebenen Kurven (Greifswald, 1865), bez. Grundzüge einer
  allgemeinen Theorie der Oberflächen in synthetischer Behandlung
  (Berlin, 1870) erschienen.

[79] Als Vorbereitung für solche
  Untersuchungen sind die von A r o n h o l d (Berliner Ber.
  1861) anzusehen, dann die von B r i o s c h i (Comptes rendus,
  1863, 64) über die Darstellung der Koordinaten der Punkte von gewissen
  Kurven als elliptische Funktionen eines Parameters.

[80] Journ. für Math. 58, 64.
  Die von C l e b s c h erhaltenen Resultate
  haben sich infolge des schönen Werkes von L i n d e m a n n, welches den Titel
  trägt: Vorlesungen über Geometrie von A. C l e b s c h (I. Bd. Leipzig,
  1876) und von dem das Erscheinen des zweiten Bandes allgemein gewünscht
  wird, schnell verbreitet.

[81] Über die algebraischen
  Funktionen und ihre Anwendung in der Geometrie. Math. Ann. 7.

[82] Zu den im Texte angeführten
  Schriften müssen noch die von B r i l l hinzugezogen werden (Math. Ann. 13), ferner
  die von G e i s e r (Annali di Matem. II, 9) und die von D e l P e z z o (Napoli Rend. 22)
  über den Zusammenhang, der zwischen den Singularitäten einer Kurve und
  denen ihrer Hesseschen Kurve besteht; ferner die von L a g u e r r e (Comptes rendus 40) und H o l s t (Math. Ann. 11
  und Archiv for Mathematik og Naturvidenskab 7), über die
  metrischen Eigenschaften der Kurven.

[83] De linearum geometricarum
  proprietatibus generalibus tractatus.

[84] Vgl. S a l m o n - F i e d l e r, Höhere ebene Kurven, 5. Kap.

[85] Phil. Trans. 1857;
  Liouvilles Journ. 9, 10.

[86] Journ. für Math. 42.

[87] Zeitschr. f. Math. 17;
  Prager Ber. 1871. — Man sehe auch das Buch Die ebenen
  Kurven dritter Ordnung (Leipzig, 1871) und die Abhandlung von G e n t (Zeitschr. f. Math. 17).

[88] Giorn. di Matem. 2.

[89] Journ. für Math. 90.

[90] Prager Abh. VI, 5.

[91] Göttinger Nachr. 1871 und
  1872.

[92] Journ. für Math. 78.

[93] Hierzu H a r n a c k, Math. Ann. 9.
  C a p o r a l i, Lincei Atti, III, 1; F o l i e und L e P a i g e, Mémoires de l'Académie de Belgique, 43.
  H a l p h e n, Math. Ann. 15;
  Bull. Soc. math. 9.

[94] Siehe Giorn. di Matem.,
  Lombardo Rend., Math. Ann., Wiener Ber. und
  Prager Ber.

[95] Für die C l e b s c h schen Arbeiten sehe man die in Note 80 angeführten Bände des Journ. für Math. nach.
  Über die ebenen rationalen Kurven dritter Ordnung sehe man die Arbeiten
  von D u r è g e (Math. Ann. 1), I g e l (das. 6), R o s e n o w (Dissertation, Breslau, 1873), S c h u b e r t (Math. Ann. 12), D i n g e l d e y (das. 27, 28); über die
  Kurven vierter Ordnung die von B r i l l (Math. Ann. 12) und N a g e l  (das. 19); über die fünfter Ordnung von R o h n (das. 25), und über die rationalen Kurven
  beliebiger Ordnung die Schriften von H a a s e (Math. Ann. 2), von L ü r o t h (das. 9), P a s c h (das. 18), B r i l l (das. 20), von W e l t z i e n (das. 26) und G a r b i e r i (Giorn. di Matem. 16).

[96] Journ. für Math. 47;
  Comptes rendus, 1871.

[97] Journ. für Math. 53.

[98] G ü ß f e l d t, Math. Ann. 2; L a g u e r r e, Bull. Soc. math. 7; C r e m o n a und C l e b s c h, Journ. f. Math.
  64; K i e p e r t, Zeitschr. f.
  Math. 17; F r a h m ebendas. 18; M i l i n o w s k i das. 19; I n t r i g i l a, Giorn. di Matem.
  23; K a n t o r, Wiener Ber. 1878 und Bull. Sciences
  math. II, 3.

[99] Giorn. di Matem. 15.

[100] Journ. für Math.
  65.

[101] Math. Ann. 4.

[102] Bull. de la Société
  philomathique, VII, I.
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  Modulargleichung ist, so ist die Gleichung einer Modularkurve
  F(α, β, γ) = 0. Siehe
  Proc. math. Soc. 9.

[104] Journ. f. Math. 65;
  vgl. E d. W e y r das. 73; H u r w i t z, Math. Ann.
  19.

[105] Math. Ann. 24.

[106] Journ. für Math. 95,
  99; siehe auch die Abhandlung von A u g u s t, Grunerts Arch.
  59.

[107] Transactions of the Royal
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[108] Math. Ann. 5.

[109] Math. Ann. 5, 6. Man
  sehe auch hierzu die Abhandlung von H a r n a c k in der Zeitschr. f. Math. 22. Die
  hauptsächlichsten von D u r è g e und S c h r ö t e r auf synthetischem Wege gefundenen Lehrsätze sind
  analytisch von W a l t e r in seiner Dissertation
  Über den Zusammenhang der Kurven dritter Ordnung mit den
  Kegelschnittscharen (Gießen, 1878) bewiesen. Den genannten Schriften
  S c h r ö t e r s über die Kurven dritter
  Ordnung können wir nun noch sein neuerdings erschienenes rein
  geometrisches Lehrbuch: Die Theorie der ebenen Kurven dritter
  Ordnung (Leipzig, 1888) hinzufügen.

[110] Math. Ann. 5.

[111] Math. Ann. 1, 13; vgl.
  C l e b s c h, Journ. für Math.
  59.

[112] Irish Trans. 1869.

[113] Siehe dessen Werk, Sur une
  classe remarquable de courbes et surfaces algébriques (Paris,
  1873).

[114] Journ. für Math. 57,
  59, 66.

[115] Tidsskrift for
  Mathematik, IV, 3.

[116] Forhandlinger af
  Videnskabs Selskab af Kjobenhavn 1879.

[117] Erschienen in den
  Collectanea mathematica in memoriam D. C h e l i n i (Mailand, 1881).

[118] Journ. für Math. 28,
  34, 38.

[119] Journ. für Math. 49,
  55; vgl. auch C a y l e y (das. 58).

[120] Journ. für Math.
  49.

[121] Berliner Ber. 1864,
  sowie Nouv. Ann. II, 11.

[122] Math. Ann. 1;
  Journ. für Math. 72.

[123] Vgl. Note 80.

[124] Journ. für Math. 66.
  — Über die Doppeltangenten einer Kurve vierter Ordnung sehe man
  auch folgende Arbeiten: R i e m a n n, Zur Theorie der Abelschen Funktionen für den
  Fall p=3. Gesammelte Werke (Leipzig, 1876), S. 456-499; N ö t h e r, Math. Ann. 15; C a y l e y, Journ. für Math. 94; F r o b e n i u s (das. 99); F r e y b e r g, Math. Ann. 17; H. W e b e r (ebendas. 23).

[125] Um sich von dem bedeutenden
  Anteil, welchen die M o n g e sche Schule an der
  Schöpfung der Theorie der Flächen zweiten Grades hatte, zu überzeugen,
  genügt es, sich folgendes zu vergegenwärtigen: Ihr verdanken wir die
  doppelte Erzeugungsweise des einmanteligen Hyperboloides und des
  hyperbolischen Paraboloides durch die Bewegung einer Geraden (M o n g e, Journ. Éc.
  polyt. 1) und die Erzeugung aller Flächen zweiten Grades, mit
  Ausnahme des hyperbolischen Paraboloides, durch Bewegung eines Kreises
  (H a c h e t t e, Éléments de Géométrie à trois dimensions).
  M o n g e und H a c h e t t e verdankt man den Beweis der Existenz der drei
  Hauptebenen einer Oberfläche zweiter Ordnung; M o n g e (Correspondance sur
  l'École polytechnique) die Entdeckung des Ortes der Scheitel der
  dreirechtwinkligen Triëder, deren Kanten eine Fläche zweiter Ordnung
  berühren, und B o b i l l i e r (Gergonnes Ann. 18) die des Ortes der
  Scheitel der dreirechtwinkligen Triëder, deren Seitenflächen eine Fläche
  zweiter Ordnung berühren; M o n g e bestimmte die Krümmungslinien des Ellipsoides
  (Journ. Éc. polyt. 2); L i v e t (das. 13) und B i n e t (ebendas. 16) dehnten die bekannten Lehrsätze des
  A p o l l o n i u s auf den Raum aus, während C h a s l e s (Correspondance sur
  l'Éc. polyt.) andere analoge Sätze gab; D u p i n (Journ. Éc.
  polyt. 14) machte einige interessante Methoden zur Erzeugung solcher
  Oberflächen bekannt. B r i a n c h o n (das. 13) zeigte, dass die reciproke Polare einer
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  u. s. w.
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[128] Aperçu historique,
  Note 25, 28, 31, 32; Comptes rendus, 1855; Liouvilles
  Journ. 1860 u. s. w.

[129] Journ. für Math. 18,
  20, 24, 26, 60, 73, 85, 90.

[130] Grunerts Arch. 9.

[131] Journ. für Math. 62.
  Über die Oberflächen zweiter Ordnung sehe man auch die Abhandlungen von
  T o w n s e n d (Cambridge Journ. 3), von D a r b o u x (Bull. Soc. Math.
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Eine der wichtigsten Fragen, welche sich in der T h e o r i e der Flächen zweiten
  Grades darbietet, ist die Konstruktion derselben, wenn neun ihrer Punkte
  gegeben sind. Dieselbe wurde von S e y d e w i t z (Grunerts Arch. 9), C h a s l e s (Comptes rendus,
  1855), S t e i n e r (Gesammelte
  Werke, II. Bd., Nachlass), S c h r ö t e r (Journ. für Math.
  62), S t u r m (Math. Ann. 1)
  und D i n o (Napoli Rend. 1879) gelöst. — Daran
  knüpft sich die Untersuchung des achten Punktes, der allen Flächen
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  géométrique et mécanique des courbes à double courbure (Paris,
  1860).

