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Vorwort.

Der zweite Band befaßt sich in der Hauptsache mit den im
17. Jahrhundert entstandenen Grundlagen der neueren Naturwissenschaft.
Es sind die Schöpfungen eines Galilei, Newton,
Huygens und zahlreicher anderer Forscher ersten Ranges, die
wir in diesem Zeitraum der Entwicklung der Wissenschaften entstehen
sehen. Die grundlegenden Arbeiten jener Männer sind
durch »Ostwalds Klassiker der exakten Wissenschaften« heute
weiteren Kreisen in erläuterten Ausgaben und, wo es erforderlich
war, in deutscher Übersetzung zugänglich gemacht. Der zweite
Band nimmt, wie es auch die folgenden tun werden, auf diese
Ausgaben oft Bezug, so daß die Absicht des Verfassers, in seinem
Werke gewissermaßen einen Rahmen für »Ostwalds Klassiker«
zu schaffen, mehr als im ersten Bande zum Ausdruck kommt.

Bezüglich der übrigen Gesichtspunkte, die bei der Abfassung
des Werkes in Betracht kamen, muß auf das Vorwort zum ersten
Bande hingewiesen werden. Der Verfasser hofft, daß es ihm
gelungen ist, auch in dem zweiten Bande die Geschichte der
Wissenschaften im Rahmen der Gesamtentwicklung darzustellen
und ein Buch zu schaffen, mit dem nicht nur dem Historiker,
sondern auch dem Arzte, dem Techniker, dem Lehrenden und
Studierenden, kurz jedem, der an den Naturwissenschaften lebhafteren
Anteil nimmt, gedient ist. War es doch sein Bestreben,
die Entwicklung der Naturwissenschaften in ihren noch heute wertvollen
Grundlagen, sowie in ihren Beziehungen zu den übrigen
Wissenschaften, insbesondere zur Philosophie, zur Mathematik,
zur Heilkunde und zur Technik darzustellen.



An der Überwachung des Satzes haben sich wieder die Herren
Geh. Hofrat Prof. Dr. E. Wiedemann (Erlangen), Prof. Dr.
E. O. v. Lippmann (Halle a. S.), dem der vorliegende Band gewidmet
ist, und Prof. Dr. J. Würschmidt (Erlangen) beteiligt.
Ich bin ihnen für zahlreiche Verbesserungen und Zusätze zum
größten Dank verpflichtet. Auch sonst gingen mir manche Anregungen
teils in Besprechungen, teils persönlich zu, die ich hier
dankbar anerkenne.

München, im Frühjahr 1921.


Friedrich Dannemann.
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1. Altertum und Neuzeit.

Ein Ereignis, das gewöhnlich als ein Wendepunkt in der Geschichte
der Wissenschaften betrachtet wird, und mit dem auch
wir den ersten Abschnitt unserer Darstellung abschlossen, ist die
Aufstellung des heliozentrischen Weltsystems durch Koppernikus.
Man darf jedoch nicht außer Acht lassen, daß der Umschwung
allmählich erfolgte, und daß man auf allen Wissensgebieten zunächst
an das Vorhandene anknüpfte. Auch ging für die einzelnen
Zweige die Befreiung aus den Formen des mittelalterlichen Denkens
durchaus nicht gleichzeitig vor sich. Zuerst war es die Astronomie,
die einen erhöhten Standpunkt gewann. Ihr folgten die
Physik seit dem 17. und die Chemie seit dem 18. Jahrhundert,
während die Biologie erst im Laufe des 19. Jahrhunderts auf den
Rang einer exakten Wissenschaft erhoben wurde.

Eine große Zahl von Aufgaben, deren Bewältigung man mit
dem Beginn der Neuzeit in Angriff nahm, hatte sich schon das
Altertum gestellt. Während des Mittelalters verlor man sie
fast sämtlich aus den Augen. Die Neuzeit nahm sie nahezu
dort, wo das Altertum stehen geblieben, wieder auf. Zum Teil
führte sie diese Aufgaben ihrer Lösung entgegen, sie knüpfte aber
auch an die gelösten und an die schwebenden neue Probleme an,
die noch unsere Zeit vollauf beschäftigen, so daß letztere das
Gefühl beseelt, daß sich ein Ende in der Kette der Entdeckungen
und Erfindungen nirgends absehen läßt.

Ein kurzer Rückblick soll uns zunächst das Erbe vergegenwärtigen,
das die neuere Zeit vom Altertum übernommen hat.
Die Elemente der Mathematik waren in der Hauptsache entwickelt
und am vollständigsten durch Euklid zusammengefaßt worden.
Hieran schlossen sich die Untersuchungen des Archimedes und
des Apollonios, die insbesondere die wichtige Lehre von den
Kegelschnitten begründeten. Das »Almagest« genannte Hauptwerk
des Ptolemäos enthielt die Grundzüge der ebenen und der sphärischen
Trigonometrie. Das heutige Ziffernsystem und die Anfänge
der Algebra verdankte man, als Schöpfungen einer späteren Zeit,
vorzugsweise den Indern und den Arabern.

Die Alten hatten ferner gezeigt, in welcher Weise sich die
Mathematik auf astronomische und mechanische Probleme anwenden
läßt. Das Werk des Ptolemäos und vor allem die Schriften
des Archimedes bieten zahlreiche Beispiele dafür. Über den
Lauf der Gestirne hatte man eine große Summe von Beobachtungen
gesammelt; ferner lagen für eine richtige astronomische Theorie
Ansätze vor, die nur der weiteren Entwicklung harrten. Die Methoden
und die Instrumente waren im wesentlichen noch dieselben,
deren sich die Griechen bedient hatten. Auch gab es im Beginn
der neueren Zeit für die Astronomie keine Aufgabe, die sich nicht
schon die Alten gestellt hätten. Die Bestimmung des Umfangs
der Erdkugel, ihr Verhältnis zu den übrigen Himmelskörpern, eine
genaue Topographie des Fixsternhimmels, genaue Zeit- und Ortsbestimmung,
die Vorhersage astronomischer Ereignisse, wie der
Finsternisse, alles das waren Gegenstände, mit denen sich schon
das Altertum, insbesondere die alexandrinische Periode, eingehend
beschäftigt hatte, und von denen die neuere Zeit vorzugsweise
durch das Hauptwerk des Ptolemäos Kenntnis erhielt.

Die auf uns gekommenen Berichte über Jahrtausende zurückliegende
Finsternisse haben einen doppelten Wert. Einmal sind
sie geeignet, einen Prüfstein für die neueren, einen weit kürzeren
Zeitraum umfassenden Berechnungen zu bieten. Ferner geben sie
ein Mittel an die Hand, um weit zurückliegende geschichtliche Ereignisse
chronologisch zu ordnen1. Mitunter hat es sich in den
alten Berichten offenbar nur um Verfinsterungen gehandelt, die
durch plötzlich auftretende Gewitterwolken veranlaßt waren. Im
ganzen haben aber die Berechnungen von Mond- und Sonnenfinsternissen,
die bis zum Jahre 900 v. Chr. zurückreichen, für die
Geschichte des Altertums und für die astronomische Wissenschaft
gleich wertvolle Ergebnisse geliefert2.

Auch die Statik und die Optik, Gebiete, die sich für die den
Alten am meisten zusagende deduktive Behandlung besonders
eigneten, empfing die Neuzeit in einer, bis zu einem gewissen
Grade wissenschaftlich durchgebildeten Form, während bezüglich
der übrigen Teile der Physik nur die Kenntnis von mehr oder
minder wertvollen Einzelbeobachtungen übermittelt wurde, deren
richtige Deutung und weiterer Verfolg der neueren Periode vorbehalten
blieb. Es gilt dies namentlich von den magnetischen und
den elektrischen Erscheinungen, sowie von dem Verhalten der
Gase und Dämpfe, über deren Studium wir Heron von Alexandrien
ausführliche Mitteilungen verdanken.

Auch die Chemie ist in ihren Anfängen auf das Altertum
zurückzuführen. Ist es auch häufig nicht mehr möglich, im einzelnen
zu entscheiden, welche Kenntnisse das Mittelalter den späteren
Alexandrinern verdankte und welche es selbständig erwarb,
so muß doch anerkannt werden, daß die Chemie im Mittelalter
ganz besonders gepflegt und auch in mancher Hinsicht durch neue
Entdeckungen bereichert wurde. Die Chemie in ihrer ersten, unvollkommenen
Gestalt war so sehr eine Wissenschaft des Mittelalters,
daß sie weit über den Beginn der neueren Zeit hinaus sich
nach den in jener Periode gesteckten Zielen bewegte und sich erst
spät den Denkformen der neueren Zeit anpaßte.

Auf dem Gebiete der beschreibenden Naturwissenschaften
knüpfte man gleichfalls dort an, wo das Altertum aufgehört hatte.
Nachdem das Studium der alten Schriftsteller die erste Anregung
gegeben, wandte man sich aber in steigendem Maße der eigenen,
auf keine Autorität zurückgreifenden Beobachtung zu, der sich
durch die Erweiterung des gesamten Gesichtskreises und infolge
der Entwicklung der exakten Wissenschaften ein überreiches, den
Alten verschlossen gebliebenes Feld eröffnete.

Die im Altertum geschaffenen Ansätze waren im Mittelalter
nicht etwa gänzlich verschollen. Man muß vielmehr annehmen,
daß im Orient überhaupt keine völlige Unterbrechung stattfand.
Die Wissenschaft der Alten empfing der Orient vorzugsweise aus
den Händen der dort ansässig gewordenen Griechen. Man verstand
es, dieses Erbe nicht nur zu erhalten, sondern es auch auszubauen
und es durch Zuführung neuer Elemente, z. B. aus Indien,
zu vermehren. Mit dem 9. und 10. Jahrhundert begannen die
arabisch schreibenden Gelehrten des Orients auf den Gebieten der
Naturwissenschaften und der Heilkunde selbständig zu werden,
während sie sich vorher auf die Aneignung der älteren Werke
beschränkt hatten. Ihre Blütezeit erlebte die arabische Literatur
im 11. Jahrhundert. Den christlichen Völkern des Mittelalters
flossen die Kenntnisse der Alten zuerst aus spärlicher und trüber,
dann aber aus immer reinerer Quelle. Was ihre Entfaltung zunächst
hinderte, war einmal die jähe Unterbrechung, welche die
Kulturentwicklung Europas durch die Völkerwanderung und den
Sturz des römischen Kaiserreiches erlitten, ferner aber der eigentümliche,
auf das Kirchlich-Dogmatische und Mystische gerichtete,
der Natur abholde Geist, der das christliche Mittelalter kennzeichnete.
Unter seiner Herrschaft konnte nur ganz allmählich
eine die Dogmen beiseite schiebende und die Dinge selbst ins Auge
fassende Forschung aufkommen.

Die Welterklärung des Mittelalters drehte sich im wesentlichen
um den Streit, ob die Begriffe bloße Namen seien (Nominalisten),
oder ob sie als etwas wirklich Vorhandenes, als Wesenheiten, den
Dingen und Vorgängen zugrunde lägen (Realisten). Die Realisten,
in denen die Philosophie Platons ihre Fortsetzung fand, haben
der Naturauffassung des eigentlichen Mittelalters den Stempel aufgeprägt.
Die als wirkliche Wesen betrachteten Begriffe (universalia
ante res«) spielten damals etwa die Rolle unserer heutigen
Naturgesetze. Sie sind es, denen wir noch während der Übergangszeit
in dem Archeus des Paracelsus und in der Erd- und
Weltseele Keplers begegnen. Als der Realismus3 herrschte,
waren die Sterne, die Pflanzen, ja selbst die Steine, kurz jeder
Körper, der Schauplatz für das Treiben einer Unzahl von Geistern.
Dies rührte daher, daß man der substantiellen Form, ein Wort,
das etwa die Bedeutung der platonischen Idee besitzt, reale Existenz
beilegte, anstatt in ihr eine Schöpfung des eigenen Verstandes
zu erblicken. Das Nächste war dann, daß eine ungezügelte Phantasie
diesen wesenhaft gewordenen Begriffen die Attribute der
Persönlichkeit beilegte und einen Mystizismus erzeugte, der eine
Forschung nach den natürlichen Ursachen unter Anerkennung des
Kausalitätsgesetzes gar nicht aufkommen ließ. Die Umwälzung,
welche die Überwindung des mittelalterlichen Geistes und die Begründung
der neueren Philosophie und Naturforschung bedeutet,
bestand darin, daß an Stelle jener substantiellen Formen und
ihrer mystischen Auswüchse die bloße Regel, das Naturgesetz,
trat. Die Regel mußte aus der Beobachtung vieler Einzelfälle
entnommen werden, daher rührte die Forderung, induktiv zu
verfahren, eine Forderung, die an der Schwelle des neuen Zeitraumes
von vielen Seiten und nicht etwa bloß von Francis
Bacon erhoben wurde. Die Regel ließ sich ferner mathematisch
fassen. So entstand eine enge Verbindung der Mathematik
mit der Naturwissenschaft, durch welche die neuere Zeit
sich gleichfalls von den früheren Perioden abhebt. In der
Philosophie war es Bacon, in der Naturwissenschaft vor allem
Galilei, welche die substantiellen Formen der Scholastiker
beseitigten und an ihre Stelle das immaterielle Naturgesetz
stellten.

Die Entwicklung der Wissenschaft war während des Mittelalters
fast noch mehr als im Altertum auch dadurch sehr gehindert,
daß zwischen ihr und der Technik eine nur geringe Berührung
stattfand. Der weltfremde Gelehrte des Mittelalters beschränkte
sich im wesentlichen darauf, daß er die alten Schriftsteller und
ihre Kommentatoren studierte und in maßloser Überschätzung des
Wortwissens etymologischen Betrachtungen nachging, ohne auf
die eigene Beobachtung Wert zu legen. Auf diese Weise erwuchsen
aus der vorhandenen Literatur zwar neue Schriften, es
fehlte ihnen aber an neuem Inhalt. Der mitten im Leben stehende
Gewerbetreibende dagegen beobachtete und erfand, aber er schrieb
nicht. Seine Kenntnisse pflanzten sich vorwiegend durch mündliche
Überlieferung fort. So begann, um einen Zweig der Technik
herauszugreifen, schon in früher Zeit ein reger Bergbau
in Böhmen. Von dort aus breitete er sich über Schlesien aus.
Im 11. Jahrhundert begann man in Ungarn, im Harz und im
Mansfeldischen Bergwerke einzurichten. Gleichzeitig entstanden
Hütten- und Salinenwerke. Dasjenige von Wieliczka z. B. wird
seit dem 13. Jahrhundert betrieben. Welchen Nutzen hätte die
Naturwissenschaft aus diesen Unternehmungen ziehen können!
Und welch befruchtenden Einfluß hätte sie wiederum auf die
Technik auszuüben vermocht! Diese Wechselwirkung blieb solange
aus, bis der Buchdruck aufkam. Von diesem Zeitpunkt an
sehen wir auch den Techniker schriftstellerisch wirken. Er stellte
seiner ganzen Eigenart gemäß die eigene Beobachtung und Erfindung
in den Vordergrund und beschränkte sich hinsichtlich der
literarischen Überlieferungen darauf, sie als Hilfsmittel für seine
eigene Arbeit und nicht, wie der Gelehrte, als Mittelpunkt zu
betrachten.

Von großem Einfluß auf die Umgestaltung der gesamten europäischen
Verhältnisse war auch die Verwendung des schon im
13. Jahrhundert bekannt gewordenen Pulvers zu kriegerischen
Zwecken. Es ist nicht unwahrscheinlich, daß sein Gebrauch zum
Fortschleudern von Geschossen von einem Mönch namens Berthold
(um 1300) herrührt4. Jedenfalls erfolgte die Verbreitung
der Feuerwaffen von Deutschland aus, wo vermutlich schon um
die Mitte des 14. Jahrhunderts die ersten Pulverfabriken eingerichtet
wurden.

Für die Richtung, welche die Entwicklung der Wissenschaft
und der gesamten Kultur in der Neuzeit nahm, ist endlich noch
ein allgemeingeschichtliches Moment hervorzuheben. Der Sitz der
politischen Macht und der geistigen Bildung wanderte nämlich
von ihren alten Stätten, dem Orient und den Mittelmeerländern
nach dem Nordwesten und der Mitte Europas, nach England,
Frankreich und Deutschland. Dieser Zug von Osten nach Westen
ist indessen kein blindes Walten des Schicksals. Er wird dadurch
hervorgerufen, daß sich dem Westen Europas gegenüber
ein neuer Weltteil erschließt, während der Osten dem Andrängen
aus Asien hervorbrechender Stämme (Mongolen und
Türken) erliegt.

So sehen wir besonders in den beiden großen Hauptstädten
nördlich und südlich des Kanals neue Brennpunkte des wissenschaftlichen
Lebens entstehen. Und fortan gelten die Gestade der
Nordsee dem Geschichtsschreiber5 »als die vornehmste Werkstätte
des allgemeinen Geistes des menschlichen Geschlechtes, seiner
staatenbildenden, ideenhervorbringenden, die Natur beherrschenden
Tätigkeit«.