[460] Vgl. M a g n u s, Aufgaben und Lehrsätze aus der analytischen
  Geometrie des Raumes, 1837, S. 160.

[461] Die Existenz zweier
  Raumkurven vierter Ordnung wurde zuerst durch S a l m o n im Jahre 1850 (Cambridge Journ. 5) und
  darauf von S t e i n e r (Journ. für Math.
  53) bekannt gemacht.

[462] Auf der kubischen Fläche
  treten schon von der sechsten Ordnung ab gegen die Geraden der Fläche
  verschiedenartig sich verhaltende Kurven derselben Ordnung auf, die in
  der Zahl der scheinbaren Doppelpunkte übereinstimmen. Vgl. S t u r m, Math. Ann.
  21.

[463] Liouvilles Journ. 10,
  oder Cambridge Journ. 5. Dieser Abhandlung folgte eine, die von
  S a l m o n in demselben Bande des Cambr. Journ.
  veröffentlicht wurde, und zu ihrer Ergänzung wiederum dient eine von
  Z e u t h e n, die in den Annali di
  Matem. II, 3 abgedruckt ist. — An sie schließen sich ferner die
  Schriften, welche C a y l e y (Phil. Trans.
  153), P i q u e t (Comptes rendus 77 und Bull. Soc.
  math. 1), und G e i s e r (Collectanea
  mathematica in memoriam D. Chelini, Mailand, 1881) geschrieben haben
  über die Geraden, welche eine Raumkurve eine gewisse Anzahl Male
  schneiden.

[464] Comptes rendus 54 und
  58. Mit dieser Abhandlung vergleiche man die Dissertation von E d. W e y r, Über algebraische
  Raumkurven (Göttingen, 1873) und andere Schriften desselben
  Verfassers (Comptes rendus 76, Wiener Ber. 69). Den
  zitierten Abhandlungen von C a y l e y müßte ich noch eine
  dritte hinzufügen (Quart. Journ. 3), in welcher der Autor sich die
  Aufgabe gestellt hat, eine Kurve als Komplex ihrer Sekanten (im Sinne
  Plückers) zu betrachten und sie daher mittelst einer einzigen Gleichung
  zwischen den Koordinaten einer Geraden im Raume darzustellen, aber ich
  kann davon absehen, da die Fruchtbarkeit einer solchen Betrachtung noch
  nicht dargethan ist.

[465] H a l p h e n, Mémoire sur la
  classification des courbes gauches algébriques (Journ. Éc.
  polyt. 52). Man sehe auch desselben Autors Abhandlung Sur les
  singularités des courbes gauches algébriques (Bull. Soc. math.
  9). — N ö t h e r, Zur Grundlegung der Theorie der algebraischen
  Raumkurven (Berliner Abh. 1883, Journ. für Math.
  93).

[466] Comptes rendus 70;
  Bull. Soc. math. 1 und 2.

[467] Math. Ann. 7.

[468] Math. Ann. 6. Ein
  anderer Beweis desselben Satzes wurde von H a l p h e n gegeben, Bull. Soc.
  math. 5.

[469] Die Gerechtigkeit verlangt,
  daß ich auch noch eine sehr schöne Arbeit von V a l e n t i n e r anführe: Bidrag til Rumcurvener Theori
  (Kopenhagen, 1881) (vgl. auch Tidsskrift for Math. IV, 5 und
  Acta math. 2), die fast zu gleicher Zeit mit denen von H a l p h e n und N ö t h e r erschienen ist und mit diesen in den Methoden und
  den Resultaten bemerkenswerte Berührungspunkte hat. — Ich will in
  dieser Note auch noch, da ich es im Texte nicht thun konnte, einen Satz
  von C r e m o n a anführen (von D i n o in den Napoli Rend. 1879 bewiesen) und
  einige von S t u r m (Report of the
  British Association, 1881; Math. Ann. 19), welche
  bemerkenswerte allgemeine Eigenschaften der Raumkurven ausdrücken, sowie
  an die Untersuchungen von C a y l e y, P i q u e t und G e i s e r über eine Raumkurve
  mehrmals schneidende Geraden erinnern, von denen in der Note 463 gesprochen wurde. Erwähnenswert ist auch die (von
  H o ß f e l d in der Zeitschr. f.
  Math. 29 gefundene) Thatsache, daß die Rückkehrkurve der zweien
  Oberflächen umbeschriebenen abwickelbaren Fläche nicht der vollständige
  Schnitt zweier Oberflächen ist.






[470]
»Von anderen wird es löblich sein zu schweigen,

Weil allzukurz die Zeit für die Erzählung.«

— D a n t e s Göttliche Komödie; Die Hölle, 15. Gesang, Vers 104-105.





[471] Der barycentrische
  Calcül (Leipzig, 1827).

[472] Aperçu historique,
  Note 33; Liouvilles Journ. 19 (1854).

[473] Beiträge zur Geometrie der
  Lage, 3. Heft (Nürnberg, 1860).

[474] Grunerts Arch. 10.

[475] Journ. für Math.
  56.

[476] Journ. für Math. 58,
  60, 63; Nouv. Ann. II, 1; Annali di Matem. I, 1, 2, 5;
  Lombardo Rend. II, 12.

[477] Journ. für Math. 56;
  Theorie der Oberflächen zweiter Ordnung und der Raumkurven dritter
  Ordnung (Leipzig, 1880); Math. Ann. 25. Vgl. auch eine Note
  von mir in den Napoli Rend., 1885.

[478] Zeitschr. für Math.,
  1868; Geometrie der Lage.

[479] Lombardo Rend.
  1871.

[480] Journ. für Math. 79,
  80; Annali di Matem. II, 3.

[481] Math. Ann. 20 und
  30.

[482] Torino Mem. II, 32 und
  Collectanea mathematica. An diese Abhandlungen schließt sich eine
  von G e r b a l d i, Sui sistemi di cubiche gobbe o di sviluppabili
  di III. classe stabiliti col mezzo di due cubiche punteggiate
  projettivamente (Torino Mem. II, 32).

[483] Giorn. di Matem. 17
  (1879). Betreffend die ausgearteten Formen der kubischen Raumkurve sehe
  man eine Note von S c h u b e r t (Math. Ann. 15).
  Die Theorie der kubischen Raumkurven führt zu einer interessanten
  geometrischen Darstellung der Theorie der binären algebraischen Formen,
  die von L a g u e r r e (L'Institut 40), von S t u r m (Journ. f. Math.
  86) und von A p p e l l (Ann. Éc. norm. II, 5) bearbeitet wurde.
  Vgl. auch eine Note von J. T a n n e r y (Bull. sciences math. 11). Ferner sehe man
  in bezug hierauf die Note von W. R. W. R o b e r t s (Proc. math. Soc. 13) und das Buch von
  F r a n z M e y e r, Apolarität und
  rationale Kurven (Tübingen, 1883). Eine gute Darlegung der Theorie
  der Raumkurven dritter Ordnung hat auch v o n D r a c h geliefert in der Schrift Einleitung in die
  Theorie der kubischen Kegelschnitte (Leipzig, 1867), infolge deren
  B e l t r a m i interessante Annotazioni geschrieben hat
  (Lombardo Rend. II, 1).

[484] Comptes rendus 53
  (1861).

[485] Annali di matem. 4.
  — Die Note von S t o r y, On the number of intersections of curves traced
  on a scroll of any order (Johns Hopkins Baltimore University
  Circulars 2, 1883) enthält eine Verallgemeinerung eines sehr
  wichtigen Theoremes von C h a s l e s.

[486] P o n c e l e t machte im Jahre 1822 die bemerkenswerte Entdeckung,
  daß durch jede Raumkurve vierter Ordnung erster Art vier Kegel zweiten
  Grades hindurchgehen. (S. Traité des proprietés projectives I, S.
  385, 2. Aufl.)

[487] Comptes rendus 54,
  55.

[488] Comptes rendus 54;
  Bologna Mem. 1861; Lombardo rend. II, 1.

[489] Annali di Matem. II,
  2.

[490] Géometrie de direction
  (Paris, 1869); Comptes rendus 82.

[491] Liouvilles Journ. II,
  15.

[492] Journ. für Math. 97.
  — Eine bemerkenswerte spezielle Raumkurve vierter Ordnung erster
  Art hat S c h r ö t e r untersucht: Journ. für Math. 93.

[493] Math. Ann. 12, 13.

[494] Zeitschr. f. Math.
  28.

[495] Math. Ann. 13. Vgl.
  C a y l e y (das. 25).

[496] Comptes rendus 82.

[497] Annali di Matem. I,
  4.

[498] Giorn. di Matem. 11,
  12.

[499] Lombardo rend.
  1872.

[500] Wiener Ber. 1871. Über
  die rationalen Kurven vierter Ordnung sehe man auch S t u d y (Leipziger
  Sitzungsber. 1886), die Habilitationsschrift von J o l l e s (Aachen, 1886) und die Abhandlung von R o b e r t s (Proc. math. Soc.
  14). — Unter den rationalen Kurven vierter Ordnung ist eine sehr
  bemerkenswerte diejenige, welche zwei stationäre Tangenten hat. Die
  eleganten Eigenschaften, welche dieselbe besitzt, wurden von C r e m o n a (Lombardo Rend.
  1868), E m. W e y r (das. 1871) und A p p e l l (Comptes rendus 83) entdeckt.

[501] Comptes rendus 70.

[502] Vierteljahrsschrift der
  naturf. Ges. in Zürich 20.

[503] Außer den zitierten
  Synthetischen Untersuchungen sehe man Journ. für Math. 88
  und Math. Ann. 21.

[504] S. K o r n d ö r f e r und B r i l l, Math. Ann. 3; S a l t e l, Comptes rendus 80; G e n t y, Bull. Soc. math.
  9.

[505] Siehe unter anderem die
  Bemerkung von B u c h h e i m, On the extension of
  certain theories relating to plane cubics to curves of any deficiency
  (Proc. math. Soc. 13).

[506] Collectanea
  mathematica.

[507] Journ. für Math.
  99.

[508] C h a s l e s, Aperçu
  historique, 2. Aufl., S. 269; in der deutschen Übersetzung von S o h n c k e, S. 267.

[509] Diese Konstruktion, die von
  den Deutschen »Steinersche Projektion« genannt wird, wurde im Jahre 1865
  von neuem von T r a n s o n (1806-1876) gefunden, der ihr den Namen
  »projection gauche« gab (Nouv. Ann. II, 4 und 5).