In dieser Tätigkeit wurde der Mensch der neueren Geschichte
durch nichts in dem Maße gefördert, wie durch das Emporblühen
der Naturwissenschaften. Sie waren es, die durch ihren Erkenntnisinhalt
und durch ihre zahllosen Anwendungen auf allen Gebieten
neue Gedanken hervorriefen und das gesamte Leben, sowie
die Lebensanschauungen umgestalteten. Das Mittelalter hatte
vorzugsweise gesammelt, was an Resten der untergegangenen Kultur
des Altertums übrig geblieben war. In der Neuzeit dagegen entfaltete
sich immer machtvoller das Bestreben »die Dinge aus den
Dingen selbst« kennen zu lernen, wie ein oft gebrauchter Ausdruck
lautet. Dadurch gelangte man zu dem eigentlichen Kern
der Wissenschaft, deren Wesen das der vorurteilslosen Kritik
und der eindringenden Forschung ist. Zwar hat man sich nur
nach und nach von den überkommenen herrschenden Vorstellungen
frei zu machen gewußt. Selbst Männer wie Koppernikus,
Galilei, Kepler und Newton waren nicht unbeeinflußt von
ihnen. Die größten Hemmungen bereiteten die kirchlichen Dogmen,
die im Mittelalter die Wissenschaft schon aus dem Grunde eingeengt
hatten, weil sie fast ausschließlich in den Händen der
Geistlichen lag. Erst dadurch, daß die Wissenschaft weltlich
wurde, daß sie der engen Haft der Klöster entrann und an besondere,
ihrer Pflege bestimmten Stätten, die Universitäten, verpflanzt
wurde, daß sie mit dem praktischen Leben in Fühlung
trat und mit der selbständig und ohne alle Buchgelehrsamkeit
sich entfaltenden Technik in Beziehung kam, waren die Voraussetzungen
zu einer Um- und Neugestaltung des gesamten wissenschaftlichen
Lebens gegeben. Unter dem Einfluß dieses Lebens
hätte sich Europa, wenn die mittelalterlichen Einrichtungen des
staatlichen Lebens nicht übermächtig gewesen wären, eigentlich
zu einer Art Völkerfamilie entwickeln müssen, da alle Voraussetzungen
zu einer Kulturgemeinschaft gegeben waren. Unter
den Gelehrten aller europäischen Länder herrschte wenigstens
das Gefühl der engen Zusammengehörigkeit. Konnte sich doch
der besonders von Leibniz gehegte Gedanke hervorwagen, sämtliche
gelehrten Akademien, die als Schöpfungen der Neuzeit entstanden
waren, zu einer europäischen Gesamtakademie zu vereinigen.
Auch daß eine einzige Sprache, die Lateinische nämlich,
die Gebildeten aller Länder verband, war ein Vorzug, dessen die
neuere Zeit durch nationalistische Absonderung nach und nach
verlustig gegangen ist. Infolge dieses Zusammenschlusses war
ferner der Wetteifer zwischen den einzelnen Ländern, insbesondere
zwischen Frankreich, England und den Niederlanden gleich groß.
Trotz ihrer Kleinheit verdienen die letzteren besondere Anerkennung.
Ihre Beteiligung am Welthandel, das Emporblühen
von Städten, die ein Hort der Freiheit, der Kunst und blühender
Gewerbe waren, befähigten die Niederländer auf allen Gebieten
schon an der Schwelle der Neuzeit zu Leistungen ersten Ranges.
Zu diesen ist vor allem zu rechnen: die Erfindung des Fernrohrs
und des Mikroskops, die Gründung hervorragender Hochschulen,
wie derjenigen von Leiden und Utrecht, sowie die Entwicklung
des Buchgewerbes auf eine Höhe, von der heute noch die Schätze
der Plantinschen Druckerei in Antwerpen und die Buchausgaben
der Familie Elzevir Zeugnis ablegen. Auch dadurch
haben die Niederlande sich unvergänglichen Ruhm erworben, daß
sie Descartes und anderen Großen im Reiche der Wissenschaft
eine Zuflucht boten, wenn politischer oder religiöser Fanatismus
ihnen die Heimat verleideten.

Politische und konfessionelle Spaltungen waren es auch,
die Deutschland anfangs daran hinderten, sich dem edlen,
zwischen den übrigen europäischen Ländern entbrannten Wettbewerbe
mit Erfolg anzuschließen. Zunächst mußten die Folgen
des dreißig Jahre währenden Religionskrieges überwunden werden,
ehe Deutschland seinen vollen Anteil an der neuzeitlichen Entwicklung
der Wissenschaften beitragen konnte. Man hätte eigentlich
von einem Lande, in dem die Reformation ihren Anfang
nahm und der Humanismus zu großer Blüte gelangte, mehr erwarten
können. Der Einfluß dieser beiden Bewegungen auf die
Entwicklung der Naturwissenschaften war indessen nicht so groß,
wie man oft annimmt. Mit Recht ist darauf hingewiesen worden,
daß die Reformation in gewissem Sinne für die Wissenschaften
sogar einen Rückschritt bedeutete, indem sie die transzendente
Richtung wieder verstärkte. Die protestantische Kirche verhielt
sich, wie ihr Auftreten gegen Koppernikus und Kepler zeigte,
den naturwissenschaftlichen Fortschritten gegenüber häufig sogar
feindlich. Was die Reformation Fortschrittliches im Gefolge
hatte, war, daß sie den Autoritätsglauben und damit eine der
größten Fesseln der naturwissenschaftlichen Forschung, einschränken
half. Ihn gänzlich zu beseitigen ist vergebliches
Bemühen geblieben, da er zu tief in der Natur des Menschen
wurzelt.

Ebensowenig wie die Reformation war auch der Humanismus
allein imstande, für die Wissenschaften ein neues Zeitalter heraufzuführen.
Der Boden auf dem er erwuchs, waren die Universitäten,
während an dem Gebäude der neueren Naturwissenschaften viele
Männer von geistig freiem Blick arbeiteten, die abseits von dem
am alten Herkommen festhaltenden Leben der Universitäten standen.
Es sei nur auf Koppernikus, Kepler, Tycho, Guericke, auf
Agricola, Leeuwenhoek, Grew und viele andere, die uns
in diesem Werke begegnen, hingewiesen. Mitunter verhielten sich
die Universitäten gegen die naturwissenschaftliche Forschung geradezu
ablehnend. Namentlich in Frankreich, wo Staat und Kirche
sich zur Unterdrückung freier geistiger Bewegungen vereinigten,
war dies zu Beginn der Neuzeit der Fall. Dies für die Wissenschaft
verhängnisvolle Bündnis hemmte auch in Italien den durch
Galilei und seine Schule eingeleiteten Fortschritt, so daß Italien
die Führung, die es auf geistigem Gebiete anfangs hatte, bald
an die nördlichen Länder Europas, insbesondere an England und
die Niederlande abtreten mußte.

Der Schaden, den die staatliche unter dem Einfluß der Kirche
ausgeübte Bevormundung der Forschung antat, wurde mitunter
dadurch wieder aufgehoben, daß der neuzeitliche Staat die Wissenschaft
förderte, wenn er sich einen unmittelbaren Nutzen von ihr
versprach. So entstanden Sternwarten, die bisher meist der privaten
Liebhaberei entsprangen, sowie Akademien unter Aufwendung
staatlicher Mittel. Unter den Sternwarten sind besonders
die von Paris (gegründet im Jahre 1667) und Greenwich (gegründet
1675) zu nennen. Ihrem Muster schlossen sich diejenigen von
Berlin, von Petersburg und Wien im 18. Jahrhundert an.

Die Akademien, denen der vorliegende Band einen besonderen
Abschnitt widmet, bildeten sich anfangs durch freien Zusammenschluß
hervorragender Forscher. Die Regierungen unterstützten die
neue Einrichtung, von der sie mehr als von den Universitäten praktisch
verwertbare Ergebnisse erhofften, und nahmen sie zumeist
in ihre Obhut oder schufen Neugründungen. Unter den in den
nördlichen Ländern gestifteten Akademien sind besonders die
Royal Society (Gründungsjahr 1662) und die 1666 durch den
Minister Colbert ins Leben gerufene Académie des Sciences zu
nennen. Im 18. Jahrhundert folgten Berlin (1700) und Petersburg
(1725). Erwähnung verdient auch die erste, rein naturwissenschaftliche
Akademie, die 1652 unter dem Namen der Kaiserlich Leopoldinischen
Akademie in Deutschland gegründet wurde und, wie die
übrigen, heute noch besteht.

Zu den genannten Forschungsmitteln gesellten sich die in der
Regel von den Akademien herausgegebenen periodischen Zeitschriften,
unter denen vor allem die Berichte der Royal Society
und die seit 1682 in Deutschland erscheinende »Acta Eruditorum«
zu nennen sind6.

Vor allem aber ist der neue, in den Arbeiten eines Galilei,
Guericke, Kepler und Newton seinen Höhepunkt erreichende
Abschnitt in der Entwicklung der Naturwissenschaften dadurch
gekennzeichnet, daß man die wichtigsten Hilfsmittel zur Verschärfung
der Sinne erfand und infolgedessen einen weit tieferen
Einblick wie bisher in die Erscheinungen zu tun vermochte. Was
die früheren Zeitalter an solchen Mitteln besaßen, erhob sich
wenig über den Rang einfacher, durch handwerksmäßiges Schaffen
hergestellter Werkzeuge. Jetzt treten uns auf wissenschaftlichen
Grundsätzen beruhende, der planmäßigen Forschung dienende Instrumente
in größerer Zahl entgegen.

Was nützten alle Bemühungen, in die Natur der Wärmeerscheinungen
einzudringen, solange man kein Thermometer besaß?
Das 17. Jahrhundert erfand es. Die Philosophen hatten zahllose
Spekulationen angestellt über den leeren Raum, über das Wesen
der Luft, über die Frage, ob sie Gewicht besitzt oder mit einem
Streben vom Erdmittelpunkte fort begabt ist. Da trat Guericke
auf, der nichts vom Disputieren auf dem Gebiete der Naturwissenschaften
hielt. Er baute seine Luftpumpe und bewies das Vorhandensein
des Luftdruckes durch den berühmten Versuch mit den
Magdeburger Halbkugeln. Er wog die Luft, untersuchte mit seinem
Wasserbarometer die Schwankungen ihres Druckes und vermochte
aus ihnen das Wetter vorherzusagen. An die Stelle des
Wasserbarometers trat dann das bequemere Quecksilberbarometer.
Zur Luftpumpe gesellte Guericke die Elektrisiermaschine. Das
Fernrohr wurde in den Dienst der Astronomie gestellt. Das Mikroskop
erschloß dem Biologen eine neue Welt. Die Sinne wurden
nicht nur bewaffnet und zu höheren Leistungen befähigt; es wurden
auch ganz neue Gebiete der Wahrnehmung erschlossen, beispielsweise
die Luftdruckschwankungen, die doch etwas sind, wofür wir
keinen unmittelbaren Sinn besitzen. Höchstens ein dumpfes Gefühl
läßt besonders starke Schwankungen ahnen, während das
Barometer die geringste Änderung des atmosphärischen Druckes
anzeigt.

So hat sich seit dem 17. Jahrhundert infolge der Erfindung
neuer Forschungsmittel eine bedeutende Vertiefung und Erweiterung
des Weltbildes vollzogen. Gewiß vermochten auch die
Instrumente nicht den letzten Schleier von den Dingen zu ziehen.
Es zeugt indes von schlechter Kenntnis der Aufgaben der Naturwissenschaft,
das von ihr zu verlangen. Alle Forschung ist Menschenwerk
und somit an die körperlichen und geistigen Grenzen
des menschlichen Erkennens gebunden. Die Instrumente tragen
nur bis an diese Grenzen, und die echte Forschung bleibt sich
ihrer stets bewußt.




2. Neuzeitliche Forschungsmittel.

Gleich an der Schwelle dieser Periode treten uns die beiden
wichtigsten unter den neuzeitlichen Forschungsmitteln, das zusammengesetzte
Mikroskop und das Fernrohr, entgegen. Ersteres
wurde um 1590, letzteres um 1608 erfunden.

Die Glaslinse und ihre vergrößernde Kraft waren zwar seit
alters bekannt. Auch waren die Erscheinungen, welche die verschiedenen
Arten der Spiegel darboten, da sie sich einer Erklärung
durch geometrische Konstruktion zugänglich erwiesen, stets ein
Lieblingsgegenstand der Mathematiker. Die Zusammenfügung
mehrerer Linsen, in der das Eigentümliche des zusammengesetzten
Mikroskops und des Fernrohrs besteht, scheint dagegen anfangs
ohne einen leitenden Gedanken als ein bloßes Spiel des Zufalls
stattgefunden zu haben. Obgleich die Geschichte jener Instrumente
sehr verwickelt ist und mehrere Völker Prioritätsansprüche
erheben, ist doch soviel festgestellt, daß der Ruhm beider Erfindungen
den Niederländern gebührt, bei denen die Glas- und
Steinschleiferei schon im Mittelalter in Blüte stand und die Herstellung
von Linsen zwecks Verfertigung von Brillen gewerbsmäßig
betrieben wurde7.

Es würde viel zu weit führen, wenn wir uns hier mit der Abwägung
aller Prioritätsansprüche befassen wollten8. Nicht nur
Roger Bacon und Porta wurden auf Grund dunkler Stellen
ihrer Werke für die Erfinder des Fernrohrs gehalten, sondern im
Hinblick auf Matthäus 4, 8 wurde das neue Werkzeug sogar für
eine Erfindung des Teufels ausgegeben9. Letzteres sei nicht etwa
der bloßen Kuriosität wegen angeführt, sondern um die mißbräuchliche
Anwendung zu zeigen, die, wie wir noch des öfteren sehen
werden, von der Bibel gemacht wurde. In den meisten Fällen
geschah dies, um, wie einst dem Emporblühen des Humanismus,
der heranwachsenden Naturwissenschaft Hemmnisse zu bereiten.
Dies Bestreben hat zwar einzelnen Vertretern der Wissenschaft
Verfolgungen eingetragen. Für den gesamten Gang der Entwicklung,
der vom Dunkel zum Lichte führte, sollte es indes belanglos
bleiben.

Bei Bacon kann es sich nur um prophetische Aussprüche
handeln, Porta deutet indessen schon darauf hin, daß sich durch
eine Vereinigung von Glaslinsen besondere optische Wirkungen erzielen
lassen; doch scheint es sich bei seinem Vorschlage um
eine Art Brille gehandelt zu haben10. Irrtümliche Nachrichten,
welche die Bekanntschaft mit dem Fernrohr vor dem 17. Jahrhundert
bezeugen sollen, sind auch dadurch entstanden, daß man
sich schon im Mittelalter, ja selbst im Altertum, beim Beobachten
der Gestirne leerer Röhren bediente, um seitliches Licht abzuhalten.

Das erste zusammengesetzte Mikroskop bestand aus der Vereinigung
einer Bikonvex- mit einer Bikonkavlinse. Erstere diente
als Objektiv, letztere als Okular. Dieses Instrument wurde sehr
wahrscheinlich11 von dem holländischen Glasschleifer Zacharias
Jansen um das Jahr 1590 erfunden. Eins der ältesten Exemplare
beschrieb Borelius. Es war 1½ Fuß lang. Das Rohr hatte
zwei Zoll Durchmesser. Auf das Fußgestell gelegte kleine Gegenstände
erschienen beim Hineinblicken in das Instrument stark
vergrößert12.



Die heutigen zusammengesetzten Mikroskope sind bekanntlich
anders eingerichtet. Sie bestehen aus zwei Sammellinsen oder aus
zwei Linsensystemen, von denen jedes wie eine einzige Sammellinse
wirkt. Die dem Gegenstande genäherte Linse a erzeugt ein
physisches Bild, das durch die zweite Linse b wie durch eine Lupe
betrachtet wird (s. Abb. 1). Diese Konstruktion
kam jedoch erst später auf, wir begegnen ihr nicht
vor dem zweiten Jahrzehnt des 17. Jahrhunderts.

Auch das Fernrohr bestand in seiner ersten
Einrichtung, die nach glaubwürdigen Zeugnissen
von dem holländischen Brillenmacher Franz Lippershey
herrührt, in der Verbindung einer Konvexlinse
als Objektiv mit einer Konkavlinse als
Okular. Diese Vereinigung wird bekanntlich noch
jetzt als holländisches Fernrohr bezeichnet und in
binokularer Ausführung den heutigen Operngläsern
zugrunde gelegt. Auch hier leitete wohl der Zufall
auf die Erfindung. Es wird nämlich erzählt, Lippershey
habe seine Linsenkombination auf die
Wetterfahne eines nahen Kirchturmes gerichtet
und sei von der vergrößernden Wirkung überrascht
gewesen.
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Abb. 1.
Mikroskop aus
zwei Sammellinsen13.



Dafür, daß Lippershey in Middelburg das
Fernrohr erfunden hat, sprechen Zeugnisse von
Männern des 17. Jahrhunderts und auch behördliche
Dokumente. In einem solchen wird Lippershey
auf eine Bewerbung um ein Privilegium geantwortet, er möge sein
Fernrohr so verbessern, daß man dadurch gleichzeitig mit beiden
Augen sehen könne. Dies Verlangen soll Lippershey im Dezember
des Jahres 1608 erfüllt haben, während die erste Einsendung
seines aus Kristallinsen verfertigten Fernrohrs nach neueren
Untersuchungen14 im Herbst 1608 erfolgt sein soll.