[510] Traité des propriétés
  projectives (1. Aufl. 1822, S. 198).

[511] Journ. für Math.
  5.

[512] Journ. für Math. 8,
  und Aufgaben und Lehrsätze aus der analytischen Geometrie der
  Ebene, 1833.

[513] Torino Mem. 1862.

[514] Grunerts Arch. 7.

[515] Zeitschr. f. Math.
  11.

[516] Liouvilles Journ. 10,
  12. Vorher hatten schon G. B e l l a v i t i s (Nuovi Saggi dell'
  Accademia di Padova 4 (1836) und S t u b b s (Phil. Mag. 23,
  1843) sich mit dieser Korrespondenz beschäftigt. Man sehe auch S t e i n e r s Aufsatz aus dem Jahre 1826: Einige geometrische
  Betrachtungen (Journ. für Math. 1; Gesammelte Werke Bd.
  I, S. 19) Nr. 20.

[517] Auf den Begriff der Inversion
  ist von J o h n s o n (Analyst 4) eine neue
  Einteilung der ebenen Kurven gegründet worden. In derselben bedeutet der
  Name »Kreisgrad« einer Kurve den Grad ihrer Gleichung (in rechtwinkligen
  cartesischen Koordinaten) in x, y, r =
  x2 + y2; der Kreisgrad einer Kurve
  wird durch die Inversion nicht verändert. Zwei Kurven, welche denselben
  Grad haben, gehören zu derselben Kategorie. Diese Einteilung scheint
  jedoch nicht von großer Wichtigkeit zu sein.

[518] Sammlung von Aufgaben und
  Lehrsätzen aus der analytischen Geometrie der Ebene, 1833.

[519] In den Jahren 1859 und 1860
  studierte J o n q u i è r e s die (nach seinem Namen benannte) Transformation
  nter Ordnung, bei welcher jeder Geraden eine Kurve
  nter Ordnung mit einem (n - 1)-fachen Punkte
  entspricht. Einige seiner Resultate wurden im Jahre 1864 in den Nouv.
  Ann. veröffentlicht, aber das vollständige Werk, welches er dieser
  Transformation widmete, erschien erst 1885 und zwar durch G u c c i a (s. Giorn. di Matem. 23) herausgegeben. Wir
  bemerken auch, daß schon 1834 M ö b i u s (Journ. für Math.
  12; Gesammelte Werke, 1) die eindeutige Korrespondenz zwischen
  zwei Ebenen, bei denen die Flächeninhalte entsprechender Figuren in einem
  konstanten Verhältnisse stehen, studiert hat. Die Untersuchungen sind
  jedoch von ganz anderer Art als die im Texte betrachteten.

[520] Bologna Mem. 2, 5
  (1863 und 1865); Giorn. di Matem. 1 und 3; vgl. auch D e w u l f s Bearbeitung im Bull.
  sciences math. 5.

[521] Proc. math. Soc.
  3.

[522] Math. Ann. 4.

[523] Math. Ann. 3, 5.

[524] Journ. für Math.
  73.

[525] Proc. math. Soc.
  4.

[526] Hier will ich einen wichtigen
  Lehrsatz berühren, der gleichzeitig von C l i f f o r d (Proc. math. Soc.
  3), N ö t h e r (Göttinger Nachr. 1870; Math. Ann. 3)
  und R o s a n e s (Journ. für Math.
  73) erhalten wurde, und für einen Augenblick die Wichtigkeit der C r e m o n a schen Transformation aufzuheben schien: »Jede
  eindeutige Transformation von höherer als erster Ordnung kann man durch
  Wiederholung von quadratischen Transformationen erhalten.« Dieser Satz
  ist offenbar die Umkehrung desjenigen von M a g n u s, der vorhin im Texte angeführt wurde.

[527] Bologna Mem.
  1877-1878.

[528] Comptes rendus, 1885;
  Giorn. di Matem. 24.

[529] Annali di Matem. II,
  10.

[530] Comptes rendus, 1885;
  Rendic. del Circolo Matematico di Palermo 1.

[531] Man sehe die in den
  Comptes rendus, 1883, 1884, 1885, 1886 und in Liouvilles
  Journ. 1885, 1886, 1887 veröffentlichten Abhandlungen.

[532] Annali di Matem. 7,
  ferner Giorn. di Matem. 4.

[533] Proc. math. Soc.
  2.

[534] Math. Ann. 26.

[535] Bull. sciences math.
  II, 6 und 7.

[536] Meistenteils wurden die
  geometrischen Transformationen auf das Studium der algebraischen Kurven
  angewandt; jedoch fehlt es nicht an Schriften, welche sich mit der
  Transformation transcendenter Kurven in andere oder in sich selbst
  befassen: z. B. M a g n u s, Sammlung von
  Aufgaben und Lehrsätzen aus der analytischen Geometrie der Ebene,
  1833, S. 320, 455, 457-459, 497; K l e i n und L i e, Math. Ann. 4.

[537] Annali di Matem. II,
  8; Lombardo Rend. 1883. Vgl. auch G e i s e r, Journ. für Math. 67.

[538] Napoli Rend.,
  1879.

[539] Die neueste Form, welche die
  B e r t i n i schen Untersuchungen infolge dessen angenommen,
  machte es meinem Freunde M a r t i n e t t i leichter, auf dem von
  diesem Gelehrten vorgezeichneten Wege weiter zu schreiten und die ebenen
  involutorischen Transformationen dritter und vierter Klasse zu bestimmen
  (Annali di Matem. II, 12, 13). Die Theorie der ebenen
  Transformationen wird sich binnen kurzem durch die wichtige Arbeit von
  K a n t o r bereichern, welche von der Akademie zu Neapel
  gekrönt worden ist und jetzt gedruckt wird. Einzelne Resultate finden
  sich in den Wiener Ber. 1880 ausgesprochen, sowie in den Wiener
  Denkschriften 46.

S a l t e l verdanken wir die Idee einer speziellen
  involutorischen Transformation dritten Grades, die er schon 1872 unter
  dem Namen »Transformation arguesienne« nach D e s a r g u e s benannt (s. die
  Mémoires de l'Académie de Belgique 12, Bulletin de l'Académie
  de Belgique II, 24), studiert hat. Man stellt dieselbe auf folgende
  Weise her: Gegeben sind in einer festen Ebene Π zwei Kegelschnitte Γ1 und Γ2 und ein fester Punkt O; man
  läßt entsprechen einem Punkte P von Π
  seinen konjugierten in der Involution, die auf der Geraden OP
  bestimmt wird durch den Kegelschnittbüschel, den Γ1, und Γ2 konstituieren. Es sind fundamental
  der Punkt O und die Grundpunkte dieses Büschels. — Wenn jene
  beiden Kegelschnitte Γ1 und
  Γ2 zusammenfallen, so reduziert
  sich diese Transformation offenbar auf die quadratische Inversion von
  H i r s t. — Im Raume hat
  man eine ähnliche Transformation. — Eine andere Transformation
  (»transformation hyperarguesienne«) wurde von demselben Verfasser
  als Erweiterung der vorhergehenden eingeführt (Bulletin de l'Académie
  de Belgique II, 12) und wird auf folgende Weise hergestellt: Gegeben
  in einer Ebene Π drei Kegelschnitte Γ1, Γ2, Γ3 und ein fester Punkt O. Man
  läßt einem Punkte P von Π seinen
  homologen entsprechen in der Projektivität, die bestimmt ist auf
  OP von den drei Paaren von Punkten, in welchen diese Gerade von
  den drei Kegelschnitten getroffen wird; jedoch ist diese Korrespondenz
  offenbar nicht birational. — Die erste der S a l t e l schen Transformationen
  kann zur Lösung von Problemen aus der Theorie der Charakteristiken für
  die Kurven höherer als zweiter Ordnung dienen (Bull. Soc. Math.
  2).

[540] Bull. Soc. math. 8;
  Comptes rendus 94; Nouv. Ann. III, 1, 2. Diese
  Transformation kann man, wie L a g u e r r e selbst bemerkte, auf den
  Raum ausdehnen (Comptes rendus 92), jedoch ist die Art der
  Korrespondenz, die man erhält, keine neue; sie ist nach einer Bemerkung
  von S t e p h a n o s (Comptes rendus
  92) dieselbe, vermittelst derer L i e die Geometrie der Geraden mit der der Kugel
  verknüpfte (Math. Ann. 5).

[541] Die verschiedenen
  Abhandlungen von M ö b i u s über diese Theorie
  finden sich vereint im II. Bande seiner Gesammelten Werke
  (Leipzig, 1886).

[542] Journ. für Math. 55,
  57, 59; Grunerts Arch. 33.

[543] Grunerts Arch. 42.

[544] Bologna Mem. 1870.

[545] Journ. für Math.
  69.

[546] Des Näheren siehe die
  Abhandlung: Géometrie des polynomes (Journ. Éc. polyt.
  28).

[547] Beiträge zur geometrischen
  Interpretation binärer Formen (Erlangen, 1875); vgl. Math.
  Ann. 9; Studien im binären Wertgebiete (Karlsruhe, 1876);
  Math. Ann. 17; Erlanger Berichte, 1875.

[548] Siehe das Werk: Einführung
  in die Theorie der isogonalen Verwandtschaften (Leipzig, 1883).

[549] Zwischen drei geometrischen
  Gebilden kann man eine Korrespondenz aufstellen, so daß einem Paare von
  Elementen, das eine genommen in dem einen, das andere in einem zweiten,
  eindeutig ein solches im dritten Gebilde entspricht. Wenn unter
  Festhaltung eines Elementes die anderen beiden projektive Systeme
  beschreiben, so nennt man die Korrespondenz trilinear, und diese wurde im
  Falle der Gebilde erster Stufe von R o s a n e s (Journ. für Math. 1888) behandelt, sodann
  von S c h u b e r t (Math. Ann. 17 und Mitteilungen der Math.
  Ges. in Hamburg, 1881) und in einem Spezialfalle von B e n n o K l e i n (Theorie der
  trilinear-symmetrischen Elementargebilde, Marburg, 1881); im Falle
  der Gebilde zweiter Stufe von H a u c k (Journ. für Math. 90, 97, 98), welcher
  einige Anwendungen derselben auf die darstellende Geometrie machte, die
  von bemerkenswertem praktischen Nutzen zu sein scheinen.

Fast gleichzeitig mit den Arbeiten von Schubert sind diejenigen, in
  denen L e P a i g e mit Hilfe der Theorie der algebraischen Formen die
  trilineare Korrespondenz untersuchte und auf die Geometrie anwandte; man
  sehe die Essais de Géométrie supérieure du troisième ordre
  (Mém. de la Soc. des sciences de Liège II, 10) und die Noten,
  welche im Bulletin de l'Académie de Belgique III, 5 und in den
  Wiener Ber. 1883 veröffentlicht sind. Derselbe Geometer
  beschäftigte sich auch mit der quadrilinearen Beziehung (Torino
  Atti 17, 1882) und machte von ihr Anwendung auf die kubischen Flächen
  und gewisse Flächen vierter Ordnung (Bulletin de l'Académie de
  Belgique III, 4; Acta math. 5).

Wir unterlassen nicht, zu erwähnen, daß die duploprojektive Beziehung,
  durch welche schon 1862 F. A u g u s t die kubische Oberfläche
  erzeugte (Disquisitiones de superficiebus tertii ordinis, Berliner
  Dissertation), eine trilineare Beziehung ist.

[550] Wenn z. B. ein Dreieck
  ABC gegeben ist, so sei P ein beliebiger Punkt seiner
  Ebene. Es giebt nun einen Kegelschnitt K, welcher die Seiten des
  Dreieckes in den Punkten (PA, BC), (PB, CA),
  (PC, AB) berührt. Läßt man K dem P
  entsprechen, so hat man eine Korrespondenz von der im Texte angegebenen
  Art. Ähnlich erhält man eine duale Korrespondenz. Beide wurden von M o n t a g in seiner Dissertation: Über ein durch die Sätze
  von Pascal und Brianchon vermitteltes geometrisches Beziehungssystem
  (Breslau, 1871) studiert. Weitere analoge Korrespondenzen kann man aus
  der Beobachtung entnehmen, daß jeder Punkt der Ebene ABC der
  Mittelpunkt eines Kegelschnittes ist, der dem Dreiecke ABC
  eingeschrieben ist, eines ihm umgeschriebenen und eines solchen, für
  welchen ABC ein Polardreieck ist. Ähnlich: Gegeben ein Tetraeder
  ABCD; man kann jedem Punkte P des Raumes die Fläche zweiter
  Ordnung zuordnen, für welche P das Zentrum ist und in bezug auf welche
  ABCD ein Polartetraeder ist.

[551] Math. Ann. 6.

[552] Man sehe außerdem die
  Arbeiten von G o d t (Göttinger Dissertation, 1873), A r m e n a n t e (Lincei Atti,
  1875), B a t t a g l i n i (Giorn. di Matem. 19, 20), P e a n o (Torino Atti 16)
  und von A m o d e o (Napoli Rend. 1887). Die den Konnexen
  analogen Figuren im Raume wurden von K r a u s e behandelt (Math.
  Ann. 14). Man sehe auch zwei Noten von L a z z e r i, Sulle reciprocità
  birazionali nel piano e nello spazio (Lincei Rend. 1886).

[553] Gauss' Werke, 4. Bd.
  Eine italienische Übersetzung wurde von B e l t r a m i in den Annali di
  Matem. 4 veröffentlicht.

[554] Die Methoden, die
  geographischen Karten zu konstruieren, gehören in die Anwendungen der
  Geometrie und befinden sich deshalb nicht unter denjenigen, deren
  Geschichte wir hier verzeichnen wollen. Wir verweisen daher den, der alle
  diejenigen kennen lernen will, welche angewandt worden sind, auf die
  Schriften von F i o r i n i, Le projezioni delle carte geografiche
  (Bologna, 1881) und Z ö p p r i t z, Leitfaden der
  Kartenentwurfslehre (Leipzig, 1884). Eine Ausnahme will ich nur
  machen mit den Arbeiten von T i s s o t (Comptes rendus
  49; vgl. auch D i n i, Memoria sopra alcuni
  punti della teoria delle superficie [Florenz, 1868]; Journ. Éc.
  polyt. 37; Nouv. Ann. II, 17 flgg.), weil sie ein großes
  Interesse auch vom Standpunkte der reinen Wissenschaft haben.

[555] Diese Abbildung, die man
  heute die »sphärische« nennt, wurde vor G a u ß von O. R o d r i g u e s im Jahre 1815 angegeben;
  jedoch hat dieser ihre ganze Fruchtbarkeit nicht so in das Licht gestellt
  als der große deutsche Geometer.

[556] Journ. für Math.
  34.

[557] Comptes rendus,
  53.

[558] Phil. Mag. 1861.

[559] Journ. für Math. 68,
  oder Grundzüge einer allgemeinen Theorie der Oberflächen (Berlin,
  1870), III. T.

[560] Journ. für Math.
  65.

[561] Math. Ann. 1.

[562] S. Journ. für Math.,
  Math. Ann. und Göttinger Nachr. und Abh.

[563] Math. Ann. 4;
  Annali di Matem. II, 1; Göttinger Nachr. 1871 und viele
  andere Abhandlungen, welche in den Lombardo Rend. und den
  Bologna Mem. stehen. In der Abhandlung in den Annali
  studierte C r e m o n a die Regelflächen
  (m + n)ten Grades, welche eine m-fache
  und eine n-fache Leitlinie haben, und fand, daß deren
  asymptotische Kurven im allgemeinen algebraische Kurven von der Ordnung
  2(m + n - 1) sind. Eine Konstruktion dieser Kurven wurde
  später von H a l p h e n angegeben (Bull. Soc.
  math. 5).

[564] Math. Ann. 3; vgl.
  auch das. 21, dann ziehe man auch noch eine Abhandlung von B r i l l hinzu (Math. Ann.
  5).

[565] Annali di Matem. II,
  1.

[566] Math. Ann. 4.

[567] Math. Ann. 1.

[568] Annali di Matem. II,
  7.

[569] Z. B. sehe man D a r b o u x (Bull. Soc. math.
  2), F r a h m (Math. Ann. 7),
  L a z z e r i (Annali della Scuola
  nuova sup. di Pisa, 6), G u c c i a (Association
  française pour l'avancement des sciences, Congrès de Reims,
  1880).

[570] Ein wichtiger Begriff, den
  C l e b s c h bei seinen Studien über
  die Abbildung der Regelflächen aufstellte (Math. Ann. 5), ist der
  des Typus einer Fläche. Zwei Flächen sind von demselben Typus, wenn bei
  der Abbildung der einen auf die andere es keine Fundamentalpunkte giebt,
  z. B, ist die römische Fläche von S t e i n e r von demselben Typus mit der Ebene.

[571] S. die Collectanea
  mathematica in memoriam D. Chelini.

[572] Comptes rendus,
  1868.

[573] Math. Ann. 3.

[574] Annali di Matem. II,
  5; Göttinger Nachr. 1871 und 1873.

[575] Math. Ann. 4, 9,
  10.

[576] Die Flächen vierter Ordnung,
  von denen man die Abbildung auf eine Ebene kennt, sind die rationalen
  Regelflächen, die römische Fläche, die Oberflächen mit einer
  Doppelgeraden oder einem doppelten Kegelschnitte, die Monoide und eine
  Oberfläche, die einen uniplanaren Doppelpunkt hat (s. eine Abhandlung von
  N ö t h e r in den Göttinger Nachr. 1871 und eine von
  C r e m o n a in den Collectanea
  mathematica). Wer die Abbildung einer Oberfläche auf einer anderen
  studieren will, darf die schönen Untersuchungen von Z e u t h e n (s. die vorige Note und
  Comptes rendus, 1870) nicht übergehen und die darauf folgenden von
  K r e y (Math. Ann. 18) und V o ß (Math. Ann. 27);
  einen nicht geringen Nutzen kann er auch aus der von K a n t o r (Journ. für Math. 95) aufgestellten
  Korrespondenz ziehen, die zwischen den Punkten einer gewissen kubischen
  Fläche und gewissen Tripeln von Punkten einer Ebene besteht.

[577] Math. Ann. 3.

[578] Math. Ann. 3.

[579] Aperçu historique,
  Note 28.

[580] Lincei Mem. 1876,
  1877, 1878. Vgl. eine Note von N ö t h e r in den Erlanger
  Sitzungsberichten, 1878.

[581] Aufgaben und Lehrsätze aus
  der analyt. Geom. d. Raumes, S. 403 flg.

[582] Journ. für Math.
  49.

[583] S. Note 563. Vgl. auch S t u r m, Math. Ann. 19.

[584] Proc. Math. Soc.
  3.

[585] Math. Ann. 3.

[586] Lombardo Rend. 1871;
  Annali di Matem. II, 5; Bologna Mem. 1871-1872. Man sehe
  auch die neuesten Arbeiten desselben Geometers in den Transactions of
  Edinburgh 32, II. Th. und in den Irish Trans. 28 und Proc.
  math. Soc. 15.

[587] Aufgaben und Lehrsätze aus
  der analyt. Geom. des Raumes, 1837, S. 417-418, Anmerkung.

[588] Unter diesen führe ich die
  Abhandlung von d e P a o l i s an: Sopra un sistema omaloidico formato da
  superficie d'ordine n con un punto (n -
  1)-plo (Giorn. di Matem. 13) die späteren über einige
  spezielle involutorische Transformationen des Raumes von M a r t i n e t t i (Lombardo Rend. 1885) und von P a o l i s (Lincei Trans., 1885). — Ich bemerke
  hier, was ich im Texte nicht thun konnte, daß es möglich ist, das
  Punktfeld auf einer Geraden abzubilden und den Punktraum auf einer Ebene.
  Um erstere Abbildung auszuführen, kann man jedem Punkte der Ebene ein
  Punktepaar der Geraden entsprechen lassen (Übertragungsprinzip von H e s s e, Journ. für Math.
  66). Bei der zweiten kann man einem Punkte des Raumes den Kreis zuordnen,
  der den Fußpunkt des von jenem auf die darstellende Ebene gefällten Lotes
  zum Mittelpunkt und zum Radius die Länge dieses Lotes hat, indem man
  hinzufügt, daß dieser Kreis in dem e i n e n Sinne durchlaufen wird, wenn der Punkt auf der
  einen (bestimmten) Seite der Ebene liegt, im entgegengesetzten Sinne,
  wenn auf der anderen. Die Gesetze dieser Korrespondenz wurden von F i e d l e r vereinigt, um die
  Cyklographie zu bilden (s. das Werk Cyklographie, Leipzig, 1883,
  und die dritte Ausgabe der Darstellenden Geometrie) und wurden von
  ihm zur Lösung einiger Probleme angewandt (s. einige Mitteilungen
  für die naturforschende Gesellschaft in Zürich und Acta math. 5).
  Vor ihm jedoch hatte schon C r o n e verwandte Fragen in einer Dissertation behandelt,
  die sich in der Tidsskrift for Mathematik 6 findet.