Die Kunde von der wunderbaren Erfindung, verbreitete sich
mit großer Schnelligkeit. In Frankreich wurden schon im November
des Jahres 1610 die Jupitermonde mit dem neuen Instrumente
beobachtet. Nach Italien gelangte das Gerücht von der epochemachenden
Erfindung im Jahre 1609, in Deutschland
soll das Fernrohr schon 1608 zum Kaufe
angeboten worden sein15.

In Italien, wo Galilei auf der Höhe seines
Schaffens stand, fand die Nachricht den geeignetsten
Boden. Mit welchem Eifer Galilei sich der
Sache annahm, hat er selbst in einer kleinen
Schrift erzählt, die über die ersten, ihm gelungenen
astronomischen Entdeckungen berichtet. Es heißt
dort16: »Vor etwa zehn Monaten kam das Gerücht
zu unseren Ohren, ein Niederländer habe ein Instrument
erfunden, vermittelst dessen man entfernte
Dinge so deutlich wie nahe gelegene sehe.
Das veranlaßte mich, darauf zu sinnen, wie ich zur
Verfertigung eines solchen Instruments gelangen
könnte. Von den Gesetzen der Dioptrik geleitet,
verfiel ich darauf, an den Enden eines Rohres zwei
Gläser anzubringen, ein plankonvexes und ein
plankonkaves. Als ich das Auge dem letzteren
näherte, sah ich die Gegenstände etwa dreimal
so nahe und neunmal vergrößert. Da ich weder
Arbeit noch Kosten scheute, bin ich soweit gekommen,
ein solch vortreffliches Instrument zu
erhalten, daß mir die Sachen fast 1000mal so groß
und 30mal näher erscheinen, als wenn man sie
mit bloßem Auge betrachtet.«

Das Fernrohr, das Galilei anfertigte, war
also gleichfalls ein holländisches, während das
eigentliche astronomische Fernrohr wie das zusammengesetzte
Mikroskop zwei Sammellinsen besitzt.
Die Konstruktion des astronomischen Fernrohrs
wurde von Kepler in seiner Dioptrik17
(s. Abb. 2) angegeben, dem hervorragendsten Werk,
das zu Beginn der neueren Zeit über die Brechung
des Lichtes geschrieben wurde.
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Abb. 2. Keplers
Konstruktion des
astronom. Fernrohrs
(aus Keplers
»Dioptrik«).





Im letzten Teile der »Dioptrik« befaßt sich Kepler mit der
Wirkung der verschiedenen Linsenkombinationen. Gleich die erste
Aufgabe, die er sich stellt, enthält die Konstruktion des astronomischen
Fernrohrs. Sie lautet: »Durch zwei Konvexlinsen eine
Vergrößerung des Gegenstandes bei vollkommener Deutlichkeit
herbeizuführen, aber in umgekehrter Lage«18. Kepler nimmt an,
das Objektivglas AB sei in solcher Entfernung von dem Gegenstande
CE, daß sein umgekehrtes Bild undeutlich sein würde. »Stellt
man nun zwischen das Auge und dieses undeutliche Bild, und
zwar nahe dahinter eine zweite Sammellinse OP, so wird letztere
die von D und F kommenden Strahlen konvergent und das Bild
dadurch deutlich machen.« Auch wird dieses durch das Okular
erzeugte Bild, wie Kepler dartut, größer erscheinen als das Bild
das »die dem Auge nächststehende Linse (OP) von der entfernteren
Linse (AB) erhalten hatte«19.

Das astronomische Fernrohr verdrängte binnen kurzem das
holländische, weil es zwei Vorzüge besitzt. Einmal gewährt das
astronomische Fernrohr ein größeres Gesichtsfeld. Ferner ermöglicht
es die Anwendung eines Fadenkreuzes, mit dem das
zwischen Objektiv und Okular erzeugte reelle Bild zur Deckung
gebracht werden kann.

Daß sich durch Einfügung einer dritten Konvexlinse das umgekehrte
Bild, das ein solches Fernrohr liefert, in ein aufrechtes
verwandeln läßt, hat Kepler gleichfalls dargetan20. Merkwürdigerweise
wurde das nach ihm benannte astronomische Fernrohr
jedoch nicht von ihm selbst, sondern erst einige Jahre später nach
den Angaben der Dioptrik von Scheiner, dem wir in der Lebensgeschichte
Galileis noch begegnen werden, zum ersten Male angefertigt.
Auch das aus drei Konvexlinsen bestehende terrestrische
Fernrohr hat Scheiner21 zuerst hergestellt.

Kepler gab in seiner »Dioptrik« auch die erste Theorie des
holländischen, aus der Verbindung einer Konvex- mit einer Konkavlinse
bestehenden Fernrohrs (Abb. 3). Er zeigte nämlich, daß
die verschwommenen Bilder, die eine dicht vor das Auge gesetzte
Konkavlinse (LM) liefert, deutlich und größer werden, wenn eine
Konvexlinse (NO) in einer bestimmten Entfernung vor die Konkavlinse
gehalten wird22. Im Zusammenhang mit seiner Beweisführung
steht der durch Abb. 3 gleichfalls erläuterte Satz,
daß Strahlen, die durch eine Konvexlinse NO
konvergent gemacht sind und noch vor ihrem
Schnittpunkt auf eine Konkavlinse LM fallen,
so gebrochen werden, daß entweder der Schnittpunkt
weiter hinaus verlegt wird (nach A) oder
die Strahlen parallel gemacht (AʹAʺ) oder endlich
divergent weiter geschickt werden (ξK).

Kepler erläutert ferner, wie sich durch
die Kombination einer Konkav- mit einer Konvexlinse
reelle Bilder erhalten lassen, die größer
sind als die mit einer Konvexlinse allein erhaltenen
Bilder. Diese von Kepler vorgeschlagene
Vereinigung (Abb. 4) hat erst vor kurzem
den Anlaß zur Erfindung des Teleobjektivs gegeben.
Kepler verfolgt den Gang von drei
Strahlenbündeln, die von den Punkten CAE des
Gegenstandes kommen. Die Konkavlinse wird an
eine Stelle gebracht, an der die Konvexlinse GH
ein verschwommenes Bild geben würde. Indem
nun die Konkavlinse (LN) die Büschel kurz vor der Spitze auffängt
und die Büschel zu den Spitzen SPT formt, erzeugt sie
ein deutliches, reelles Bild, das größer ist als das in FBD durch
die Konvexlinse allein hervorgerufene.
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Abb. 3.
Keplers Abbildung
zur Erläuterung
des holländischen
Fernrohrs.



Außer den hier hervorgehobenen wichtigen Sätzen über die
Wirkung von Linsenkombinationen bringt Kepler noch eine Fülle
anderer, bezüglich deren jedoch auf die »Dioptrik« verwiesen
werden muß. Um das Fernrohr zu verkürzen, empfiehlt er z. B.
zwei gleiche Sammellinsen, die möglichst nahe hintereinander
stehen als Objektiv zu wählen. Auch der Vorschlag, das Rohr
des Fernrohres verschiebbar zu machen, um es den Augen anzupassen,
rührt von Kepler her23.



Das Jahr, in dem das astronomische oder Keplersche Fernrohr
zur Ausführung gelangte, hat sich nicht genau ermitteln
lassen. Es geschah wohl zwischen 1613 und
1617, und zwar, wie schon erwähnt, durch
Scheiner24. Er hat sich um die Begründung
der Optik und um die Erfindung und Verbesserung
der optischen Instrumente zur Zeit
des Wiederauflebens der Naturwissenschaften
neben Kepler die größten Verdienste erworben.
Scheiner war ferner einer der
ersten, der das Fernrohr zu astronomischen
Beobachtungen benutzte. Im April oder Mai
des Jahres 1611 erblickte er die fast zur
selben Zeit von Fabricius und Galilei
gesehenen Sonnenflecken25. Gebührt ihm
auch nicht die Priorität dieser Entdeckung,
so war er es doch, der in jahrewährender
Arbeit mehrere tausend Beobachtungen über
die neue, so viel Aufsehen erregende Erscheinung
anstellte. Diese Beobachtungen
wären nicht möglich gewesen, wenn Scheiner
nicht als erster an dem Fernrohr besondere
Blendgläser angebracht hätte. Sie bestanden
in geschliffenen, farbigen Platten, die er vor
den Linsen befestigte. Seine ersten Versuche,
die Linsen selbst aus farbigem Glase
herzustellen und so das Licht zu schwächen,
gab er bald wieder auf. Vielleicht ist Galilei
dadurch erblindet, daß er noch keine Blendgläser
gebrauchte26.


[image: ]
Abb. 4.
Keplers Teleobjektiv.



Einen zusammenfassenden Bericht über
seine Beobachtungen veröffentlichte Scheiner
1630 unter dem Titel »Rosa Ursina«27.
Es wird noch an anderer Stelle davon die Rede sein. Hier sei
nur hervorgehoben, daß diese Schrift die erste Nachricht von der
Scheiner gelungenen Erfindung des astronomischen, aus zwei
konvexen Linsen hergestellten Fernrohres brachte. Die Möglichkeit
einer solchen Konstruktion hatte, wie oben erwähnt, zwar
Kepler angegeben. Die Ausführung und die erste Anwendung
verdanken wir indessen Scheiner. Er erzählt in der Rosa Ursina,
er habe mit dem neuen Instrument vor 13 Jahren (also 1617)
dem Kaiser die Sonnenflecken gezeigt.

Scheiner wandte auch eine Linsenkombination unter dem
Namen Helioskop zur objektiven Darstellung astronomischer Vorgänge
an. Er zeigte z. B. die Sonnenflecken gleichzeitig einer
größeren Anzahl von Personen, indem er sein Helioskop aus einem
dunklen Zimmer gegen die Sonne richtete und hinter dem Instrument
eine weiße Platte anbrachte, auf der dann die Sonnenscheibe
mit ihren Flecken sichtbar wurde.

Bei diesem Stand der optischen Forschung war es selbstverständlich,
daß man sich auch dem uns von der Natur verliehenen
Organ und dem Vorgange des Sehens zuwandte. So bewies
Scheiner die Ähnlichkeit des Auges mit der Camera obscura
durch folgenden Versuch: Er entfernte die Häute an der hinteren
Wand eines Ochsenauges bis auf die Netzhaut und brachte eine
Kerze in einiger Entfernung vor dem so präparierten Auge an.
Das umgekehrte Bild der Kerzenflamme konnte dann auf der Netzhaut
von einem hinter dem Auge befindlichen Standpunkt wahrgenommen
werden28. Später (im Jahre 1625) stellte Scheiner den
gleichen Versuch mit demselben Ergebnis am menschlichen Auge an.

Scheiner ließ sich bei seiner Beschäftigung mit optischen
Fragen von dem Gedanken leiten, daß das Auge ein nach den
Prinzipien der Optik gebautes Organ und deshalb besonders geeignet
sei, die Grundlehren der Optik zu entwickeln. So entstand
das Werk, das die soeben erwähnten Beobachtungen enthält. Es
führt den, jenen Gedanken Scheiners zum Ausdruck bringenden
Titel »Oculus, hoc est fundamentum opticum« und ist grundlegend
für die physiologische Optik geworden.

Scheiner beginnt mit der eingehenden anatomischen Beschreibung
des Auges. Dann folgt eine Untersuchung des Brechungsvermögens
der verschiedenen Medien, welche die Strahlen nach
ihrem Eintritt in das Auge durchdringen müssen, um zu der Netzhaut
zu gelangen. Letztere ist nach Scheiner und nach Kepler,
entgegen früheren Meinungen, welche die Wahrnehmung des Bildes
in den Glaskörper oder gar in die Linse verlegten, der eigentliche
Sitz des Sehvermögens. Scheiner zeigte, daß das Brechungsvermögen
der wässerigen Feuchtigkeit mit demjenigen des Wassers
und dasjenige der Linse mit dem des Glases nahezu übereinstimmt,
während das Brechungsvermögen des Glaskörpers zwischen
dem der erstgenannten Medien liegt. Der Gang des Lichtstrahls
wird dann von seinem Eintritt in das Auge, bis er die Netzhaut
trifft, verfolgt. Die entsprechenden Kapitelüberschriften geben am
besten einen Überblick über den Gang und die Ausführlichkeit
der von Scheiner unternommenen Untersuchung. Sie lauten:
Brechung des Lichtstrahls beim Übergang aus der Luft in die
Hornhaut, Brechung beim Übergang aus der Hornhaut in die
wässerige Feuchtigkeit, Vergleich der das Auge zusammensetzenden
Medien hinsichtlich ihrer Dichte, Brechung des Lichtes beim Übergang
aus der wässerigen Feuchtigkeit in die Kristallinse, Brechung
an der Grenze von Kristallinse und Glaskörper, und endlich
Brechung an der Grenze von Glaskörper und Netzhaut29.

Scheiner gab ferner die erste zutreffende Antwort auf die
Frage, wie es kommt, daß das Auge nahe und entfernte Gegenstände
deutlich zu sehen vermag. Dieses, als Akkommodationsfähigkeit
bezeichnete Vermögen erklärte Scheiner daraus, daß
die Gestalt der Linse sich ändert, indem die Linse sich für nahe
Gegenstände stärker wölbt, für entferntere dagegen sich abflacht.

Von den zahlreichen Versuchen, die Scheiner über das
Sehen anstellte, sei folgender hervorgehoben. In ein Papierblatt
werden mit der Nadel mehrere kleine Öffnungen gestochen, die
sich so nahe beieinander befinden, daß die entstehende Figur die
Pupille an Größe nicht übertrifft. Bringt man das Blatt dann
nahe an das Auge und hält einen Gegenstand, etwa eine Nadelspitze,
dahinter, so sieht man von ihm so viel Bilder, als das
Papier Öffnungen besitzt. Die Erscheinung erklärt sich daraus,
daß sich die von der Nadelspitze ausgehenden Strahlen vor oder
hinter der Netzhaut kreuzen.




3. Galileis grundlegende Schöpfungen.

Auf dem Boden Italiens hatte das Wiederaufleben der Antike
stattgefunden, dort entstanden durch Galilei und seine Schüler
auch die Grundlagen der neueren Naturwissenschaft. Zu der Zeit,
als sich das Dunkel des Mittelalters zu lichten begann, war Italien
in zahlreiche Republiken und Fürstentümer zerfallen, die in kriegerischem,
sowie in friedlichem Wettbewerb um die Herrschaft
rangen. Ihre Nahrung zogen diese kleinen Staatsgebilde vorwiegend
aus dem Handel und dem Gewerbe. Seitdem sich die italienischen
Seefahrer der Bussole und der geographischen Karten bedienten,
hatte sich ein steigender Verkehr nach der Levante entwickelt.
Eine Folge davon war das Emporblühen des Kunstgewerbes.
Venedigs Glasgegenstände, sowie die Majoliken und Metallgüsse
anderer italienischen Städte galten als unübertroffen. Auf solchem
Boden erwuchs auch die Kunst eines Lionardo da Vinci,
Raphael und Michel Angelo, nachdem im Beginn dieses Zeitalters
Dante und Petrarca ihre unvergänglichen Dichtungen
geschaffen. In dem Maße, wie die Blüte der Kunst sich ihrem
Ende zuneigte, begann der wissenschaftliche Geist seine Schwingen
zu regen. An demselben Tage, an dem Michel Angelo die
Augen für immer schloß, erblickte Galilei das Licht der Welt.
Die Natur, sagt Libri30, schien damit andeuten zu wollen, daß
die Kunst das Scepter an die Wissenschaft abgetreten habe.

Leben und Entwicklungsgang Galileis.

Galileo Galilei31 wurde am 18. Februar (alten Stils), nach
neueren Forschungen wahrscheinlich am 15. Februar, des Jahres
1564 in Pisa geboren. Diese Stadt war im Mittelalter eine freie
gewesen; zur Zeit Galileis befand sie sich unter florentinischer
Herrschaft, die damals in den Händen des berühmten Geschlechts
der Mediceer ruhte. Der Vater Galileis, Vincenzio Galilei,
ein verarmter Edelmann, besaß eine große Vorliebe für Musik
und Mathematik. Offenbar hat Galilei von ihm seine auf die
Naturwissenschaften und gegen den Autoritätsglauben gerichteten
geistigen Anlagen empfangen. Bezeichnend hierfür ist, daß Galileis
Vater auch schon die Form des Dialogs bevorzugte und einen
solchen über die alte und die neuere Musik verfaßte, sowie, daß
er sich darin gegen die Berufung auf Autoritäten aussprach.

Der junge Galilei ragte durch Lernbegierde, sowie durch
Selbständigkeit des Denkens unter seinen Altersgenossen hervor.
Er widmete sich in Pisa zunächst dem Studium der Medizin, einer
Wissenschaft, die in ihrer damaligen Verfassung wenig geeignet
war, einen Geist wie denjenigen Galileis zu fesseln. Es wird
erzählt, daß er vor der Tür den Vorträgen eines Mathematikers
lauschte und von den Hörern einige Brocken zu erhaschen suchte.
Sobald der Mathematiker davon erfuhr, nahm er sich des jungen
Menschen an und bewirkte, daß dieser das Studium der Heilkunde
mit dem der Mathematik und der Physik vertauschte.

Auf dem Gebiete der Physik herrschten damals die aristotelischen
Lehren noch so gut wie unangefochten. Sie wurden in Italien
zu jener Zeit wie ein Evangelium betrachtet32. Als Galilei den
»Aristoteles« zu lesen begann, hatte er sich über viele Naturvorgänge
schon eigene Meinungen gebildet. Er war nun in hohem
Grade erstaunt, daß diese mit den herrschenden Lehren des griechischen
Philosophen so wenig im Einklang waren. Bei weiterer
Prüfung verwandelte sich dieses Staunen in Zweifel und endlich
in völlige Abkehr von den als unrichtig erkannten, älteren Lehrmeinungen.