[589] C h a s l e s, Aperçu
  historique, 2. Ausg. S. 196.

[590] M a g n u s, Sammlung von Aufgaben und Lehrsätzen aus der
  anal. Geom. der Ebene, 1833, S. 188 und 198.

[591] V o ß, Math. Ann. 13;
  S e g r e, Torino Mem. II,
  37; S t u r m, Math. Ann. 26.
  In diesen Abhandlungen wird der Leser auch die weiteren bibliographischen
  Einzelheiten finden.

[592] S t u r m, a. a. O.; M o n t e s a n o, Lincei Mem.
  1886.

[593] L ü r o t h, Math. Ann. 11, 13; S c h r ö t e r (das. 20); V e r o n e s e, Lincei Mem.
  1881. S. auch einige der Abhandlungen, die sich in den Gesammelten
  Werken von M ö b i u s 2 finden. Auch die
  Arbeiten von R o s a n e s führen wir hier an
  (Journ. für Math. 88, 90, 95, 100), von S t u r m (Math. Ann. 1, 6,
  10, 12, 15, 19, 22, 28; Proc. math. Soc. 7), und von P a s c h (Math. Ann. 23,
  26), die verwandte Gegenstände behandeln; dann noch die von S t e p h a n o s (Math. Ann. 23),
  von H. W i e n e r (Rein geometrische Theorie der Darstellung
  binärer Formen durch Punktgruppen auf der Geraden, Darmstadt, 1885),
  von S e g r e (Torino Mem. II,
  28 und Journ. für Math. 100), von S a n n i a (Lezioni di geometria projettiva, in Neapel
  im Drucke befindlich) über die Kollineationen und Korrelationen.

[594] Math. Ann. 3.

[595] Giorn. di Matem.
  10.

[596] Man sehe die beiden von ihm
  1884 zu Messina veröffentlichten Abhandlungen.

[597] Lombardo Rend. 1886;
  Lincei Rend. 1885.

[598] Die Geometrie der
  Lage.

[599] Giorn. di Matem.
  21.

[600] Lombardo Rend. II, 14
  und 15.

[601] Journ. für Math.
  94.

[602] Lincei Mem.
  1884-1885.

[603] Wiener Ber. 1881;
  Journ. für Math. 97.

[604] Math. Ann. 19 und
  28.

[605] Math. Ann. 23.

[606] Journ. für Math. 82,
  in dem Aufsatze über reciproke Verwandtschaft von
  F2-Systemen und Φ2-Geweben.

[607] Über das gemeine Nullsystem
  vergl. die Note 610 des nächsten Abschnittes

[608] »Bis in die neueren Zeiten
  stand die analytische Methode, wie sie C a r t e s i u s geschaffen, sozusagen nur auf einem Fuße. P l ü c k e r kommt die Ehre zu, sie
  auf zwei gleiche Stützen gestellt zu haben, indem er ein ergänzendes
  Koordinatensystem einführte. Diese Entdeckung war daher unvermeidlich
  geworden, nachdem einmal die Tiefblicke S t e i n e r s dem Geiste der
  Mathematiker zugeführt waren.« S y l v e s t e r, Phil. Mag. III, 37, 1850, S. 363. Vgl.
  Jahrbuch über die Fortschritte der Mathematik 2, S. 453.

[609] S. Phil. Trans., 1865,
  S. 725; 1866, S. 361.

[610] Es ist wohl zu beachten, daß
  ein linearer Komplex ein reciprokes Nullsystem veranlaßt und daß dieses
  zuerst von G i o r g i n i (Memorie della Società italiana delle
  scienze 20, 1827), dann aber auch von M ö b i u s (Lehrbuch der Statik I; vgl. auch Journ.
  für Math. 10, 1833) und von C h a s l e s (Aperçu historique, 1837) in ihren
  statischen und kinematischen Untersuchungen und von demselben C h a s l e s und S t a u d t bei der Bestimmung der involutorischen reciproken
  Beziehungen gefunden wurde.

[611] Cambridge Trans. 11,
  Teil 2; Quart. Journ. 3.

[612] Giorn. di Matem. 6, 7,
  10, 18. Wenn auch B a t t a g l i n i seinen Studien über die
  quadratischen Komplexe eine Gleichung zu Grunde legte, die nicht den
  allgemeinsten Komplex ihres Grades darstellt, so gelten doch viele von
  den Schlüssen, die er gemacht hat, — man kann sagen alle, mit
  Ausnahme derjenigen, welche sich auf die singuläre Fläche und die
  singulären Strahlen des Komplexes beziehen — für allgemeine
  Komplexe, indem sie unabhängig sind von der Gestalt dieser Gleichung.
  Auch die von ihm aufgestellten Formeln passen sich mit leichten
  Änderungen größtenteils dem allgemeinen Falle an.

[613] Leipzig, 1868-1869.

[614] S. dessen Examen des
  différentes méthodes etc.

[615] Math. Ann. 2, 5, 7,
  22, 23 (darin der Wiederabdruck der 1868 in Bonn erschienenen
  Dissertation: Über die Transformation der allgemeinen Gleichung des
  zweiten Grades zwischen Linienkoordinaten auf eine kanonische Form),
  28. Außerdem enthalten viele Arbeiten von K l e i n über Fragen der höheren
  Algebra oder der höheren Analysis, die in den Math. Ann. und sonst
  veröffentlicht sind, ziemlich oft Betrachtungen, welche der Geometrie der
  Geraden angehören.

[616] Torino Mem. II,
  36.

[617] Journ. für Math. 75,
  76; Habilitationsschrift (Gießen, 1870).

[618] Math. Ann. 1.

[619] Math. Ann. 2.

[620] Lincei Mem.
  1884-1885.

[621] Math. Ann. 2, 5.

[622] Math. Ann. 7. Man kann
  es nur beklagen, daß die in verschiedener Beziehung so ausgezeichnete
  Arbeit von W e i l e r eine große Zahl von Ungenauigkeiten enthält.

[623] Math. Ann. 8, 9, 10,
  12, 13. S. auch S c h u b e r t das. 12 und dessen
  Abzählende Geometrie.

[624] Comptes rendus 74,
  75; Bull. Soc. math. 1.

[625] Göttinger Nachr.
  1869.

[626] Göttinger Nachr.
  1869.

[627] Lincei Mem.
  1877-1878.

[628] Giorn. di Matem. 8;
  Lombardo Rend. II, 12, 13, 14.

[629] Math. Ann. 5. Vgl.
  eine Abhandlung von C r e m o n a, gelesen vor der Accademia dei Lincei
  (Atti II, 3).

[630] Journ. für Math. 98.
  Vgl. auch 95 und 97.

[631] Liouvilles Journ.
  4.

[632] Die Geometrie der
  Lage, 2. Abt. 2. Aufl., in der sich die von R e y e in dem Journ. für Math. veröffentlichten
  synthetischen Arbeiten über die Geometrie der Geraden vereinigt
  finden.

[633] Zeitschr. f. Math.
  20.

[634] Dissertation (Berlin,
  1879) oder Math. Ann. 15.

[635] Giorn. di Matem. 17;
  Lincei Rend. 1879.

[636] Torino Atti, 1881.

[637] Journ. für Math. 91,
  92, 93, 94, 95, 97.

[638] The Messenger of
  Mathematics II, 13.

[639] Liouvilles Journ. II,
  17.

[640] S. Note 629.

[641] Math. Ann. 5.

[642] Ann. Éc. norm. II, 6;
  Grunerts Arch. 40.

[643] Ann. Éc. norm. III,
  1.

[644] S. Note 628.

[645] Nouv. Ann. II, 2;
  Liouvilles Journ. II, 19.

[646] Die Geometrie der
  Lage.

[647] Göttinger Nachr.
  1870.

[648] Journ. für Math. 95;
  Zeitschr. f. Math. 24, 27.

[649] Sugli enti geometrici
  dello spazio di rette generati dalle intersezioni dei complessi
  correspondenti in due o pin fasci projettivi di complessi lineari
  (Piazza Armerina, 1882).

[650] Proc. math. Soc. 10;
  Collectanea mathematica, 1881.

[651] Math. Ann. 13.

[652] Mémoire de géométrie
  vectorielle sur les complexes du second ordre, qui ont un centre de
  figure (Liouvilles Journ. III, 8).

[653] Sui complessi di rette di
  secondo grado generati da due fasci projettivi di complessi lineari
  (Napoli, 1886), und Napoli Rend. 1886.

[654] Math. Ann. 23;
  Giorn. di Matem. 23; Torino Atti, 1884.

[655] Applications de Géometrie
  et de Mechanique, 1822.

[656] Journ. Éc. polyt.
  14.

[657] Comptes rendus 20.

[658] Liouvilles Journ.
  15.

[659] Journ. Éc. polyt.
  38.

[660] Irish Trans. 16,
  1831.

[661] Bd. 57.

[662] Die Eigenschaften der
  unendlich dünnen Strahlenbündel, mit denen K u m m e r sich in dieser Abhandlung beschäftigt, gaben später
  (1862) Stoff zu einer schönen Arbeit von M ö b i u s (Leipziger Ber. 14; Werke 4), an
  welche sich dann die von Z e c h (Zeitschr. f.
  Math. 17) veröffentlichten Untersuchungen knüpfen; vgl. auch eine
  neuerliche Abhandlung von H e n s e l (Journ. für Math.
  102).

[663] Berliner Abh.
  1866.

[664] Von noch erschienenen
  Arbeiten, die man als eine Fortsetzung derer von K u m m e r ansehen kann oder die auf anderem Wege zu dessen
  Resultaten geführt haben, erwähne ich: R e y e (Journ. für Math.
  86 und 93), H i r s t (Proc. math. Soc.
  16), S t a h l (s. Note 637), C a p o r a l i (Napoli Rend.
  1879), L o r i a (Torino Atti,
  1884 und 1886) — oder von solchen, die zu diesen einige neue
  Formeln oder ein neues algebraisches Strahlensystem hinzugefügt haben:
  K u m m e r (Berliner Ber. 1878), M a s o n i (Napoli Rend. 22), R o c c e l l a (s. Note 649), H i r s t (Proc. math. Soc.
  16 und 17; Rendiconti del Circolo mathematico di Palermo 1),
  S t u r m (Math. Ann. 6;
  Journ. für Math. 101).