Als Fünfundzwanzigjähriger bestieg Galilei die Lehrkanzel
und trat nun öffentlich als Gegner der aristotelischen Physik auf.
Da er dabei mit großer Kühnheit die eigene wissenschaftliche
Überzeugung über die Autorität stellte, machte er sich in Pisa,
wo man ihn des beharrlichen Verfechtens seiner Meinung wegen
den Zänker nannte, auf die Dauer unmöglich. Mit Freuden folgte
er deshalb einem vom venetianischen Senat an ihn ergangenen
Ruf an die Universität Padua, wo er im Dezember des Jahres
1592 seine Antrittsvorlesung hielt.

Die Eigenart Galileis, seine Ansichten auf eigene Beobachtungen
und zweckmäßig ersonnene Versuche zu stützen, hat sich
schon in den ersten Jahren seiner Tätigkeit in Pisa geäußert.
So ließ er Holz, Marmor und Blei aus bedeutender Höhe herabfallen
und zeigte, daß, entgegen der Behauptung der Aristoteliker,
die Fallzeit für Körper von verschiedenem Gewicht dieselbe sei.
»Daß dies der Ansicht vieler widerspricht«, sagt er in seiner
Jugendarbeit, die von dem Fall der Körper handelt (De motu
gravium), »ist mir ganz gleichgültig, wenn es nur mit der Vernunft
und der Erfahrung übereinstimmt«.

Durch den Luftzug in Schwingungen versetzte Lampen sollen
seine später zu besprechenden Forschungen über die Pendelbewegung
veranlaßt haben. Es wird erzählt, Galilei habe, als er
eine an einer langen Kette schwankende Lampe im Dom seiner
Vaterstadt beobachtete, die Schwingungszeit aus der Zahl seiner
Pulsschläge ermittelt und auf diese Weise den Isochronismus der
Pendelschwingungen entdeckt, d. h. die Tatsache, daß Schwingungen
von kleinerem und größerem Ausschlag bei unveränderter Länge
des Pendels die gleiche Zeit beanspruchen.

Euklid, Apollonios und Archimedes boten ihm während
dieser Zeit des wissenschaftlichen Heranreifens die meiste Anregung.
Aus dem Schüler wurde aber bald ein Meister, der seine
Lehrer überflügelte. Nicht in dem Erlernen, sondern in der Weiterentwicklung
der Wissenschaft erblickte Galilei seine Aufgabe.
Wo Erstarrung eingetreten war, galt es, durch neue Wege und
bessere Methoden den Fortschritt der Erkenntnis herbeizuführen.
In dieser Richtung sehen wir ihn in wachsendem Maße sich betätigen,
seitdem er das Lehramt in Padua angetreten. Auch war
er schon frühzeitig der koppernikanischen Lehre zugetan. In einem
1597 an Kepler geschriebenen Briefe bekennt er nämlich, daß
er »seit vielen Jahren« Anhänger der neuen Weltanschauung sei.

Dieser Brief, in dem er Kepler für die Übersendung des
»Prodomus«, der Erstlingsarbeit des großen Deutschen, seinen
Dank ausspricht, ist für die Stellung, die beide Männer zu ihren
Zeitgenossen einnahmen, so bezeichnend, daß er im Auszuge hier
Platz finden möge. »Ich preise mich glücklich«, schreibt Galilei,
»in dem Suchen nach Wahrheit einen so großen Bundesgenossen
gefunden zu haben. Es ist wirklich erbärmlich, daß es so wenige
gibt, die nach dem Wahren streben und bereit sind, von der verkehrten
Art zu philosophieren abzugehen. Aber es ist hier nicht
am Platz, die Jämmerlichkeit unserer Zeit zu beklagen, sondern
Dir zu Deinen herrlichen Forschungen Glück zu wünschen. Ich
tue das um so lieber, als ich seit vielen Jahren Anhänger der
koppernikanischen Lehre bin. Sie erklärt mir die Ursache vieler
Erscheinungen, die aus der allgemein gültigen Ansicht ganz unbegreiflich
sind. Ich habe zur Widerlegung der letzteren viele
Gründe gesammelt, doch wage ich es nicht, sie ans Licht der
Öffentlichkeit zu bringen. Wahrlich, ich würde es wagen, wenn
es mehr solche Männer, wie Du bist, gäbe. Da dies aber nicht
der Fall ist, so spare ich es mir auf«33.

Galilei hatte allen Grund vorsichtig zu sein, denn ein Jahr,
nachdem er diese Zeilen geschrieben, wurde Giordano Bruno,
der begeisterte Verfechter der koppernikanischen Lehre, der römischen
Inquisition ausgeliefert, um später seine Kühnheit auf dem
Scheiterhaufen zu büßen34.

Die Befreiung aus den Banden der Scholastik fand auch
darin ihren Ausdruck, daß Galilei, obwohl er das Latein, die
Sprache des Mittelalters, beherrschte, in Wort und Schrift sich meist
der Muttersprache bediente. Dank für dieses Unterfangen erwies
ihm jedoch nur die lernbegierige Jugend, welche dem begeisterten
Verkünder einer neuen Zeit in Scharen zuströmte. Auch Gustav
Adolf, der als Kronprinz in Italien weilte, soll, nach Vivianis
Erzählung, sich in Padua unter seinen Zuhörern befunden haben35.



Zu einem Zusammenstoß zwischen Galilei und den Scholastikern
kam es, als 1604 plötzlich der neue Stern erschien,
über den Kepler und Fabricius (siehe an späterer Stelle) so
eingehend berichtet haben. Da nach der Lehre des Aristoteles
der Himmel unveränderlich sein und die Sphäre des Veränderlichen
erst unterhalb des Mondes beginnen sollte, so wurde der
neue Stern in diese Sphäre verlegt. Dagegen wandte sich Galilei,
indem er aus denselben Gründen wie Kepler darauf hinwies, daß
sich der neue Himmelskörper weit außerhalb der Sphären der
Planeten zwischen den Fixsternen befinden müsse.

Galileis astronomische Entdeckungen.

Wir sahen, welche Rolle Galilei in der Geschichte des Fernrohrs
spielte. Die Erfindung dieses Instruments veranlaßte ihn, sich
seit dem Jahre 1608 mit großem Eifer und Erfolge astronomischen
Beobachtungen zu widmen. Von besonderer Wichtigkeit war die
Entdeckung, daß vier kleinere Weltkörper den Jupiter umkreisen.
Dieses Gestirn mit seinen Trabanten bot ihm nämlich einen Analogiebeweis
für die Richtigkeit der koppernikanischen Weltansicht36.

»Ich bin vor Verwunderung ganz außer mir«, schrieb Galilei
damals, »und sage Gott unendlichen Dank, daß es ihm gefallen
hat, so große und allen Jahrhunderten unbekannte Wunder durch
mich entdecken zu lassen. Daß der Mond ein der Erde gleicher
Körper sei, dessen war ich schon versichert. Auch habe ich eine
Menge nie gesehener Fixsterne, welche die Zahl derer, die man
mit bloßem Auge sehen kann, mehr als zehnmal übertrifft, entdeckt
und weiß nun, was die Milchstraße ist. Ferner habe ich gefunden,
daß Saturn aus drei Kugeln besteht, die sich fast berühren,
nie ihre Stelle gegeneinander verändern und längs des Tierkreises
in einer Reihe, wie
[image: Saturn] stehen, dergestalt, daß der mittlere
die anderen dreimal an Größe übertrifft«37.



Von der Gleichgültigkeit und dem Widerstande, dem damals
die größten Entdeckungen begegneten, zeugt eine Stelle in einem
Briefe Galileis an Kepler. Sie lautet: »Als ich den Professoren
am Gymnasium zu Florenz die Jupitertrabanten durch mein Fernrohr
zu zeigen wünschte, wollten sie weder diese noch das Rohr
sehen. Diese Menschen glauben, in der Natur sei keine Wahrheit
zu suchen, sondern nur in der Vergleichung der Texte«38.

Ausführlicher hat Galilei über seine astronomischen Entdeckungen
in dem »Himmelsboten«39 berichtet, einem Buch, das
großes Aufsehen erregte, aber auch eine ganze Schar von Gegnern
in Bewegung setzte.

Eine weitere Stütze erhielt das koppernikanische System durch
die Entdeckung, daß ein Planet wie die Venus, ähnlich wie der
Mond, Lichtgestalten aufweist. Sie erschien nämlich bald als leuchtende
Scheibe, bald war sie von halbkreis- oder sichelförmiger
Gestalt. Letzteres war der Fall, wenn sie ihre von der Sonne
beleuchtete Hälfte nicht voll dem Beschauer zukehrte. Damit
war einer der Nachweise geliefert, den die Gegner des Koppernikus
forderten. Die Fixsterne erschienen Galilei dagegen nur
als leuchtende Punkte und sind es trotz aller Zunahme der vergrößernden
Kraft des Fernrohrs bis auf den heutigen Tag geblieben.
Sobald Galilei indes das bewaffnete Auge auf den
Himmel richtete, erkannte er, daß die Zahl der Fixsterne viele
Male die Zahl der mit bloßem Auge sichtbaren Sterne übertrifft40.

Den Ruhm, die Sonnenflecken entdeckt zu haben, mußte
Galilei jedoch mit mehreren zeitgenössischen Astronomen teilen41.
Die Sonnenflecken hatten sich selbst Kepler in eigentümlicher
Weise bemerkbar gemacht, ohne daß er sich dabei eines Fernrohrs
bedient hätte42. Der aus der Bewegung der Flecken gezogene
Schluß, daß die Sonne sich dreht, war eine weitere Tatsache,
die zur Stütze der neuen Weltansicht herangezogen werden
konnte.

Als Galilei seine astronomischen Entdeckungen begann,
richtete auch der Deutsche Johann Fabricius43 das kurz zuvor
in Holland erfundene Fernrohr auf den Himmel. Diesem Fabricius
gebührt hinsichtlich der Sonnenflecken sogar die Priorität
der Entdeckung, um die zwischen Galilei und Scheiner mit
so großer Heftigkeit gestritten wurde. In einer 1611 erschienenen
Schrift44 berichtet Fabricius über seine Beobachtung mit folgenden
Worten: »Als ich den Rand der Sonne aufmerksam betrachtete,
zeigte sich mir unerwartet ein schwärzlicher Fleck. Zuerst glaubte
ich, es sei eine vorüberziehende Wolke. Am nächsten Morgen
erschien aber beim ersten Anblick der Fleck wieder, indes schien
er ein wenig seine Stellung verändert zu haben. Darauf herrschte
drei Tage trübes Wetter. Als wir wieder heiteren Himmel bekamen,
war der Fleck von Ost nach West gerückt, und kleinere waren an
seine Stelle getreten. Darauf entzog sich der große Fleck am entgegengesetzten
Rande nach und nach den Blicken. Daß den
kleineren dasselbe bevorstand, sah man aus ihrer Bewegung. Eine
unbestimmte Hoffnung ließ mich die Wiederkehr der Flecken erwarten.
Und in der Tat, nach 10 Tagen begann der größere Fleck
am östlichen Rande von neuem hervorzutreten«.

Neben Galilei und Fabricius verdient auch Scheiner45
als Astronom, der die Sonnenflecken selbständig entdeckte, genannt
zu werden. Er berichtete über seine Beobachtungen in einigen,
an den Bürgermeister von Augsburg gerichteten Briefen46, welche
die Mitteilung enthielten, Scheiner habe im April des Jahres 1611
dunkle Flecken auf der Sonnenscheibe wahrgenommen. Der Bürgermeister
sandte diese Briefe an Galilei, um dessen Meinung zu
erfahren und erhielt von Galilei die Antwort, er habe dieselbe
Erscheinung schon im Oktober 1610 wahrgenommen und sie auch
anderen gezeigt. Scheiner war im Zweifel, ob die Flecke sich
auf oder dicht über dem Sonnenkörper befänden. Trotzdem schloß
er aus ihrer Bewegung, die er mit größter Ausdauer verfolgte,
auf eine Drehung der Sonne. Zuerst hatte er an eine optische
Täuschung oder an einen Fehler seines Instruments gedacht. Erst
nachdem er acht Fernrohre auf die Sonne gerichtet, und sie ihm
und den herbeigerufenen Zeugen stets dasselbe gezeigt hatten,
glaubte er seiner Sache sicher zu sein.

Als Ursache der eigentümlichen Erscheinung gab es zwei Möglichkeiten,
die beide eingehend erörtert wurden. Entweder gehörten
die Flecken dem Sonnenkörper an – und diese Ansicht vertrat
von vornherein Fabricius – oder man hatte es mit dunklen,
die Sonne umkreisenden Körpern zu tun, eine Annahme, die besonders
unter denjenigen Astronomen Anhänger fand, welche die
neue Erscheinung mit der aristotelischen Lehre von der Reinheit
der Sonne in Einklang zu bringen suchten. Fortgesetzte Beobachtungen
verhalfen jedoch der ersten Ansicht zum Siege. Blieb es
auch unentschieden, welchen Ursprung die Flecken besitzen, so
zögerte man doch nicht, nachdem man sie als Teile der Sonne
erkannt hatte, aus ihrer Bewegung auf eine Achsendrehung dieses
Weltkörpers zu schließen, sowie daraus die Dauer jener Bewegung
und die Lage des Sonnenäquators abzuleiten.

Um diese Zeit wurden auch die ersten Nebel entdeckt, und
zwar zunächst diejenigen, die bei sehr klarer Luft mit unbewaffnetem
Auge als ganz blasse Lichtschimmer wahrgenommen werden können.
Es sind das die Nebel im Orion und in der Andromeda. Ersterer
wird 1618 zuerst erwähnt. Den Andromedanebel entdeckte Simon
Marius im Jahre 1612.

Wissenschaft und Kirche.

Diese Fülle von astronomischen Entdeckungen hatte zur Folge,
daß die Frage nach der Richtigkeit des koppernikanischen Systems
in den Mittelpunkt der Erörterung gerückt wurde. Alles was in
Italien an Frömmelei, an scholastischem Dünkel und an Neid gegen
den Ruhm Galileis herrschte, vereinigte sich, um unter dem Vorgeben,
die von Koppernikus begründete und von Galilei verteidigte
Lehre sei der heiligen Schrift zuwider, den großen Entdecker
zu Fall zu bringen. Es ist dies eins der dunkelsten Blätter
in der Geschichte der Wissenschaften. Jene angeblich religiösen
Bedenken gegen den Fortschritt der letzteren hat keiner mit solch
treffenden Worten zurückgewiesen wie Galilei selbst. Es geschah
dies in einem Briefe, aus dem hier einige Stellen47 Platz finden
mögen:

»Wir bringen das Neue nicht, um die Geister zu verwirren,
sondern um sie aufzuklären, nicht um die Wissenschaft zu zerstören,
sondern um sie wahrhaft zu begründen. Unsere Gegner
aber nennen, was sie nicht widerlegen können, falsch und ketzerisch,
indem sie sich aus erheucheltem Religionseifer einen Schild
machen und die heilige Schrift zur Dienerin ihrer Absichten erniedrigen.

Wer sich an den nackten, grammatischen Sinn halten wollte,
müßte die Bibel Widersprüche zeihen, wenn sie von Gottes Auge,
Hand oder Zorn redet. Wenn aber solches, der Fassungskraft
des Volkes entsprechend, vorkommt, um wieviel mehr mußte diese
bei Gegenständen berücksichtigt werden, die von der Wahrnehmung
der Menge weit abliegen und nicht das Seelenheil betreffen,
wie es auf dem Gebiete der Naturwissenschaften der Fall ist.
Hier muß man nicht mit der Autorität der Bibel beginnen, sondern
mit der Wahrnehmung und dem Beweis. Da die Bibel vieles
figürlich sagt, so darf das, was Wahrnehmung und Beweis uns
ersichtlich machen, nicht durch solche Stellen der heiligen Schrift
in Zweifel gezogen werden, die einen doppelten Sinn haben. Vor
allem muß man sich der Tatsache versichern; ihr kann die Bibel
nicht entgegen sein, sonst würde Gott sich selbst widersprechen.
Die Bibel redet, wie das damalige Volk die Sache ansah. Hätte
sie der Erde Bewegung und der Sonne Ruhe beigelegt, so würde
das die Fassungskraft der Menge verwirrt haben. Wo hat aber
die Bibel die neue Lehre verdammt? Man setzt das Ansehen
der Bibel aufs Spiel, wenn man die Sache anders nimmt und,
statt nach erwiesenen Tatsachen den Sinn der Schrift zu deuten,
lieber die Natur zwingen, den Versuch leugnen, den Beweis verschmähen
will.