[665] Zum Beweise, daß die Fragen,
  auf welche sich diese Arbeiten beziehen, bei einigen Gelehrten jene Ruhe
  und Unparteilichkeit des Urteils, die immer bei ihren Diskussionen walten
  sollte, aufgehoben haben, will ich hier zwei Stellen anführen, die eine
  von einem Schriftsteller, der allen, welche sich mit Philosophie
  beschäftigen, sehr wohl bekannt ist, die andere aus einer Zeitschrift,
  die in Deutschland ziemlich verbreitet ist: ».... so gewiß ist es
  logische Spielerei, ein System von vier oder fünf Dimensionen noch Raum
  zu nennen. Gegen solche Versuche muß man sich wahren; sie sind Grimassen
  der Wissenschaft, die durch völlig nutzlose Paradoxien das gewöhnliche
  Bewußtsein einschüchtern und über sein gutes Recht in der Begrenzung der
  Begriffe täuschen« (L o t z e, Logik, S. 217). »Die absolute oder
  Nicht-Euklidische Geometrie, die Geometrie des endlichen Raumes und die
  Lehre von n Raumdimensionen sind entweder Karrikaturen oder
  Krankheitserscheinungen der Mathematik« (J. G i l l e s, Blätter für das Bayrische Gymnasial- und
  Realschulwesen 28, S. 423). Man sehe auch die heftigen Äußerungen
  D ü h r i n g s, die von E r d m a n n in seiner trefflichen Abhandlung: Die Axiome der
  Geometrie (Leipzig, 1877, S. 85) wiedergegeben sind, ferner K r o m a n, Unsere Naturerkenntnis, deutsch von F i s c h e r - B e n z o n (Kopenhagen, 1883, S. 145 bis 175); endlich die
  Kap. 13 und 14 des Werkes von S t a l l o, La matière et la
  physique moderne (Paris, 1884). Auf Vorwürfe von der oben erwähnten
  Art erwidern wir mit d ' A l e m b e r t: »Allez en avant, et
  la foi vous viendra!«

[666] Als Litteraturnachweis für
  diesen Teil der Geometrie sehe man die Artikel von G. B r u c e - H a l s t e d, veröffentlicht im
  Amer. Journ. 1 und 2.

[667] Es ist dieser Satz: »Wenn bei
  einer Geraden, welche zwei andere schneidet, die Summe der inneren Winkel
  auf derselben Seite kleiner als zwei Rechte ist, so schneiden sich
  letztere auf derselben Seite.« D ' A l e m b e r t nannte diesen Satz:
  »l'écueil et le scandale des éléments de la géométrie«.

[668] Eine Zeit lang glaubte man,
  daß der fragliche Satz von Euklid unter die Axiome gestellt sei; aber
  neuere historische Untersuchungen (s. H a n k e l, Vorlesungen über
  komplexe Zahlen und ihre Funktionen, S. 52) neigen zu der Ansicht,
  daß derselbe irrtümlicher Weise von den Abschreibern zu den Axiomen
  geschrieben sei, während er im Originale unter den Postulaten gestanden
  hatte.

[669] Vgl. Die Elemente der
  Mathematik von B a l t z e r, 4. Teil, Planimetrie.

[670] Man erzählt, L a g r a n g e habe beobachtet, daß die sphärische Geometrie von
  dem Euklidischen Postulate unabhängig sei, und gehofft, aus dieser
  Beobachtung eine Art und Weise ableiten zu können, den Ungelegenheiten
  der Euklidischen Methode zu entgehen, indem er die ebene Geometrie als
  die Geometrie auf einer Kugel mit unendlich großem Radius
  betrachtete.

[671] Briefwechsel zwischen
  Gauss und Schumacher, herausgegeben von P e t e r s, 6 Bände (Altona, 1860-1865); die betreffenden
  Stellen dieses Briefwechsels sind von H o ü e l ins Französische übersetzt und seiner 1866
  erschienenen französischen Übersetzung von L o b a t s c h e w s k y s Geometrischen Untersuchungen (vgl. Note 10)
  zugefügt.

[672] Vgl. die Gedächtnisschrift
  auf G a u ß von S c h e r i n g in den Göttinger
  Abh. 22 (1877).

[673] Göttingische Gelehrte
  Anzeigen, 1816 und 1822; oder Gauss' Werke 4 (1873), S. 364
  und 368. Vgl. auch S a r t o r i u s v o n W a l t e r s h a u s e n, Gauss zum Gedächtnis (Leipzig, 1856), S.
  81. — Möge es gestattet sein, hier die Mitteilung anzuschließen,
  daß G a u ß das alte Problem der Kreisteilung, in dem man seit
  zwei Jahrtausenden nicht vorwärts gekommen war, durch Untersuchungen auf
  einem Gebiete wesentlich gefördert hat, das ohne Zusammenhang mit diesem
  Problem schien und auf welchem man solchen Gewinnst für die Geometrie
  nicht erwartete (Disquisitiones arithmeticae, Leipzig, 1801;
  Werke 1; vgl. B a c h m a n n, Die Lehre von der
  Kreisteilung, Leipzig, 1872), indem er zeigte, daß die Teilung in
  n Teile mit Hilfe von Lineal und Zirkel auch noch möglich ist,
  wenn n eine Primzahl von der Form 2m +1 ist. Man
  sehe hierzu auch L e g e n d r e, Éléments de
  trigonométrie, Anhang; R i c h e l o t, S t a u d t, S c h r ö t e r, Journ. für Math.
  9, 24, 75; A f f o l t e r, Math. Ann. 6.

[674] Courier von Kasan,
  1829-1830; Abhandlungen der Universität Kasan, 1835, 1836, 1837,
  1838; Geometrische Untersuchungen über die Theorie der
  Parallellinien (Berlin, 1810); Journ. für Math. 17.

[675] Die Schrift von J o h a n n B o l y a i erschien als Anhang des
  Werkes von W. B o l y a i: Tentamen juventutem
  studiosam in elementa matheseos purae ..... introducendi, 2. Bd.
  (Maros-Vásárhely 1833), wurde dann ins Französische übersetzt von H o ü e l (Mémoires de
  Bordeaux), ins Italienische von B a t t a g l i n i (Giorn. di Matem.
  5).

[676] Es ist das Verdienst H o ü e l s (?—1886) und B a t t a g l i n i s, die Werke von L o b a t s c h e w s k y und B o l y a i durch Übersetzungen und vorzügliche Kommentare (s.
  Note 7 und 11 und Giorn. di Matem. 5 und 8) verbreitet zu haben.
  — Heute ist es leicht, die Nicht-Euklidische Geometrie zu lernen,
  da F l y e Ste M a r i e (Etudes analytiques
  sur la théorie des parallèles, Paris, 1871), F r i s c h a u f (Elemente der
  absoluten Geometrie, Leipzig, 1876) und d e
  T i l l y (Essai sur les
  principes fundamentaux de la géométrie et de la mécanique, Bordeaux,
  1879) methodische Bearbeitungen derselben geschrieben haben. In England
  wurden die neuen Ideen über die Prinzipien der Geometrie bearbeitet und
  herrlich dargestellt von C l i f f o r d; man sehe die Schrift
  Lectures and Essays, sowie die von S m i t h den Mathematical
  Papers by W. K. Clifford (London, 1882) vorausgeschickte
  Einleitung.

[677] Göttinger Abh. 13
  (1867), oder Gesammelte Werke (Leipzig, 1876), ins Französische
  übersetzt von H o ü e l (Annali di Matem. II, 3), ins Englische von
  C l i f f o r d (Nature 8 oder Mathematical Papers S.
  55).

[678] In der Abhandlung Über die
  Thatsachen, welche der Geometrie zu Grunde liegen (Göttinger
  Nachr. 1868).

[679] Hierzu sehe man Populäre
  wissenschaftliche Vorträge von H e l m h o l t z (Braunschweig, 1871-1876); Revue des cours
  scientifiques, 9. Juli 1870 etc.

[680] Giorn. di Matem. 6.
  Dieser Artikel wurde ins Französische übersetzt von H o ü e l und veröffentlicht in
  den Ann. Éc. norm. 6, 1869.

[681] Man vergleiche hierzu die
  Worte, mit denen d ' A l e m b e r t die Meinung zurückwies,
  daß die Wahrheiten der Mechanik experimentelle seien (Traité de
  Dynamique, Paris, 1858, Discours préliminaire, S. XII), mit
  den folgenden von C l i f f o r d (The Common Sense of
  the Exact Sciences, London, 1885, International Scientific
  Series 51): »In derselben Weise, wie wir, um irgend einen Zweig der
  Physik zu schaffen, von der Erfahrung ausgehen und auf unsere Experimente
  eine gewisse Anzahl von Axiomen stützen, welche solchergestalt die
  Grundlage desselben bilden, so sind die Axiome, die wir als Grundlage der
  Geometrie nehmen, wenn auch weniger offenbar, in der That ein Ergebnis
  der Erfahrung.« Man sehe auch das Werk von H o ü e l, Du rôle de
  l'expérience dans les sciences exactes (Prag, 1875), oder die
  Übersetzung, die davon in Grunerts Arch. 59 veröffentlicht
  wurde.