Das Verbieten der Wissenschaft selbst aber wäre gegen die
Bibel, die an hundert Stellen lehrt, wie der Ruhm und die Größe
Gottes wunderbar aus allen seinen Werken hervorleuchten und
vor allem im offenen Buche des Himmels zu lesen sind. Und
glaube niemand, daß das Lesen der erhabensten Gedanken, die
auf diesen Blättern geschrieben stehen, damit getan sei, daß man
bloß den Glanz der Sterne angafft. Da sind so tiefe Geheimnisse
und so erhabene Begriffe, daß die Nachtarbeiten und Studien von
hundert und aber hundert der schärfsten Geister in tausendjährigem
Forschen noch nicht durchgedrungen sind und die Lust des
Forschens und Findens ewig währt.«

Trotz aller Bemühungen und Vermittlungsversuche, die Galilei
zugunsten der heliozentrischen Weltansicht unternahm, fanden in
Rom, wo man ihm anfangs geneigt war, von fanatischen Mönchen
ausgehende Anschuldigungen schließlich Gehör. Im Jahre 1616
kam es zum Verbot aller Schriften, welche die Bewegung der Erde
behaupteten. Galilei wurde befohlen, seine Meinung aufzugeben;
wenigstens sollte er sich enthalten, diese Meinung zu verteidigen
oder zu lehren. Im Übertretungsfalle werde man ihn einkerkern.
Das Werk des Koppernikus aber wurde einer entsprechenden
Änderung unterzogen. Das bezügliche Dekret lautete: »Behaupten,
die Sonne stehe unbeweglich im Mittelpunkt der Welt,
ist töricht, philosophisch falsch und, weil ausdrücklich der heiligen
Schrift zuwider, förmlich ketzerisch. Behaupten, die Erde stehe
nicht im Mittelpunkt der Welt und habe sogar eine tägliche Umdrehung,
ist philosophisch falsch und zum mindesten ein irriger
Glaube.«

Die Ironie des Schicksals fügte es, daß zur selben Zeit, als
Galilei diesen Kampf gegen Unwissenheit und Autoritätsglauben
führte, das heliozentrische System, dem bis dahin noch manche
Unvollkommenheiten anhafteten, durch die Arbeiten Keplers auf
den Rang einer wohlbegründeten Theorie erhoben wurde.

Galilei lehrte, als das soeben erwähnte Dekret erschien,
nicht mehr in Padua. In seinem engeren Vaterlande, in Florenz,
war ein Fürst, den er als Prinzen unterrichtet hatte, zur Regierung
gelangt. Dieser wünschte dem Lehrer seine Dankbarkeit zu beweisen
und ihn als Zierde des eigenen Landes wirken zu sehen.
Galilei ließ sich gern zur Rückkehr bewegen, da er mit seiner
neuen Anstellung nicht die Verpflichtung übernahm, Vorträge zu
halten, sondern ausschließlich seiner wissenschaftlichen Tätigkeit
leben durfte. Länger als ein Jahrzehnt hat er diese ungestört
ausgeübt. Zwar starb sein hochherziger Gönner. Doch gestalteten
sich in Rom selbst die Verhältnisse günstiger, indem mit
Urban VIII. ein von regem Eifer für die astronomische Wissenschaft
beseelter Mann den päpstlichen Stuhl einnahm. Urban
hatte sogar Gedichte auf die Entdeckung der Jupitertrabanten
verfaßt und brachte Galilei großes Wohlwollen entgegen. Alle
Bemühungen des letzteren, den Papst von der Richtigkeit der
koppernikanischen Lehre zu überzeugen und eine Zurücknahme
der kirchlichen Entscheidung vom Jahre 1616 herbeizuführen,
waren jedoch vergeblich.

Galileis Eintreten für die koppernikanische Lehre.

Unterdessen schrieb Galilei in der Stille seines Landhauses
den »Dialog über die beiden hauptsächlichsten Weltsysteme«, ein
Buch, das die glänzendste Verteidigung der koppernikanischen
Lehre darstellt48.

Der Dialog, der aus vier umfangreichen Gesprächen oder
Tagen, wie Galilei sich ausdrückt, besteht, ist eins der merkwürdigsten
Werke, das je geschrieben worden ist. Handelt es sich
doch nicht darum, zu entscheiden, welches von den beiden Weltsystemen
das richtige sei, sondern um die Darlegung einer Methode
wissenschaftlichen Forschens und Denkens, die zu dem bisher
meist geübten Verfahren in einem schroffen Gegensatze stand.
Der Geist, der sich in diesem Buche ausspricht, bezeichnet eine
Überwindung der bisherigen Stufe, einen Schritt vorwärts, den die
Menschheit auf dem Wege des Denkens machte, wenn auch manches
schon vor Galilei im Keime vorhanden war. Mit Recht ist daher
Galileis Dialog als eins der wichtigsten Dokumente in der
Geschichte des menschlichen Geistes bezeichnet worden.

Die Gesprächsform wählte Galilei in diesem und auch in
späteren Werken teils aus ästhetischen, teils aus didaktischen
Gründen. Auch mag ihn das Vorbild der platonischen Dialoge
dazu veranlaßt haben. Außerdem sprachen Opportunitätsrücksichten
für diese Art der Veröffentlichung. Von den sich unterredenden
Personen sind Salviati und Sagredo Freunde und Anhänger
Galileis, denen er im Dialog ein Denkmal setzt, indem er sie
zu Trägern seiner Ansichten macht. Simplicio, eine fingierte
Persönlichkeit, ist der Verfechter der zu Galileis Zeiten überwuchernden,
dem blinden Autoritätsglauben huldigenden Buchgelehrsamkeit49.



Im ersten Gespräch wird die Lehre des Aristoteles von der
besonderen, im Gegensatz zu allem Irdischen stehenden Natur der
Himmelskörper angefochten. Das Erscheinen neuer Sterne und
die Sonnenflecken dienen Galilei als wichtige Beweisstücke gegen
die aristotelische Ansicht von der Unveränderlichkeit des Himmels.
Gegen die von Aristoteles behauptete vollkommene Kugelgestalt
der Gestirne führt Galilei die durch ihn entdeckten Berge des
Mondes ins Feld. Die Unvergänglichkeit ist ferner nach ihm ein
Attribut aller Materie und nicht etwa der himmlischen allein. »Ich
habe«, läßt er Salviati sagen, »nie eine Umwandlung der Stoffe
ineinander begreifen können, vermöge deren ein Körper als vernichtet
zu gelten hat und ein völlig verschiedener Körper aus ihm
hervorgegangen sein soll. Ich halte es für möglich, daß die Umwandlung
durch eine bloße Veränderung in der Anordnung der
Teile geschieht, ohne daß etwas vernichtet oder etwas Neues erzeugt
wird.«

So sehen wir Galilei in die, aus a priori aufgestellten Sätzen
abgeleiteten Lehren des Aristoteles, dessen Methode bis dahin
die herrschende gewesen war, erfolgreich Bresche legen. Bewundernswert
ist der Geist, mit dem er jede Spitzfindigkeit der Aristoteliker,
die er dem Simplicio in den Mund legt, ad absurdum
führt. Wenn Simplicio sich zu dem Ausspruch versteigt,
Aristoteles könne keinen Denkfehler machen, da er der Erfinder
der Logik sei, so ist Galilei sofort mit dem treffenden Einwand
bei der Hand, es könne jemand sehr wohl ein guter Instrumentenmacher
sein, ohne deshalb kunstgeübt auf seinen Instrumenten
spielen zu können50.

Was nun die Frage anbetrifft, ob sich sämtliche Himmelskörper
in 24 Stunden um die Erde, oder letztere in der gleichen
Zeit sich um sich selbst bewegt, so gibt Galilei zu, daß allerdings
beide Annahmen auf den ersten Blick wohl die beobachteten Erscheinungen
erklären können. Die Gründe, die sich für eine
Drehung der Erde anführen ließen, seien jedoch überwältigend.

»Wenn wir«, meint Galilei, »nur den ungeheuren Umfang
der Sternensphäre betrachten, im Vergleiche zu der Kleinheit des
Erdballs, der in jener viele Millionen mal enthalten ist, und sodann
an die Geschwindigkeit der Bewegung denken, infolge deren
in einem Tage eine ganze Umdrehung des Himmel sich vollziehen
müßte, so kann ich mir nicht einreden, daß die Himmelssphäre
sich dreht, der Erdball dagegen in Ruhe bleibt.« Wolle man
aber jene gewaltige Bewegung dem Himmel beilegen, so müsse
man notwendigerweise diese als entgegengesetzt den besonderen
Bewegungen der sämtlichen Planeten betrachten, die alle ihre
eigene Bewegung von West nach Ost besäßen und zwar eine sehr
langsame. Lasse man dagegen die Erde sich um sich selbst bewegen,
so falle jener Gegensatz der Bewegungen fort.

Eine dritte Schwierigkeit bestehe darin, daß, je größer die
Sphäre sei, der Umlauf um so längere Zeit in Anspruch nehme.
Saturn, dessen Bahn an Größe die aller Planeten übertreffe, vollende
seinen Umlauf in dreißig Jahren. Jupiter beschreibe seinen
eigenen Kreislauf in zwölf Jahren, Mars in zweien, der Mond endlich,
das uns nächste Gestirn, innerhalb eines Monats. Dasselbe
hatten Galilei die Jupitertrabanten gelehrt, für die sich als Umlaufszeiten
für den innersten Trabanten 42 Stunden, für den folgenden
3½ Tage, den nächsten 7 und den äußersten endlich 16 Tage
ergeben hatten.

Wolle man nun die Erde ruhen lassen, so müsse man von
dem ganz kurzen Umlauf des Mondes zu immer größeren übergehen,
zu dem zweijährigen des Mars, dem zwölfjährigen des Jupiter,
dem dreißigjährigen des Saturn, dann aber plötzlich zu einer
unvergleichlich viel größeren Sphäre, der man gleichwohl eine volle
Umdrehung in 24 Stunden beilegen müsse. Nehme man aber eine
Bewegung der Erde an, so werde die Geschwindigkeit der Perioden
aufs beste gewahrt: Von der trägsten Sphäre des Saturn gelange
man dann zu den ganz unbeweglichen Fixsternen.

Als weitere Schwierigkeit der Ptolemäischen Weltanschauung
führt Galilei die gewaltige Ungleichheit in den Bewegungen der
Fixsterne an, von denen einige sich außerordentlich schnell in ungeheuren
Kreisen drehen müßten, andere langsam in kleinen Kreisen,
da sich die einen in größerer, die anderen in geringerer Entfernung
vom Himmelspole befänden.

Noch verwickelter aber werde die Sache dadurch, daß die
Fixsterne in ihrer Stellung langsamen Änderungen unterworfen
seien. »Diejenigen nämlich,« führt er aus, »die vor Jahrtausenden
im Äquator standen und folglich bei ihrer Bewegung größte Kreise
beschrieben, müssen, weil sie heutzutage mehrere Grade von ihm
entfernt sind, sich langsamer und in kleineren Kreisen bewegen.
Auch wird es sogar geschehen, daß einer von denen, die sich bisher
stets bewegt haben, schließlich mit dem Pole zusammenfällt
und dann feststeht, nach einiger Zeit der Ruhe aber wiederum
anfängt sich zu bewegen.«

Bezüglich der Entstehung des Sonnensystems hatte Galilei
sich eine Ansicht gebildet, welche der auf Laplace und Kant
zurückzuführenden Anschauung, nach der die Planeten aus der
Sonne hervorgegangen sind, genau entgegengesetzt ist. Galilei
stellte sich vor, der göttliche Baumeister habe zuerst die Sonne
gebildet und ihr einen festen Platz verliehen. Dann seien aus
seiner Hand die Planeten hervorgegangen. Diese hätten sich von
dem Orte ihrer Entstehung mit wachsender Geschwindigkeit nach
der Sonne hinbewegt. Dann seien sie, wiederum durch göttlichen
Eingriff, an einem bestimmten Punkte mit der bis dahin erlangten
Geschwindigkeit aus der Fall- in eine Drehbewegung versetzt
worden. Nach Galilei sind z. B. Jupiter und Saturn von demselben
Punkte nach der Sonne hin gefallen. Da Jupiter tiefer
fiel, erlangte er eine größere Geschwindigkeit, mit der er sich
jetzt innerhalb der Bahn des langsamer umlaufenden Saturns um
die Sonne bewegt.

Man kann noch weiter gehen, meint Galilei, und aus dem
Verhältnis der Geschwindigkeiten von Jupiter und Saturn, die
sich ja aus dem Abstand von der Sonne und der Umlaufszeit ergeben,
und aus dem Maße der Beschleunigung einer nach dem
Zentrum gerichteten Bewegung berechnen, in welcher Entfernung
von diesem Zentrum der Ort sich befunden hat, von dem die
Planeten ausgingen.

Dafür, daß die Erde und die Himmelskörper gleichartiger Natur
seien, führt Galilei besonders die Gebirge des Mondes ins Feld.
Sind doch die Gestirne nach der neuen Lehre Erden wie unsere
Erde, während sie vorher, wenn auch nicht mehr als göttliche, so
doch als übernatürliche Wesen gegolten hatten. In diesem Versetzen
der Erde unter die Sterne, unter Aufgabe des anthropozentrischen
Standpunktes, liegt eben das Umwälzende, die befangene Menge
Aufregende, der neuen Weltanschauung.

Galilei wies auch darauf hin, daß die Sonnenflecken eine
verhältnismäßig geringe Beständigkeit besitzen. Er sah sie entstehen
und sich allmählich wieder auflösen und verschwinden51.
Daraus nahm Galilei besonders Anlaß, sich gegen die Lehre
von der Unwandelbarkeit der Gestirne und gegen die Vorstellung,
daß das Beständige und Unveränderliche das Vollkommenere
sei, zu wenden. Hierin zeigt sich vor allem der Wandel, den
das Weltbild an der Schwelle der Neuzeit erfährt. Die Starrheit,
die es im Altertum und ganz besonders im Mittelalter besessen,
weicht der Vorstellung, daß überall ein Werden, eine Entwicklung
vor sich geht. Und dieser Entwicklungsgedanke ist es,
der bis auf den heutigen Tag an Kraft und Ausdehnung stetig
zugenommen hat und in der Gegenwart nicht nur die wissenschaftlichen,
sondern auch alle übrigen, selbst die metaphysischen Vorstellungen
beherrscht.

Galilei verleiht diesem Gedanken in folgenden Worten Ausdruck:
»Ich kann nur mit dem größten Widerstreben hören, daß
die Eigenschaften des Unwandelbaren und Unveränderlichen als
etwas Vornehmes und Vollkommenes gelten und im Gegensatz
dazu die Veränderlichkeit als etwas Unvollkommenes betrachtet
wird. Ich halte die Erde für höchst vornehm gerade wegen der
Wandlungen, die sich auf ihr abspielen, und dasselbe gilt von dem
Monde, vom Jupiter und anderen Weltkugeln.«

Worin diese Wandlungen der Gestirne beständen, vermöge
sich die mächtigste Einbildungskraft nicht vorzustellen. Deshalb
tritt Galilei auch der Annahme, daß die Gestirne den irdischen
Geschöpfen ähnliche Lebewesen beherbergen, entgegen.

Den Fixsternen hatte man vor Galilei, durch die Irradiation
verleitet, eine bedeutende scheinbare Größe zugeschrieben und sie
für verhältnismäßig nahe Weltkörper gehalten. Durch Koppernikus
und mehr noch durch Galilei, der sie zuerst als bloße
Lichtpünktchen wahrnahm, wurden sie in unermeßliche Fernen
gerückt, zumal, nachdem Galilei gezeigt hatte, daß sie in Wahrheit
einen wenigstens tausendmal geringeren scheinbaren Durchmesser
besitzen, als es infolge der Irradiation den Anschein hat52.
Während nämlich noch Tycho für einen Fixstern erster Größe
einen scheinbaren Durchmesser von 2 Minuten gemessen zu haben
glaubte, eben weil er auf die Irradiation keine Rücksicht nahm,
gibt Galilei für den Durchmesser eines solchen Sternes als obere
Grenze den Wert von 5 Sekunden an. Spätere Untersuchungen
haben ergeben, daß sich für die Fixsterne überhaupt kein scheinbarer
Durchmesser nachweisen läßt.

Dafür, daß nicht nur auf der Sonne, sondern auch in der unendlich
viel weiter entfernten Region der Fixsterne Entwicklung,
Vernichtung, kurz ein den irdischen Vorgängen ähnlicher Wechsel
besteht, führt Galilei das plötzliche Erscheinen neuer Sterne in
den Jahren 1572 und 1604 ins Feld. Für das Sonnensystem dagegen
bezeugen ihm nicht nur die am Zentralkörper auftretenden,
ihre Form und Größe ändernden Flecken, sondern auch das Auftauchen
und das Verschwinden von Kometen, daß überall in der
Welt ein natürliches Geschehen stattfindet und daß der Himmel
keine über das Naturgesetz hinausgehende Sonderstellung einnimmt.
Außer den astronomischen Gründen, welche der vorkoppernikanischen
Astronomie für eine Bewegung der Gestirne um die im Weltzentrum
ruhende Erde zu sprechen schienen, gab es für diese
Annahme noch einige physikalische Scheingründe, die Galilei
gleichfalls widerlegte53. Aristoteles und seine Anhänger behaupteten
nämlich, daß der senkrechte Fall die Ruhe der Erde
beweise. Rotiere diese nämlich, so könne ein senkrecht emporgeworfener
Körper nicht längs derselben Linie an den nämlichen
Ort zurückkehren, von dem aus er geworfen wurde. Während der
für das Steigen und Fallen erforderlichen Zeit habe sich der Ort,
wenn eine Rotation vorhanden sei, um ein bedeutendes Stück nach
Osten verschoben, der Körper müsse also nach Westen abweichen.
Dem widerspräche aber die Beobachtung. Der zweite Einwurf
besagte, daß die Erde, wenn sie rotiere, alle nicht in der Nähe
der Pole befindlichen Gegenstände vermöge der Schwungkraft von
ihrer Oberfläche abschleudern müsse.