[682] Ich bemerke, daß, wer die
  Ausdehnungslehre des großen deutschen Geometers und Philologen
  H e r m a n n G r a ß m a n n liest, mit Erstaunen sehen wird, daß er schon 1844
  zu Schlüssen gelangt war, die von den im Texte angegebenen nicht sehr
  verschieden sind. Aber wer weiß nicht, daß, um geschätzt zu werden,
  dieses ausgezeichnete Werk nötig hatte, daß andere auf einem anderen Wege
  zu den äußerst originellen Wahrheiten gelangten, die es enthält? —
  Hier scheint es mir angebracht zu sein, eine Erklärung zu geben, welche
  zu meiner Rechtfertigung dient. Bei dieser kurzen Geschichte der Kämpfe,
  welche die Geometer in diesen letzten Zeiten ausgefochten haben, traf es
  sich selten und nur flüchtig, daß ich Arbeiten von G r a ß m a n n zitierte, und ich glaube nicht, daß ich noch
  Gelegenheit haben werde, diesen Namen auszusprechen. Das heißt nicht, daß
  dieser Geometer nicht der Erwähnung würdig sei, daß seine Entdeckungen
  und seine Methoden nicht verdienten, bekannt zu werden; aber es liegt
  daran, daß der Formalismus, in den er seine Gedanken gekleidet, sie den
  meisten unzugänglich gemacht und ihnen fast jede Möglichkeit genommen
  hat, irgend einen Einfluß auszuüben. G r a ß m a n n war während eines großen
  Teiles seines Lebens ein Einsiedler in der Mathematik; nur während seiner
  letzten Jahre befaßte er sich damit, etliche seiner Produktionen in
  modernem Gewande zu veröffentlichen, um deren Verwandtschaft mit denen
  seiner Zeitgenossen zu zeigen (man sehe Math. Ann. 10, 12;
  Göttinger Nachr. 1872; Journ. für Math. 84); daher ist es
  natürlich, daß ihn zu nennen demjenigen selten widerfährt, welcher sich
  vornimmt, die Errungenschaften zu beschreiben, die man den vereinten
  Anstrengungen der modernen Geometer verdankt. — Man vergleiche
  P e a n o, Calcolo geometrico
  secondo l'Ausdehnungslehre di H. Grassmann preceduto dalle operazioni
  della logica deduttiva (Turin, 1888). — Über die
  wissenschaftlichen Verdienste G r a ß m a n n s sehe man einen Artikel von C r e m o n a in den Nouv. Ann.
  I, 19, dann den 14. Bd. der Math. Ann. und den 11. Bd. des
  Bulletino di Bibliografia e di Storia delle Scienze matematiche.
  Ein Vergleich zwischen den Methoden G r a ß m a n n s und anderen moderneren wurde von S c h l e g e l in der Zeitschr. f. Math. 24 gemacht.

[683] Über die sogenannte
  Nicht-Euklidische Geometrie (Math. Ann. 4).

[684] Nouv. Ann. 12.

[685] Phil. Trans. 149; vgl.
  C l i f f o r d, Analytical Metrics (Quart. Journ.
  1865, 1866 oder Mathematical Papers, S. 80).

[686] Eine spätere Abhandlung von
  K l e i n unter demselben Titel
  (Math. Ann. 6) ist zur Ergänzung einiger Punkte der ersteren
  bestimmt. An dieselbe knüpfen sich die wichtigen Untersuchungen von
  L ü r o t h und Z e u t h e n (Math. Ann. 7), von T h o m a e (vgl. die 2. Aufl. der Geometrie der Lage
  von R e y e), von D a r b o u x (Math. Ann. 17), von S c h u r (das. 18), d e P a o l i s (Lincei Mem.
  1880-1881) und von R e y e (3. Aufl. der
  Geometrie der Lage) über den Fundamentalsatz der projektiven
  Geometrie.

[687] Études de mécanique
  abstraite (Mémoires couronnées par l'Académie de Belgique 21,
  1870).

[688] Bulletin de l'Académie de
  Belgique II, 36; Torino Mem. II, 29; Mem. de la società
  italiana delle scienze III, 2.

[689] Wiener Ber. 1874. Man
  sehe auch die schöne Abhandlung von B e l t r a m i: Sulle equazioni
  generali dell' elasticità, in den Annali di Matem. II, 10.

[690] Sull' applicabilità delle
  superficie degli spazii a curvatura costante (Lincei Atti III,
  2).

[691] Lincei Rend. 1873 und
  1876.

[692] Annali di Matem. II,
  6, 7; Giorn. di Matem. 13; Torino Atti, 1876; Lincei
  Mem. III, 3; Lombardo Rend. 1881.

[693] Lincei Mem.
  1877-1878.

[694] Lombardo Rend. II, 14,
  15.

[695] Math. Ann. 5.

[696] Math. Ann. 7.

[697] Göttinger Nachr.
  1873.

[698] Amer. Journ. 2, 4,
  5.

[699] Die Massfunktionen in der
  analytischen Geometrie. Programm (Berlin, 1873).

[700] Math. Ann. 10.

[701] Quart. Journ. 18.

[702] On the theory of screws in
  elliptic space. (Proc. math. Soc. 15 und 16).

[703] Die interessantesten von den
  mir bekannten sind die von S e g r e, Sulle geometrie metriche dei complessi lineari
  e delle sfere, veröffentlicht in den Torino Atti, 1883.

[704] Das Produkt zweier Strecken
  ist eine Fläche, das dreier ein Körper, was ist das geometrische Bild des
  Produktes von vieren? — Die analytischen Geometer der Cartesischen
  Epoche bezeichneten dasselbe durch das Wort »sursolide« (überkörperlich),
  welches sich in ihren Schriften findet; man kann sie daher als diejenigen
  ansehen, welche zuerst die im Texte erwähnte Richtung eingeschlagen
  haben.

[705] S. C a y l e y, A memoir on abstract Geometry (Phil.
  Trans. 1870); vgl. auch Cambridge Journ. 4, 1845.

[706] Comptes rendus,
  1847.

[707] Überdies scheint es außer
  Zweifel zu stehen, daß G a u ß ausgedehnte und
  bestimmte Ideen über die Geometrie von mehreren Dimensionen gehabt hat;
  vgl. S a r t o r i u s v o n W a l t e r s h a u s e n, a. O. S. 81 (s. Note 673 des vor. Abschn.).

[708] Théorie des fonctions
  analytiques (Paris, an V, S. 223).

[709] Ich darf nicht verschweigen,
  daß schon 1827 M ö b i u s einen Einblick hatte,
  wie durch Zulassung der Existenz eines vierdimensionalen Raumes ein
  unerklärlicher Unterschied zwischen der Ebene und dem Raume aufgehoben
  wird; dieser Unterschied besteht darin, daß, während man zwei in Bezug
  auf eine Gerade symmetrische ebene Figuren immer zur Deckung bringen
  kann, es nicht möglich ist, zwei räumliche in Bezug auf eine Ebene
  symmetrische Figuren zusammenfallen zu lassen. Später bemerkte Z ö l l n e r beiläufig, wie die
  Existenz eines vierdimensionalen Raumes gewisse Bewegungen zulassen
  würde, die wir für unmöglich halten; die folgenden Resultate können als
  Beispiele zu dieser Beobachtung dienen: N e w c o m b zeigte (Amer. Journ. 1), daß, wenn es einen
  Raum von vier Dimensionen giebt, es möglich ist, die beiden Seiten einer
  geschlossenen materiellen Fläche umzuwechseln, ohne dieselbe zu
  zerreißen. K l e i n bemerkte (Math.
  Ann. 9), daß bei dieser Voraussetzung die Knoten nicht erhalten
  bleiben könnten, und V e r o n e s e führte (in der 1881 an
  der Universität zu Padua gehaltenen Prolusione) die Thatsache an,
  daß man dann aus einem geschlossenen Zimmer einen Körper herausnehmen
  könne, ohne die Wände desselben zu zerbrechen. H o p p e gab (Grunerts
  Arch. 64) Formeln an, welche die Beobachtungen K l e i n s illustrierten. Diese Formeln erforderten einige
  Modifikationen, die von D u r è g e angegeben wurden
  (Wiener Ber. 1880); vgl. auch Grunerts Arch. 65 und die
  synthetischen Betrachtungen von S c h l e g e l, Zeitschr. f.
  Math. 28.

[710] Annali di Matem. II, 2
  und 5.

[711] Journ. für Math. 65;
  Annali di Matem. II, 5.

[712] Journ. für Math.
  83.

[713] Amer. Journ. 2.

[714] Die Nicht-Euklidischen
  Raumformen in analytischer Behandlung, Leipzig, 1885.

[715] Math. Ann. 27.

[716] Annali di Matem. II,
  4.

[717] Proc. math. Soc. 7
  oder Mathematical Papers, S. 236.

[718] Bull. sciences math.
  11, 1876.

[719] Comptes rendus,
  79.

[720] Journ. für Math. 70
  flgg., Quart. Journ. 12.

[721] Proc. math. Soc.
  9.

[722] Berliner Dissertation,
  1880.

[723] Phil. Trans. 175.

[724] Journ. für Math.
  98.

[725] Nach L i p s c h i t z hatte L e j e u n e - D i r i c h l e t (1805-1859) das
  allgemeine Gravitationsgesetz im elliptischen Raume studiert. Diese
  Studien wurden dann von Schering bearbeitet und in den Göttinger
  Nachr. 1870 und 1873 veröffentlicht.

[726] Comptes rendus 79.

[727] Math. Ann. 19.

[728] H o p p e machte analoge
  Untersuchungen für die Kurven des vierdimensionalen Raumes (Grunerts
  Arch. 64).

[729] Amer. Journ. 4.

[730] Berliner Ber.
  1869.

[731] Math. Ann. 7;
  Zeitschr. f. Math. 20, 21, 24.

[732] Journ. für Math. 70
  und 72.

[733] Journ. für Math.
  70.

[734] Math. Ann. 24.

[735] Bull. sciences math.
  I, 4.

[736] Math. Ann. 26.

[737] Collectanea mathematica;
  Annali di matem. II, 10.

[738] Göttinger Nachr.,
  1871.

[739] Math. Ann. 5.

[740] Journ. für Math. 81;
  Comptes rendus 82.

[741] Amer. Journ. 4.

[742] Journ. für Math. 74
  oder Quart. Journ. 12. Ich füge noch hinzu, daß S a l m o n und C a y l e y sich der Räume von
  mehreren Dimensionen in ihren Untersuchungen über die Theorie der
  Charakteristiken (§ IV) bedient haben, daß M e h l e r, Journ. für Math. 84, eine Anwendung von der
  Betrachtung eines vierdimensionalen Raumes für Untersuchungen über
  dreifache Systeme orthogonaler Oberflächen, und daß L e w i s davon eine ähnliche
  Anwendung machte bei der Betrachtung einiger Trägheitsmomente (Quart.
  Journ. 16). Dann fand W o l s t e n h o l m e, daß die Zahl der
  Normalen, die man von einem Punkte eines d-dimensionalen Raumes an
  eine Oberfläche von der nten Ordnung ziehen kann,

	n 	 { (n - 1)d - 1 } 
	 n - 2 


beträgt (Educational Times 10).

[743] Von den Elementen und
  Grundgebilden der synthetischen Geometrie (Bamberg, 1887).

[744] Grunerts Arch. 64.

[745] Bull. Soc. math.
  10.

[746] Grunerts Arch. 70.

[747] Amer. Journ. 3.

[748] Grunerts Arch. 66, 67,
  68, 69.

[749] Nova Acta der
  Leopold.-Carol. Akademie 44.