Dem ersten Einwurf gegenüber hebt Galilei hervor, daß der
Turm, von dem man den Stein herabfallen läßt, sich mit der
gleichen Geschwindigkeit nach Osten bewegt wie der Stein. Ein
ähnliches Verhalten zeige sich, wenn man einen schweren Körper
von dem Maste eines ruhenden und eines schnell fahrenden Schiffes
herabfallen lasse. In beiden Fällen treffe nämlich der Körper dieselbe
Stelle am Fuße des Mastes. Scharfsinnig hebt Galilei
hervor, daß eine kleine Abweichung, die bei diesem Experiment
eintreten könne, auf Rechnung des Luftwiderstandes gesetzt werden
müsse. Die Luft sei nämlich in bezug auf das fahrende Schiff in
Ruhe, während beim Fall von einem Turm sowohl der Turm und
der Körper, als auch das Medium an der Erdumdrehung in völlig
gleicher Weise teilnähmen. Das Medium könne unter diesen Umständen
also auf die Bewegung des fallenden Körpers nicht
störend einwirken, wie es bei dem bewegten Schiffe bei großer
Geschwindigkeit möglich sei. Es ist also immer wieder der erweiterte
Begriff des Beharrungsvermögens, der bei Galilei bald
mehr, bald minder deutlich zum Ausdruck kommt, ein Begriff,
der seinen Gegnern fehlte und daher ihre Einwürfe gegen die
koppernikanische Ansicht von ihrem Standpunkte aus als berechtigt
erscheinen ließ.

Den zweiten Einwurf, daß in der Nähe des Äquators befindliche
Körper bei einer Rotation von der Erde abgeschleudert werden
müßten, widerlegt Galilei gleichfalls. Er zeigt nämlich, daß die
Schwungkraft in Anbetracht der verhältnismäßig geringen Rotationsgeschwindigkeit
so klein ist, daß ihre Wirkung durch die
Schwerkraft viele Male übertroffen wird54.

Nachdem Galilei die ältere Weltanschauung abgelehnt und
die von ihren Anhängern erhobenen Einwürfe beseitigt hat, bringt
er eine ausführliche Darstellung des koppernikanischen Systems.
Für dieses System spreche mehr wie alles andere der Umstand,
daß das Stehenbleiben, Rückwärts- und Vorwärtsgehen der Planeten
aus der jährlichen Bewegung der Erde folge. Aufgabe der Astronomie
sei es, Rechenschaft von den Erscheinungen zu geben, und
das habe die geozentrische Lehre nicht vermocht, da sie zu den
ungereimtesten Theorien gegriffen habe, um die Stillstände und
die Rückgänge der Planeten zu erklären.

Dem Einwurf, daß die von Koppernikus behauptete Ortsveränderung
der Erde um ihren doppelten Abstand von der Sonne
parallaktische Verschiebungen am Fixsternhimmel zur Folge haben
müsse, wußte Galilei durch die Annahme zu begegnen55, daß
die Fixsternsphäre wenigstens 10000 Sonnenweiten vom Sonnensystem
entfernt sei. Infolgedessen entziehe sich eine durch die
Erdbewegung hervorgebrachte, äußerst geringfügige Verschiebung
der Fixsterne unserer Beobachtung.

Die bisher erwähnten Anzeichen, die für eine Bewegung
der Erde sprachen, bezogen sich sämtlich auf Himmelserscheinungen.
Irdische Vorgänge schienen für den Nachweis, ob die
Erde sich dreht oder fest steht, nicht in Betracht zu kommen.
Nur an dem Wasser, meinte Galilei, das infolge seiner Flüssigkeit
gewissermaßen »unter eigener Botmäßigkeit« stehe, ließe sich
vielleicht ein Anzeichen finden, aus dem man entnehmen könne,
ob die Erde sich dreht oder nicht. Ein solches Anzeichen erblickte
Galilei in den Gezeiten. Wenn auch erst Newton imstande
war, eine befriedigende Theorie der Gezeiten zu geben, so verdienen
doch Galileis scharfsinnige Betrachtungen über diesen
Gegenstand unsere Beachtung56. Man muß sich vergegenwärtigen,
daß Galilei die Gravitation der Weltkörper zur Erklärung der
Gezeiten noch nicht verwerten konnte, weil man von einer zwischen
den Weltkörpern wirkenden Kraft wohl eine dunkle Ahnung, aber
noch keine festgegründete Lehre besaß. Galilei setzte also noch
keine anziehende Kraft des Mondes voraus, sondern erklärte die
Gezeiten folgendermaßen:
Ist der Erdball
unbeweglich, so
kann keine Ebbe
und Flut stattfinden.
Gibt man der Erde
aber die Bewegungen,
die Koppernikus
ihr zuschreibt,
so muß das Meer
in einer den Beobachtungen
entsprechenden
Weise der
Ebbe und der Flut
unterliegen. Und
zwar geschieht dies
nach Galilei, weil,
infolge der Zusammensetzung
der jährlichen
Bewegung mit
der Drehung, gewisse
Teile der Erdoberfläche
in ihrer absoluten Bewegung beschleunigt, andere dagegen
verzögert werden. Nehmen wir mit Galilei an, in A
befinde sich die Sonne. Der große Kreis sei die Erdbahn und
der kleine die Erde selbst. Bewegt sich letztere von B nach C,
während sie gleichzeitig in der Richtung DEFG rotiert, so
erkennt man ohne weiteres, daß sich der Punkt D der Erdoberfläche,
absolut genommen, am schnellsten bewegt, während
derselbe Punkt, wenn er in F angelangt ist, seine geringste
Geschwindigkeit besitzt, weil dort die tägliche Bewegung der
jährlichen entgegengesetzt und deshalb von ihr in Abzug zu
bringen ist. Ähnlich wie nun in einem bewegten Wasserbecken,
dessen Geschwindigkeit sich ändert, das Wasser auf der einen
Seite steigen und auf der anderen fallen wird, ähnlich muß nach
Galilei der erwähnte Einfluß ein Steigen und ein Fallen der
Wassermasse im Meeresbecken hervorrufen. Daß dieser Schluß
zutrifft, läßt sich nicht in Abrede stellen, und es ist wohl möglich,
daß die erwähnte Verschiedenheit der Geschwindigkeiten in D
und F (Abb. 5) von Einfluß ist. Da jedoch die Geschwindigkeit
der jährlichen Bewegung viele Male größer ist als die Rotationsgeschwindigkeit
eines in der Nähe des Äquators gelegenen Punktes,
so kann der von Galilei behauptete Einfluß jedenfalls nur gering
sein und höchstens Nebenerscheinungen veranlassen. Galilei
unterschätzte nämlich jenes Verhältnis, da er den Durchmesser
der Sonnenbahn etwa 20mal zu klein annahm57.
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Abb. 5. Galileis Erklärung der Gezeiten58.



Galileis Inquisitionsprozeß.

Der »Dialog« ist, wie wir sahen, eins der merkwürdigsten
und in seinen Folgen wichtigsten Bücher, die je geschrieben
wurden59. Es nimmt für seine Zeit dieselbe Bedeutung ein,
welche die »Kreisbewegungen« des Koppernikus für das
15. Jahrhundert und Newtons »Prinzipien« für das auf Galilei
folgende Zeitalter besitzen. Diese drei Werke bezeichnen Fortschritte
in der Entwicklung der Weltanschauung, d. h. des Weltbildes,
der Vorstellungen vom Kosmos, wie sie seitdem kaum
wieder gemacht wurden. Wir haben uns deshalb mit dem Inhalt
des »Dialogs« eingehender befaßt und wollen nun auch seine
Geschichte kennen lernen. Wenn je von einem Buche, so gilt
nämlich von diesem das bekannte Wort: Habent sua fata libelli.
Auch hat wohl selten ein Werk in solchem Maße das Schicksal
seines Verfassers bestimmt, wie es der »Dialog« getan hat.

Mit dem Verbot vom Jahre 1616 suchte sich Galilei dadurch
abzufinden, daß er die Lehre des Koppernikus nicht als eigene
Meinung vortrug, sondern sie einer der sich unterredenden Personen,
dem Salviati, in den Mund legte, während das ptolemäische
System von Simplicio verteidigt wurde. Jeder Einsichtige konnte
indessen leicht erkennen, daß mit Salviati der Verfasser selbst
gemeint sei.

Trotzdem erteilte die römische Zensurbehörde, nachdem auf
ihren Wunsch einige Änderungen vorgenommen waren, die Erlaubnis
zum Druck des »Dialogs«. Das Buch erschien 1632. Es erregte
großes Aufsehen, rief aber auch die Tätigkeit der Feinde und
Neider Galileis von neuem wach. Insbesondere war es der
Jesuit Scheiner, derselbe, mit dem Galilei einen Prioritätsstreit
hinsichtlich der Entdeckung der Sonnenflecken ausgefochten
hatte60, der gegen ihn mit allen Mitteln zu Felde zog und die
Angelegenheit vor die Inquisition zu bringen suchte. Die freundliche
Gesinnung, die Urban VIII. bisher gegen Galilei gehegt,
verstand man in das Gegenteil zu verkehren. Man redete
dem Papste nämlich ein, in Simplicio, dem ungeschickten Verteidiger
der ptolemäischen Ansicht, habe Galilei ihn zu verspotten
gesucht.

Es würde hier zu weit führen, wenn wir uns mit den Einzelheiten
des gegen Galilei in Szene gesetzten Inquisitionsverfahrens
näher befassen wollten61. Der siebzigjährige, durch Krankheit
gebeugte Greis, dem sein Vaterland unsterblichen Ruhm verdankt,
wurde gezwungen, nach Rom zu reisen. Dort mußte das weitere
Verfahren ihn bald überzeugen, daß es hier nur zwei Wege gab.
Entweder er teilte das Schicksal Giordano Brunos, der 1600
in Rom den Scheiterhaufen bestiegen hatte, oder er widerrief den
Inhalt seines ganzen bisherigen Lebens, indem er nach der Forderung
der Inquisition die Lehre des Koppernikus als irrtümlich
abschwor und verfluchte. Galilei wählte das letztere. Er beugte
sich dem Zwange. Auch mochte ihn die Überzeugung leiten, daß
sein Märtyrertod ebensowenig der Wissenschaft wie der Kirche
zum Vorteil gereichen könne. Die Abschwörungsformel, die er
nach Androhung der Tortur, unter schmachvollen Formen – er
war nur mit einem Hemd bekleidet – aussprechen mußte, bildet
das unwürdigste Gegenstück zu den Worten, mit denen er
selbst in dem oben mitgeteilten Briefe Duldsamkeit gepredigt. Sie
lautet62 nach einigen Kürzungen: »Ich beuge meine Knie vor den
ehrwürdigen General-Inquisitoren, berühre das heilige Evangelium
und versichere, daß ich glaube und in Zukunft alles glauben werde,
was die Kirche für wahr erkennt und lehrt.

Mir war von der heiligen Inquisition befohlen, daß ich die
falsche Lehre von der Bewegung der Erde und dem Stillstand der
Sonne weder glauben noch lehren dürfe, weil sie der heiligen
Schrift zuwider sei. Trotzdem habe ich ein Buch geschrieben,
und es sogar drucken lassen, in dem ich diese verdammte Lehre
vortrage und mit großer Stärke Gründe zu ihren Gunsten vorbringe.
Ich bin deswegen der Ketzerei für verdächtig erklärt
worden.

Um nun jedem katholischen Christen den mit Recht gegen
mich gefaßten Verdacht zu benehmen, schwöre ich ab und verfluche
ich die erwähnten Irrtümer und Ketzereien und überhaupt
jeden anderen Irrtum und jede Meinung, die gegen die Lehre
der Kirche ist. Zugleich schwöre ich, in Zukunft nie etwas mündlich
oder schriftlich zu äußern, das mich in einen gleichen Verdacht
bringen könnte. Sondern ich will, wenn ich irgendwo Ketzerei
finde oder vermute, es gleich dem heiligen Gericht anzeigen.« Der
ganze berechnete, fanatische Haß der kirchlichen Machthaber geht
aus dem letzten Satze hervor, durch den Galilei auch noch zum
Angeber gegen jede weitere Regung der freien Forschung gemacht
werden sollte.

Das Galilei zugeschriebene Wort: »Und sie bewegt sich doch«
ist gewiß nicht bei diesem Anlaß gesprochen worden63. Daß es
jedoch im Grunde seines Herzens erklungen, wer möchte daran
zweifeln!

Der gegen Galilei geführte Inquisitionsprozeß ist nicht nur
kulturgeschichtlich eine der merkwürdigsten Begebenheiten. Er
muß auch späteren Zeiten immer wieder als warnendes Beispiel
hingestellt werden, da er mit erschreckender Deutlichkeit zeigt,
wohin Unduldsamkeit und religiöser Fanatismus in ihren letzten
Konsequenzen geführt haben und immer wieder führen können,
wenn nicht durch die stetig wachsende Einsicht weiterer Kreise
der trüben Flut ein starker Damm entgegengesetzt wird.



 Galileis letzte Lebensjahre.

Die Jahre, welche Galilei nach diesen Ereignissen noch
gelebt hat, waren voll Bitternis. Die Inquisition wies ihm ein
Landhaus bei Florenz als Wohnsitz an, erstreckte jedoch ihre
Überwachung auf seine persönlichen Angelegenheiten, so daß er,
wenn auch nicht dem Namen nach, so doch tatsächlich, ihr Gefangener
blieb. In Galileis Wunsch, nach Florenz übersiedeln
zu dürfen, willigte man erst ein, nachdem sein Augenleiden zu
völliger Erblindung geführt hatte.

Dennoch war die Schaffenskraft Galileis, die in steigendem
Maße, trotz seiner Niederlage in dem Inquisitionsprozeß, die Bewunderung
der Zeitgenossen errang, keineswegs gelähmt. Zwar
beschäftigten ihn nach seiner Verurteilung nur noch solche astronomische
Aufgaben, bei denen keine Erneuerung des Streites mit
der römischen Kirche zu befürchten war. So fuhr er, ungeachtet
seines beginnenden Augenleidens, mit teleskopischen Untersuchungen
fort und entdeckte die Libration des Mondes64. Unter Libration
versteht man kleine Schwankungen des Mondes in seiner
Stellung zur Erde, die bewirken, daß, vom Erdmittelpunkte aus
betrachtet, nicht stets derselbe Punkt der Mondoberfläche im
Zentrum der Mondscheibe gesehen wird. Man unterscheidet
Libration in Länge (in der Ebene des Mondäquators) und Libration
in Breite (senkrecht zur Ebene des Mondäquators). Aber auch
abgesehen von derartigen Schwankungen wird die Mondscheibe,
von verschiedenen Punkten der Erdoberfläche aus beobachtet oder
für denselben Ort zu verschiedenen Tageszeiten, nicht genau dieselbe
sein. Es ist dies eine nur scheinbare, parallaktisch genannte
Libration. Galilei wies auf letztere hin und entdeckte die Libration
in Breite. Die Libration in Länge bemerkte erst Hevel, der bedeutendste
Selenograph der neueren Zeit65.

Auch das Problem der Längenbestimmung, das für alle
schiffahrttreibenden Nationen die größte Bedeutung hatte, beschäftigte
Galilei von neuem. Sein Lieblingsplan, die Verfinsterungen
der Jupitermonde zu diesem Zwecke zu verwerten, wurde,
nachdem er zwei Jahrzehnte geruht hatte, wieder aufgenommen66.
Im Grunde war es derselbe Gedanke, der schon die Alten bei
ihren Längenbestimmungen leitete. Periodisch wiederkehrende
Himmelsereignisse, die von einem großen Teile der Erde gesehen
werden, bieten in beiden Fällen einen Anhalt zur Ermittelung
des Zeitunterschiedes für den in Betracht kommenden und einen
seiner geographischen Länge nach bekannten Ort. Im Altertum
hatte man sich hierzu des Eintritts der Mondfinsternisse bedient.
Doch ist ein solches Ereignis so selten, daß es für die Schifffahrt
nicht von Belang sein kann. Die Umlaufszeiten der Jupitermonde
sind dagegen von so kurzer Dauer, daß fast in jeder
Nacht einer derselben durch den Zentralkörper verfinstert wird.
Ist nun, schloß Galilei, die Umlaufsbewegung dieser Monde
genau bekannt und in Tabellen für den täglichen Gebrauch der
Seefahrer niedergelegt, so stellt das System des Jupiters sozusagen
eine im Weltraum schwebende, der Beobachtung durch gute Teleskope
zugängliche Uhr dar, aus deren Vergleich mit einer nach
der Sonne gestellten Uhr der Längenunterschied zwischen dem
Ort, auf den sich die Tabellen beziehen, und demjenigen, an
dem sich das Schiff befindet, gefunden werden kann. Galilei
wußte für seine Methode die Vereinigten Staaten von Holland zu
gewinnen und stellte ihnen Ephemeriden der Jupitertrabanten,
sowie hinlänglich genau gehende Uhren in Aussicht. Zunehmendes
körperliches Leiden brachte jedoch seine Bemühungen, die auch
ohnehin schwerlich zu einem Gelingen geführt haben würden, zum
Stillstande. Erst im 18. Jahrhundert waren Theorie und Praxis
weit genug fortgeschritten, um die Mittel zur Lösung des so überaus
wichtigen und schwierigen Problems an die Hand zu geben.

Über das weitere Schicksal des Dialogs, des astronomischen
Hauptwerks Galileis, sei noch bemerkt, daß es mit anderen
das koppernikanische Weltsystem betreffenden Schriften bis ins
19. Jahrhundert auf dem Index der von der Kirche verbotenen
Bücher blieb. Vergebens bemühte sich um die Mitte des 18. Jahrhunderts
der große französische Astronom Lalande, die Streichung
dieser Schriften aus dem Index durchzusetzen. Erst 1822 entschied
das Kardinalskollegium, daß fortan die koppernikanische Lehre in
den katholischen Ländern unbeanstandet verkündet werden dürfe.
»So endete nach zwei Jahrhunderten dieser denkwürdige Streit
der Kirche gegen den vorwärts schreitenden Menschengeist mit
einer kläglichen Niederlage der ersteren«67.



Galileis Untersuchungen über die Kohäsion und über
das Gewicht der Luft.

Wir gelangen jetzt zu Galileis Arbeiten auf dem Gebiete
der Mechanik. Diese Arbeiten waren in solchem Maße grundlegend,
daß Galilei in seinem Hauptwerk über diesen Gegenstand,
den »Unterredungen«, mit Recht von neuen Wissenszweigen
sprechen durfte. Die Zeitgenossen zwar, soweit sie nicht vom
Fanatismus geblendet waren, bewunderten vorwiegend seine Leistungen
auf astronomischem Gebiete. Die Nachwelt hat jedoch
erkannt, daß die Begründung des dynamischen Teiles der Mechanik
eine Geistestat von weit höherem Range und weit größerer Bedeutung
für den Fortschritt der menschlichen Erkenntnis war, als
jene Beobachtungen, von denen, ohne das Verdienst Galileis zu
schmälern, gesagt werden kann, daß sie jedes andere, mit einem
guten Fernrohr bewaffnete Auge gleichfalls gemacht haben würde.
Die »Unterredungen« dagegen bezeichnen den bedeutendsten Fortschritt
der Mechanik seit Archimedes.

Mit mechanischen Problemen hatte sich Galilei, anknüpfend
an Archimedes und im Kampfe gegen die irrigen Ansichten der
Peripatetiker, während seiner ganzen Laufbahn beschäftigt. Nach
seiner Verurteilung unternahm er es, die Ergebnisse seiner Forschungen
zu dem genannten Hauptwerk68 zusammenzufassen. Bei
dieser Arbeit hatte er wenigstens keine Belästigung von seiten
kurzsichtiger Gegner zu befürchten.

Das Werk ist wie der »Dialog« in Gesprächsform abgefaßt.
Simplicio verficht die Ansichten des Aristoteles. Sagredo und
insbesondere Salviati entwickeln dagegen die Lehren Galileis.

Die neuen Prinzipien, die Galilei in die Naturwissenschaft
einführte, betreffen vor allem die Dynamik oder die Lehre von
der Bewegung der Körper, deren Ansätze wir bereits bei Lionardo
da Vinci und einigen andern Forschern vorfanden69. Durch seine
Untersuchung des Falles, der Wurf- und der Pendelbewegung zeigte
Galilei, wie durch die Vereinigung von messender Beobachtung
mit dem mathematischen Beweisverfahren an die Stelle unklarer,
schwankender Begriffe wissenschaftliche Erkenntnis gesetzt werden
kann. Er schuf so die Methode, die auf naturwissenschaftlichem
Gebiete allein zur Auffindung der Wahrheit führt und der im
weiteren Verfolg alle bewundernswerten Fortschritte der neueren
Zeit zu danken sind.

»Der oberflächlichen Beobachtung ist es zwar nicht entgangen,
daß die Geschwindigkeit frei fallender Körper mit der Fallzeit
zunimmt. In welchem Maße aber die Beschleunigung stattfindet,
ist bisher nicht ausgesprochen worden. Denn soviel ich weiß,
hat niemand bewiesen, daß die vom fallenden Körper in gleichen
Zeiten zurückgelegten Strecken sich zueinander wie die ungeraden
Zahlen verhalten.« Mit diesen Worten leitet Galilei den
dritten Abschnitt70 seiner »Unterredungen« ein. »Man hat beobachtet«,
so fährt er fort, »daß die Wurfgeschosse eine gewisse
Kurve beschreiben, daß letztere aber eine Parabel ist, hat niemand
gelehrt. Daß aber dieses sich so verhält und noch vieles andere
nicht minder Wissenswerte, soll von mir bewiesen werden. Zu
dem, was noch zu tun übrig bleibt, wird die Bahn geebnet, nämlich
zur Errichtung einer sehr weiten, außerordentlich wichtigen
Wissenschaft, deren Anfangsgründe die vorliegende Arbeit bietet,
in deren tiefere Geheimnisse einzudringen aber Geistern vorbehalten
bleibt, die mir überlegen sind.« In diesen Worten sprechen
sich zwei schöne Eigenschaften Galileis aus, Wertschätzung eigener
Errungenschaften gepaart mit wahrer Bescheidenheit.

Wir wollen jetzt die wesentlichsten Punkte der »Unterredungen«
einer kurzen Betrachtung unterziehen. Die Peripatetiker hatten
eine Reihe von Naturerscheinungen, wie das Saugen, das Aneinanderhaften
glatter Platten, das Aufsteigen von Flüssigkeiten
in der Pumpe usw. darauf zurückgeführt, daß die Natur kein
Vakuum, d. h. keinen leeren Raum zulasse. In Ermangelung eines
mechanischen Prinzips dichtete man auf solche Weise der Natur
ein psychisches Vermögen an. In dieser Vakuumtheorie bleibt
Galilei noch befangen; aus ihr sucht er z. B. die Kohäsion zu
erklären.

Die Kohäsion ist nach Galileis Ansicht auf zwei Ursachen
zurückzuführen, einmal auf das Widerstreben der Natur, einen
leeren Raum zuzulassen. Zweitens müsse ein Mittel angenommen
werden, das die Teilchen der Körper fest miteinander verbinde.
»Um dies zu beweisen,« sagt Galilei, »nehme man zwei völlig
glatt polierte Marmorplatten. Legt man die eine auf die andere,
so lassen sie sich leicht gegeneinander verschieben, offenbar ein
Beweis, daß kein Bindemittel sie vereinigt. Gegen jede Trennung
aber tritt ein Widerstand auf, so daß die obere Platte die untere
tragen kann.« Ein solcher Widerstand, der so fühlbar zwischen
den Platten sich zeige, sei ohne Zweifel auch zwischen den Teilen
eines festen Körpers vorhanden und zum Teil wenigstens die Ursache
ihres Zusammenhanges71.

Ein wesentlicher Fortschritt den bloßen Spekulationen seiner
Vorgänger gegenüber ist es, daß Galilei überall das Experiment
anwendet und daher auch die Größe des Widerstandes,
den das Vakuum hervorruft, zu bestimmen
sucht. Dies geschieht, indem ein
Kolben aus einem mit Wasser gefüllten, die
Öffnung nach unten kehrenden Zylinder herausgezogen
und die Größe des hierzu erforderlichen
Gewichts ermittelt wird (siehe Abb. 6).
Galilei kennt auch die Erscheinung, daß das
Wasser mittelst Pumpen nur auf eine Höhe
von 18 Ellen gehoben werden kann. Tatsächlich
wird in beiden Fällen die Größe des Luftdrucks
gemessen. Durch Versuche gewonnene
Ergebnisse besitzen also immer Wert, gleichgültig,
ob die daran geknüpfte Theorie sie
richtig deutet oder nicht.
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Abb. 6.
Galileis Versuch, den
Widerstand des Vakuums
zu messen.



Daß Galilei das Steigen von Flüssigkeiten
und verwandte Erscheinungen nicht auf
den Luftdruck zurückführte, ist um so verwunderlicher, als ihm
die Tatsache, daß die Luft Gewicht besitzt, bekannt war. Aristoteles
hatte der Luft und dem Feuer absolute Leichtigkeit,
d. h. das Bestreben, sich in gerader Linie vom Mittelpunkt
der Erde fortzubewegen, zugeschrieben. Wäre diese Annahme
richtig, so würde, wie Galilei72 anführt, daraus folgen, daß
beim Verdichten der Luft die Leichtigkeit und damit das
Streben nach oben zunimmt. Der Versuch lehrte indes das
Gegenteil. Galilei nahm einen Glaskolben und preßte mittelst
einer Spritze Luft hinein. Dann wurde der Kolben auf einer genauen
Wage ins Gleichgewicht gebracht. Öffnete man ihn jetzt,
so trat die zusammengepreßte Luft heraus, und das Gefäß wurde
merklich leichter, so daß von der Tara etwas fortgenommen
werden mußte, um das Gleichgewicht wieder herzustellen. »Unzweifelhaft
ist das Gewicht des Fortgenommenen«, sagt Galilei,
»genau gleich dem der Luft, die gewaltsam hineingepreßt war«73.

Hatte man einmal die Luft als einen schweren Körper erkannt,
so lag die Frage nahe, wie groß ihr Gewicht im Verhältnis
zu demjenigen anderer Stoffe, z. B. des Wassers, sei. Auch
diese Aufgabe, das spezifische Gewicht der Luft zu bestimmen,
löste Galilei durch den Versuch74. Er preßte Wasser in einen
mit Luft gefüllten Kolben, bis er zu dreiviertel seines Inhalts mit
Wasser angefüllt war, ohne daß die Luft entweichen konnte.
Das Gewicht dieses Gefäßes mit seinem Inhalt wurde bestimmt.
Darauf wurde eine die komprimierte Luft abschließende Haut
durchstochen, um diejenige Luftmenge, die vorher drei Viertel
des Kolbens eingenommen hatte, entweichen zu lassen. Galilei
wog jetzt wieder und fand einen dem Gewichte jener Luftmenge
entsprechenden Unterschied. War diese Bestimmung bei den damaligen
Hilfsmitteln und den der Methode anhaftenden Unvollkommenheiten
auch keine genaue, so ergab sich doch, daß die
Luft sehr viel leichter als das Wasser ist75.

Die Fallbewegung.

Größeres als in der Physik der gasförmigen Körper, deren
experimenteller Ausbau insbesondere auf deutschem Boden durch
Otto von Guericke erfolgte, hat Galilei dadurch geleistet, daß
er den Begriff der gleichmäßig beschleunigten Bewegung erörterte
und durch Versuche nachwies, daß der Fall über die schiefe Ebene
eine derartige Bewegung sei.



Zur genaueren Untersuchung der Fallbewegung wurde Galilei
durch die Behauptung des Aristoteles geführt, daß verschiedene
Körper in ein- und demselben Mittel mit verschiedener Geschwindigkeit
sich bewegen sollten, und zwar proportional den Gewichten.
Demnach müßten z. B. zwei Steine, deren Gewichte sich wie 1 : 10
verhalten, wenn man sie gleichzeitig 100 Ellen hoch herabfallen
läßt, so verschieden in ihrer Bewegung sein, daß bei der Ankunft
des größeren der kleinere erst 10 Ellen zurückgelegt haben würde.
Galilei bezweifelte dies. Man darf jedoch nicht annehmen, daß
sich nicht schon früher Zweifel geregt hätten. Es fehlte selbst
nicht an älteren Versuchen zur Nachprüfung der aristotelischen
Lehre76. Ja, Philoponos, der alexandrinische Kommentator des
Aristoteles, bemerkte schon tausend Jahre vor Galilei, daß
jene Lehre durch Versuche widerlegt werde. Philoponos tut
dies mit folgenden Worten77: »Nach Aristoteles müssen, wenn
das Medium, durch welches die Bewegung stattfindet, dasselbe
ist, die Fallzeiten sich wie die Gewichte der bewegten Körper
verhalten. Das ist aber, wie der Augenschein besser als jeder
logische Beweis dartut, gänzlich falsch. Läßt man nämlich zwei
an Schwere sehr verschiedene Körper gleichzeitig aus derselben
Höhe herabfallen, so wird man sehen, daß die Fallzeiten sich nicht
wie die Gewichte verhalten, sondern daß nur eine sehr geringe
Verschiedenheit in bezug auf die Zeiten stattfindet«.

Um eine Entscheidung herbeizuführen, ließ Galilei, wie
Viviani berichtet hat, vom schiefen Turm zu Pisa, der sich für
Fallversuche trefflich eignete, eine halbpfündige Kugel und eine
hundertpfündige Bombe herabfallen. Dabei eilte letztere nur um
wenige Zoll voran78.



Die Verschiedenheiten in der Geschwindigkeit freifallender
Körper führt Galilei lediglich auf den Widerstand der Luft zurück.
Wenn man diesen Widerstand aufheben, mit anderen Worten
einen luftleeren Raum herstellen könne, »so würden alle Körper
gleich schnell fallen«.

Für Galilei blieb der Nachweis dieses Satzes, für den er
nur einen hohen Grad von Wahrscheinlichkeit annehmen konnte,
eine wissenschaftliche Utopie. Erst nach der Erfindung der Luftpumpe
wurde dieser Nachweis zu einem Versuch, der in jedem
elementaren Physikunterricht angestellt wird.

Wir wenden uns jetzt Galileis Versuchen und Betrachtungen
über das Gesetz der Fallbewegung zu. Sie sind von größter
Wichtigkeit, weil sie den Ausgangspunkt für die Entwicklung der
Dynamik bilden. Galilei behandelte seine Aufgabe zuerst rein
phoronomisch, d. h. als Problem der Bewegungslehre. Er stellte
der gleichförmigen die gleichförmig beschleunigte Bewegung gegenüber
und schuf den Begriff der gleichförmigen Beschleunigung79.
Gleichförmig beschleunigt nennt Galilei diejenige Bewegung, bei
der von Anfang an in gleichen Zeiten gleiche Geschwindigkeitszunahmen
erfolgen.

Daß sich die Geschwindigkeit fallender Körper stetig vergrößert,
konnte der frühesten Beobachtung nicht entgehen. Indessen
von dieser Beobachtung bis zur Auffindung von Gesetz und
Ursache war ein weiter Weg. Rein begrifflich hatte sich mit der
gleichförmig beschleunigten Bewegung um die Mitte des 14. Jahrhunderts
schon Oresme, einer der hervorragendsten Mathematiker
des Mittelalters, befaßt. In einem um dieselbe Zeit entstandenen
Kommentare heißt es, die Zeit, in der eine Wegstrecke
bei gleichförmig beschleunigter Bewegung zurückgelegt werde,
sei gleich der Zeit, in der dieselbe Strecke bei einer gleichförmigen
Bewegung zurückgelegt werde, für welche die Geschwindigkeit das
Mittel aus der geringsten und der größten Geschwindigkeit sei.
Derartige begriffliche Untersuchungen sind von Einfluß auf Galilei
gewesen, der sich zunächst mit der scholastischen Physik vertraut
gemacht hatte80. Letztere erblickte die Ursache des Fallens in
einer verborgenen Qualität, in einem dem Körper innewohnenden
Streben nach »seinem Orte«. Die auf solche Weise hervorgerufene
Bewegung sollte schneller werden, indem die Luft, die sich über
dem fallenden Körper stets wieder zusammenschließt, dabei fortgesetzt
einen neuen Antrieb ausübe. Im vollsten Gegensatz dazu
behauptete Galilei, daß die Luft kein Mittel zur Beschleunigung
sei, sondern vielmehr durch ihren Widerstand die Fallbewegung
verzögere. Die experimentelle Probe konnte Galilei, wie gesagt,
nicht machen, da ihm die Luftpumpe noch nicht zur Verfügung
stand. War die Ansicht der älteren Physiker richtig, so hätten
die Körper nach Fortnahme der Luft sich gleichförmig bewegen
müssen, während doch, wie Galilei voraussah und spätere Versuche
bewiesen, die Körper im luftleeren Raum erst recht deutlich
die gleichförmig beschleunigte Bewegung erkennen lassen.

Sehr ausführlich sucht Galilei darzutun, daß der fallende
Körper nach Verlauf des ersten, sehr kleinen Zeitteilchens eine
von Null kaum verschiedene Geschwindigkeit besitzt. Daß der
Körper seine Bewegung »mit unendlich großer Langsamkeit« beginnt,
schließt Galilei auch aus dem Verhalten beim senkrechten
Wurf. Man könne nicht zweifeln, daß der Zuwachs an Geschwindigkeit
beim Fall in derselben Ordnung vor sich gehe, wie die
Abnahme beim senkrechten Wurf. Bei letzterem werde die Geschwindigkeit
allmählich ganz vernichtet. Bevor der Stein zur
Ruhe komme, müsse er daher alle Grade der Langsamkeit durchgemacht
haben.