[750] Die polydimensionalen
  Grössen und die vollkommenen Primzahlen.

[751] Von Körpern höherer
  Dimensionen (Kaiserslautern, 1882).

[752] Wiener Ber. 90.

[753] Wiener Ber. 89 und
  90.

[754] Diese bilden eine der
  merkwürdigsten von den durch L. Brill in Darmstadt veröffentlichten
  Serien von Modellen.

[755] Journ. für Math. 31,
  S. 213. Liest man die wenigen Seiten, welche die Abhandlung von C a y l e y bilden, so gewinnt man die Überzeugung, daß er
  schon 1846 einen klaren Einblick von der Nützlichkeit hatte, welche der
  gewöhnlichen Geometrie der Lage die Betrachtung des Raumes von mehreren
  Dimensionen bringen könne.

[756] Histoire de l'astronomie
  moderne 2, S. 60.

[757] Phil. Trans. 1878 oder
  Mathematical Papers S. 305.

[758] Math. Ann. 19.

[759] Unter den in der Abhandlung
  von V e r o n e s e bearbeiteten Untersuchungen sind die über die
  Konfigurationen besonderer Erwähnung wert, ferner die Formeln, welche
  — als eine Erweiterung derer von P l ü c k e r und C a y l e y — die gewöhnlichen
  Singularitäten einer Kurve eines n-dimensionalen Raumes unter
  einander verknüpfen, die Erzeugung von in einem solchen Raume enthaltenen
  Oberflächen durch projektive Systeme und die Anwendung derselben auf das
  Studium einiger Oberflächen unseres Raumes; dann kann ich nicht
  stillschweigend übergehen die Studien über die in einem quadratischen
  Gebilde von n Dimensionen enthaltenen linearen Räume, die V e r o n e s e gemacht hat, um einige Sätze von Cayley zu
  erweitern (Quart. Journ. 12), indem er die von Klein (Math.
  Ann. 5) verallgemeinerte stereographische Projektion anwandte, ferner
  nicht etliche wichtige Resultate über die Kurven, von denen übrigens
  einige schon C l i f f o r d (Phil. Trans., 1878) auf einem anderen Wege
  erhalten hatte.

[760] Annali di Matem. II,
  11; Lincei Mem. 1883-1884; Atti dell' Istituto Veneto V, 8.
  Letztere Abhandlung ist der darstellenden Geometrie des Raumes von 4
  Dimensionen gewidmet und kann daher als die Ausführung eines Gedankens
  angesehen werden, den S y l v e s t e r im Jahre 1869 in seiner Rede vor der British
  Association angedeutet hat.

[761] Torino Mem. II,
  36.

[762] Lincei Mem. 1883-1884;
  Torino Mem. II, 37; Lincei Rend. 1886.

[763] Torino Atti 19.

[764] Torino Atti 19, 20,
  21; Math. Ann. 27.

[765] Math. Ann. 24.

[766] Torino Atti 20.

[767] Lombardo Rend. 1886;
  Lincei Rend. 1886. Man sehe auch desselben Verfassers wichtige
  Note: Sui sistemi lineari, Lombardo Rend. 82.

[768] Lombardo Rend. 1885,
  1886.

[769] Napoli Rend. 1885,
  1886. Vgl. auch R o d e n b e r g, Math. Ann. 26.





[770]
Ich kann sie alle hier nicht wiederholen,

Weil mich des Stoffes Fülle so bedrängt,

Daß hinter dem Gescheh'nen oft das Wort bleibt.

— (D a n t e s Divina Commedia, der Hölle 4. Ges. V. 145-147.)





[771] Math. Ann. 2, 8. Man
  sehe auch die Abhandlung von S. K a n t o r, Sur les
  transformations linéaires successives dans le même espace à n
  dimensions (Bull. Soc. math. 8).

[772] Bull. Soc. math. 2.
  Unter den in dieser Arbeit erhaltenen Resultaten heben wir folgendes
  hervor: »Wenn man in einem Raume von r - 1 Dimensionen zwei
  algebraische Mannigfaltigkeiten vom Grade μ
  und ν ins Auge faßt, bezüglich von m
  und n Dimensionen, so ist der Schnitt derselben eine
  Mannigfaltigkeit von n + m - (r-1) Dimensionen und
  vom Grade μν,
  wofern m + n >= r - 1, und die beiden
  Mannigfaltigkeiten nicht eine solche von m + n - r +
  2 oder mehr Dimensionen gemeinsam haben«, um den vollständigen Beweis
  desselben anzuführen, den N ö t h e r in den Math. Ann.
  11 geliefert hat.

[773] Lincei Mem. 1876-1877;
  vgl. auch J o r d a n (Bull. Soc. math. 3). — Hier will ich
  eine Notiz machen, die im Texte nicht Platz finden konnte: Von vielen
  wurde behauptet, daß in einem Raume von konstanter positiver Krümmung
  zwei geodätische Linien, wenn sie sich treffen, im allgemeinen zwei
  Punkte gemeinsam haben; das ist nun nicht wahr, und dieses wurde zuerst
  von K l e i n beobachtet (Jahrbuch
  über die Fortschritte der Mathematik 9, S. 313), dann von N e w c o m b (Journ. für Math.
  83) und von F r a n k l a n d (Proc. math. Soc.
  8). Über dasselbe Thema sehe man eine Abhandlung von K i l l i n g (Journ. für Math.
  86 und 89).

[774] Math. Ann. 26; Acta
  math. 8. — Der Abhandlung von V e r o n e s e gehen noch die
  Untersuchungen von S p o t t i s w o o d e (1825-1883) voran, über
  die Darstellung der Figuren der Geometrie von n Dimensionen
  vermittelst correlativer Figuren der gewöhnlichen Geometrie (Comptes
  rendus 81).

[775] Mémoire de Géométrie sur
  deux principes généraux de la science.

[776] Beiträge zur Geometrie der
  Lage, § 29.

[777] Vierteljahrsschrift der
  naturforschenden Gesellschaft zu Zürich 15, oder Die darstellende
  Geometrie.

[778] Vgl. die interessante
  Abhandlung von F i e d l e r, Geometrie und Geomechanik, erschienen in
  der genannten Vierteljahrsschrift, und in französischer
  Übersetzung in Liouvilles Journ. III, 4 veröffentlicht.

[779] Den Nutzen, welcher der
  Geometrie durch die Annahme einiger Begriffe, die man jetzt noch als der
  Mechanik angehörig betrachtet, erwachsen würde, bezeugen der Exposé
  géométrique du calcul différentiel et intégral (Paris, 1861), von
  L a m a r l e (1806-1875) verfaßt, die
  von M a n n h e i m der kinematischen Geometrie gewidmeten Partien in
  seinem Cours de géométrie descriptive (Paris, 1880) und das schöne
  jüngst veröffentlichte Buch meines Freundes P e a n o mit dem Titel:
  Applicazioni geometriche del calcolo infinitesimale (Turin,
  1887).

[780] Man sehe die Anhänge der
  Proc. math. Soc. seit Bd. 14.

[781] Nouv. Ann. II, 1, 2;
  Liouvilles Journ. II, 7; Berliner Abh. 1865, 1866;
  Berliner Ber. 1872 oder Borchardts Gesammelte Werke, S.
  179, 201, 233.

[782] Insbesondere Journ. für
  Math. 24 oder Werke, Bd. II, S. 177, 241.

[783] S. Acta Societatis
  scientiarum Fennicae, 1866; Bull. de l'Académie de St.
  Pétersbourg 14; Math. Ann. 2; Nouv. Ann. II, 10;
  Zeitschr. f. Math. 11; Göttinger Nachr. 1882 oder Bull.
  sciences math. II, 7; Journ. für Math. 96, 97; Göttinger
  Nachr. 1884; Grunerts Arch. II, 2; Giorn. di Matem.
  26.

[784] Mémoires de l'Académie de
  Berlin, 1761; vgl. L e g e n d r e s Eléments de Géometrie, Note IV der älteren
  Auflagen.

[785] Berliner Ber. 1882;
  Math. Ann. 20; vereinfacht durch W e i e r s t r a ß, Berliner Ber.
  1885; man vgl. auch R o u c h é, Nouv. Ann. III,
  2.

[786] Die einzigen rein
  synthetischen Untersuchungen über die Kurven und Oberflächen von höherer
  als zweiter Ordnung, die ich kenne, sind die von R e y e (Geometrie der Lage) über die ebenen
  kubischen Kurven, einige von T h i e m e (Zeitschr. f.
  Math 24; Math. Ann. 20, 28), von M i l i n o w s k i (Zeitschr. f. Math. 21, 23; Journ. für
  Math. 89, 97) und von S c h u r (Zeitschr. f. Math. 24). Ihnen könnte man
  die beiden folgenden Arbeiten hinzufügen, die im Jahre 1868 von der
  Berliner Akademie gekrönt sind: H. J. S. S m i t h, Mémoire sur quelques
  problèmes cubiques et biquadratiques (Annali di Matem. II, 3);
  K o r t u m, Über geometrische Aufgaben dritten und vierten
  Grades (Bonn, 1869). Die Geometer erwarten ungeduldig die
  Veröffentlichung einer Schrift von E. K ö t t e r, die 1886 von der
  Berliner Akademie den Steinerschen Preis erhielt und dazu berufen
  erscheint, in das Gebiet der reinen Geometrie die allgemeine Theorie der
  ebenen algebraischen Kurven zu versetzen. (Sie ist während der
  Anfertigung der Übersetzung vorliegender Schrift in den Berliner
  Abh. 1887 unter dem Titel: Grundzüge einer rein geometrischen
  Theorie der algebraischen ebenen Kurven erschienen.)

[787] Die Angemessenheit des
  gleichzeitigen Gebrauches der Geometrie und Analysis, auch in den Fragen
  der angewandten Mathematik, wurde ausdrücklich von L a m é mit folgenden Worten erklärt: »Quand on médite
  sur l'histoire des mathématiques appliquées, on est effectivement conduit
  à attribuer leurs principales découvertes, leurs progrès les plus
  décisifs à l'association de l'analyse et de la géométrie. Et les travaux,
  que produit l'emploi de chacun de ces instruments, apparaissent alors
  comme des préparations, des perfectionnements, en attendant l'époque qui
  sera fécondée par leur réunion.« (Leçons sur les coordonnées
  curvilignes, 1859, S. XIII und XIV.)

[788] P o i n s o t, Comptes rendus 6
  (1838) S. 809.
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