Um zu einer richtigen Vorstellung von der Fall- und von
der Wurfbewegung zu gelangen, bedurfte es einer Erweiterung
des Trägheitsgesetzes. Daß ein ruhender Körper im Zustande der
Ruhe beharrt und nur durch die Wirkung einer Kraft in den Zustand
der Bewegung übergeht, war ein Satz, den Galilei nicht
erst zu entdecken brauchte. Dieser Satz war stets, stillschweigend
oder ausgesprochen, die Voraussetzung mechanischer Erörterungen
gewesen. Wohl aber blieb es Galilei vorbehalten, irrtümliche
und unklare Vorstellungen, die man sich über den Zustand der
Bewegung gebildet hatte, zu berichtigen oder zu klären. Vor ihm
herrschte die Meinung, jede Bewegung müsse auch ohne äußere
Hindernisse endlich aufhören, wenn sie nicht durch eine Kraft
unterhalten werde. Galilei dagegen erweiterte das Trägheitsgesetz
dahin, daß ein sich bewegender Körper weder seine Geschwindigkeit
noch seine Richtung ändert, wenn nicht eine Kraft auf ihn
einwirkt. Wirkt aber eine Kraft, so ist, wie Galilei gleichfalls
erkannte, die Größe ihrer Wirkung die gleiche, einerlei ob der
Körper ruht oder sich bewegt. Da nun beim freien Fall eine
Kraft ununterbrochen wirkt, so werden sich ihre Wirkungen stetig
summieren, da jede einmal hervorgerufene Wirkung, dem Trägheitsgesetz
zufolge, erhalten bleibt. Diese Summation bewirkt
Galilei auf folgende Weise: AB stelle die Zeit t vor, in der
ein Körper eine bestimmte Strecke, mit der Ruhelage beginnend,
mit gleichförmig beschleunigter Bewegung zurücklegt. Die Gesamtzeit
teile man in Zeitteilchen und trage die einem jeden
entsprechenden Geschwindigkeitsbeträge senkrecht
auf AB ab. EB sei die Endgeschwindigkeit v.
Verbindet man dann sämtliche Endpunkte der
senkrecht zu AB errichteten Strecken, so erhält
man die Linie AE, die mit EB (v) und
AB (t) ein Dreieck bildet. Errichtet man dann
über FB = ½ EB = ½ v ein Parallelogramm, so
erhält man zwei flächengleiche Figuren ABE und
ABFG. Beide sind, wie aus der Größe der Stücke
AB, EB und FB folgt, gleich (v·t)/2. Innerhalb
der Zeit t legt somit ein Körper bei gleichförmig
beschleunigter Bewegung den gleichen Weg zurück,
als ob er sich während der Zeit t mit der sich stets
gleichbleibenden Geschwindigkeit v/2 bewegt hätte.
»Denn«, sagt Galilei, »was bei der beschleunigten Bewegung
während der ersten Zeithälfte an Bewegung fehlt, entsprechend
den Parallelen im kleinen Dreieck AGJ, wird während der
zweiten Hälfte der Bewegung ersetzt durch den Überschuß, den
die Parallelen in dem AGJ flächengleichen kleinen Dreieck EFJ
vorstellen.«


[image: Abb. 7]
Abb. 7.
Galilei ermittelt
das Gesetz der
gleichförmig beschleunigten
Bewegung.



Aus der auf solche Weise gewonnenen Grundvorstellung, nach
welcher der Weg bei einer gleichförmig beschleunigten Bewegung
gleich dem Produkt aus der Zeit und der halben Endgeschwindigkeit
ist (s = v/2·t), folgen nun die übrigen Fallgesetze rein mathematisch.
So bewies denn Galilei im Anschluß an dieses Grundgesetz
den Satz, daß, wenn ein Körper von der Ruhelage aus
gleichförmig beschleunigt fällt, die in bestimmten Zeiten zurückgelegten
Strecken sich wie die Quadrate der Zeiten verhalten.
Wird nämlich v = gt, so ist s = (g/2)·t2. Daraus schloß Galilei
weiter, daß sich die Fallstrecken, die in gleichen Zeiten zurückgelegt
werden, wie die ungeraden Zahlen 1, 3, 5, 7 ... verhalten
müssen. Dies ergibt sich, wenn wir die Unterschiede der Fallräume
für t = 1, 2, 3, 4 ... bilden.

Die Größe der Beschleunigung für den freien Fall zu bestimmen,
gelang Galilei noch nicht. So gibt er an, eine eiserne
Kugel sei nach wiederholt angestellten Versuchen aus einer Höhe
von 100 Ellen, das sind etwa 60 m, in 5 Sekunden herabgefallen81.
In Wahrheit würde der Fallraum für diese Zeit aber mehr als
das Doppelte (122 m) betragen. Galilei konnte zwar den Einfluß
des Luftwiderstandes noch nicht in Rechnung ziehen, nichtsdestoweniger
ist der Fehler, den er beging, auffallend groß, da
sich aus seinen Versuchen für die Beschleunigung nur der Wert
von 5 m ergab. Erst Huygens stellte fest, daß der Geschwindigkeitszuwachs
10 m beträgt, so daß ein Körper nach Ablauf der
1., 2., 3. ... Sekunde eine Geschwindigkeit von 10, 20, 30 ...
Metern besitzt. Solche Größen ließen sich durch unmittelbare
Beobachtung nicht gut messen. Galilei suchte deshalb nach
einem Mittel, die Fallgeschwindigkeit zu vermindern. Als solches
schien ihm die schiefe Ebene besonders geeignet. Es sei bekannt,
so führt er aus, daß die Geschwindigkeiten ein und desselben
Körpers bei verschiedenen Neigungen der Ebene verschieden groß
seien. Den größten Wert habe die Geschwindigkeit bei senkrechter
Richtung. Die Geschwindigkeit sei um so geringer, je mehr die
Ebene vom Lot abweiche. Es zeige sich also, daß der Impuls,
die Energie oder die Tendenz zum Fall82 durch die Ebene, auf
welche der Körper sich stützt, vermindert werde. Galilei bestimmt
auch die Abhängigkeit der Impulse von den Neigungswinkeln und
zeigt, daß der Impuls, den der Körper beim freien Fall erhält,
und derjenige, der längs der schiefen Ebene wirkt (der in ihrer
Richtung wirkenden Seitenkraft oder Komponente, würden wir heute
sagen), sich wie die Länge zur Höhe der schiefen Ebene verhalten83.

Die schiefe Ebene war somit, weil dem geringeren Impulse
auch ein geringerer Geschwindigkeitszuwachs entspricht, vortrefflich
geeignet, die Schlüsse, zu denen Galilei über den Verlauf
einer gleichförmig beschleunigten Bewegung gekommen war,
experimentell auf ihre Richtigkeit zu prüfen. »Denn«, sagt er,
»die Prinzipien sind durch Versuche zu erhärten, und diese bilden
die Grundlage für den ganzen späteren Aufbau.«



Über seine Versuche mit der schiefen Ebene gibt uns Galilei
folgenden Bericht84: In einem Brett von 12 Ellen Länge wurde
eine Rinne von einem halben Zoll Breite hergestellt. Sie wurde
gerade gezogen und mit sehr glattem Pergament ausgekleidet. Das
Brett wurde darauf an dem einen Ende gehoben, bald eine, bald
zwei Ellen hoch. Sodann ließ Galilei eine glatt polierte Messingkugel
durch die Rinne laufen und bestimmte die Fallzeit für die
ganze Länge der Rinne. Ließ er dagegen die Kugel nur durch
¼ der Rinne laufen, so erforderte dies genau die halbe Zeit. Die
Strecken verhielten sich somit wie 1 : 4, wenn die Fallzeiten in dem
Verhältnis 1 : 2 standen; allgemeiner ausgedrückt: die Strecken
verhielten sich wie die Quadrate der Zeiten. Daß dieses Gesetz
nicht nur in dem gewählten Beispiel seine Richtigkeit hat, sondern
eine für alle Fälle zutreffende Regel ist, wurde durch hundertfache
Wiederholung unter jedesmaliger Abänderung der Strecke und des
Neigungswinkels dargetan.

Zur genaueren Bestimmung der Fallzeit diente folgende Vorrichtung:
Ein größeres Gefäß war mit Wasser gefüllt und besaß
eine enge Öffnung im Boden, durch die sich ein feiner Strahl
ergoß. Dieser wurde während jeder Beobachtungszeit in ein kleineres
Gefäß geleitet. Die auf solche Weise aufgefangene Flüssigkeitsmenge
wog man mittels einer sehr genauen Wage. Aus den
Differenzen der Wägungen ergab sich das Verhältnis der Gewichte.
Es entsprach dem Verhältnis der Zeiten mit solcher Genauigkeit,
daß die zahlreichen Beobachtungen niemals merklich voneinander
abwichen.

Wir haben Galileis Versuchen mit der schiefen Ebene eine
etwas größere Ausführlichkeit gewidmet, weil sie eine der ersten,
bis zur Auffindung des Naturgesetzes durchgeführten
Versuchsreihen darstellen.
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Abb. 8.
Galilei untersucht
die Bewegung auf
der schiefen Ebene.



Galilei erkannte auch, daß die Geschwindigkeiten,
die beim Falle über die schiefe Ebene
erlangt werden, nur von der Höhe und nicht
von der Neigung abhängen. Ein Körper wird
demnach, wenn er von C nach A und ein
anderes Mal von C nach D gelangt (Abb. 8), in
A und in D die gleiche Geschwindigkeit haben.
Und zwar ist die Geschwindigkeit dieselbe, als wenn der Körper
im freien Fall von C nach B gelangt wäre.



Daß die Geschwindigkeiten eines Körpers, der durch die
Schwerkraft auf beliebiger Bahn zur selben Horizontalebene hinabsteigt,
unter der Voraussetzung, daß keine Widerstände die Bewegung
hemmen, sämtlich gleich sind, bewies Galilei noch durch
folgenden Versuch. Er ließ das einfache Pendel AB vor einer
Wand schwingen, so daß es den Bogen CBD beschrieb. Das
Pendel wird dann, indem es durch den Bogen BD ansteigt,
fast bis zur Horizontalebene CD gelangen und nur ein kleines
Stück darunter bleiben, einzig und allein deshalb, weil infolge des
Widerstandes der Luft und des Fadens das Pendel an der genauen
Rückkehr in dieselbe Horizontalebene gehindert wird.

Befestigt man darauf bei E
einen Nagel in der unmittelbar
hinter dem Pendel befindlichen
Wand, so wird das Pendel dadurch
gezwungen, den Bogen BG um E
als Mittelpunkt zu beschreiben.
Es wird aber, von der erwähnten
kleinen Ungenauigkeit abgesehen,
wieder dieselbe Horizontalebene
CD erreichen. Das gleiche ist
der Fall, wenn der Nagel in F
angebracht wird. Nur wird das
Pendel diesmal wieder einen anderen Bogen und zwar BJ durchlaufen.
Es sind folglich alle Momente und alle Geschwindigkeiten,
mit denen sich das Pendel durch B bewegt, gleich groß. Wenn
wir die Bewegung in D, G oder J anfangen lassen, so wird das
Pendel auf der anderen Seite stets bis C steigen. Folglich sind
auch alle Momente, beziehungsweise Geschwindigkeiten, die beim
Durchlaufen der so verschiedenen Bahnen DB, GB, JB hervorgerufen
werden, einander gleich.


[image: Abb. 9]
Abb. 9. Galileis Versuch, der später
auf das Gesetz von der Erhaltung
der Kraft geführt hat.



An dieser Stelle begegnet uns also im Grunde schon, angewandt
auf den Fall der Pendelbewegung, jene Vorstellung,
welche unter der Bezeichnung des Prinzips von der Erhaltung
der Kraft das Fundament der gesamten Naturerklärung bildet.
Ist doch die Erkenntnis, daß ein frei fallender Körper infolge
der erlangten Geschwindigkeit gerade zu seiner ursprünglichen
Höhe wieder emporzusteigen vermag, für alle späteren Vorstellungen,
die man sich über die Erhaltung der Kraft gebildet
hat, grundlegend geblieben. Es erübrigte nur, die an dem einzelnen
Körper gewonnene Erkenntnis auf ein System von Körpern
zu übertragen, eine Erweiterung des Prinzips, die, wie sich später
zeigen wird, Huygens vollzog.

Die Pendelbewegung.

Wir wollen jetzt die leitenden Gesichtspunkte und Versuche
kennen lernen, die Galilei zur Erklärung der Pendel- und der
Wurfbewegung geführt haben, und uns dabei eng an die von ihm
selbst gegebene Darstellung anschließen.

Galilei hatte bei seinen Versuchen neben einer Verringerung
der Beschleunigung stets eine Herabminderung des Widerstandes
im Auge. »Läßt man zwei an Gewicht verschiedene Körper
fallen,« so führt er aus, »etwa eine Kork- und eine Bleikugel, so
wird die Luft, die stets verdrängt und zur Seite geschoben werden
muß, einen größeren Einfluß auf den leichteren Körper ausüben
als auf den mit einem heftigeren Antrieb begabten schwereren.
Der erste wird infolgedessen zurückbleiben.«

Wenn auch der Widerstand der Luft durch die Verlangsamung,
welche der Fall bei der schiefen Ebene erfährt, hinreichend vermindert
wird, so ließ sich doch nicht verkennen, daß durch
die Berührung mit dieser Ebene ein neuer Widerstand auftrat.
Gab es nun ein Mittel, den Einfluß dieses Widerstandes zu beseitigen?
Das letztere wurde erreicht, indem man die Kork- sowie
die Bleikugel an zwei gleichen, feinen Fäden von 4–5 Ellen Länge
aufhing. Entfernte man dann beide Körper aus der Ruhelage
und ließ sie gleichzeitig los, so wurden Kreisbögen von gleichen
Halbmessern beschrieben. Die Kugeln schwangen über ihre ursprüngliche
Lage hinaus und kehrten auf denselben Wegen zurück.
Nachdem sie sehr oft hin- und hergegangen waren, zeigte sich
deutlich, daß die Bewegung des schwereren Körpers so sehr mit
derjenigen des leichteren übereinstimmte, daß kaum eine Verschiedenheit
zu bemerken war. Die Pendelbewegung stellte sich
somit als eine Fallbewegung dar, bei welcher der Widerstand des
Mittels sehr eingeschränkt und der bei einer geneigten Ebene vorhandene
Reibungswiderstand vermieden ist.

Noch eine weitere Ähnlichkeit zwischen der Pendelbewegung
und dem Fall über die schiefe Ebene ließ sich erkennen: Galilei
hatte gezeigt85, daß ein Körper, welcher längs der zu einem beliebigen
Bogen gehörigen Sehne herabfällt, z. B. von A, B, C, D
oder E nach F, die gleiche Zeit gebraucht, einerlei ob der entsprechende
Bogen volle 180° oder weniger beträgt. Auch für ein
um A schwingendes Pendel ergab sich, daß es in der gleichen
Zeit, in der es den Weg E1F
(der Sehne EF entsprechend)
zurücklegt, bei größerem
Ausschlage die Strecke D1F
(entsprechend der Sehne DF)
durchfällt. Hatte man z. B.
das Bleipendel um 50° von
dem Lote entfernt86 und ließ
man es frei schwingen, so
beschrieb es jenseits des
Lotes gleichfalls nahezu 50°,
im ganzen also 100°. Zurückkehrend,
beschrieb es einen
etwas kleineren Bogen und gelangte nach einer großen Anzahl
von Schwingungen endlich zur Ruhe. Jede dieser Schwingungen
kam in einer sich stets gleich bleibenden Zeit zustande, sowohl
die von 50° Ausschlag, wie diejenigen von 20° oder 10°. Die
Geschwindigkeit nahm also allmählich ab, da in gleichen Zeiten
immer kleinere Bögen beschrieben wurden87.


[image: Abb. 10]
Abb. 10. Zur Erklärung der Isochronie der
Pendelschwingungen.



Ganz denselben Vorgang nahm Galilei bei der Korkkugel
wahr, wenn er sie an einem ebenso langen Faden befestigte. Nur
daß die Korkkugel nach einer
kleineren Zahl von Schwingungen
zur Ruhe kam. Alle
Schwingungen geschahen in
gleichen Zeiten, und zwar
in derselben Zeit wie die
Schwingungen der Bleikugel.


[image: Abb. 11]
Abb. 11. Kreis und Zykloide als Bahnen
des schwingenden Körpers.



Für größere Ausschläge
des Pendels besitzt, wie man
später erkannte, dieses Gesetz
nicht mehr die volle
Gültigkeit, da der Kreisbogen keine Isochrone, d. h. keine Kurve
gleicher Schwingungsdauer ist. Huygens wies später nach, daß dies
aber für die Zykloide zutrifft. Da die Krümmung beider Kurven in
der Nähe der Ruhelage F jedoch (s. Abb. 11) nahezu gleich ist, so
gilt das Gesetz von der Isochronie der Pendelschwingungen für
kleine Ausschlagswinkel mit hinreichender Genauigkeit. Auffallend
bleibt es allerdings, daß Galilei den bei größeren Winkeln eintretenden
Unterschied nicht erwähnt. Es geschah dies wohl daher,
weil er ihn allein auf den wachsenden Widerstand des Mediums bei
der schnelleren Bewegung durch einen größeren Kreisbogen zurückführte.
Überhaupt beschränkt sich Galilei vorwiegend auf die
experimentelle Erforschung der Pendelbewegung, während ihre
mathematische Analyse späteren Jahrzehnten vorbehalten blieb.
Wieder war es Huygens, dem wir die Formel für diese Bewegung,
sowie die Verwendung des Pendels in den Uhren verdanken. Der
Gedanke, das Pendel zur Zeitmessung zu
verwenden, ist Galilei indessen auch schon
gekommen88.

Auch die Heilkunde hatte sich zu Anfang
des 17. Jahrhunderts dieses Gedankens
bemächtigt. So findet sich ein zur Pulszählung
dienendes Instrument in einem 1602
erschienenen Buche beschrieben. Es bestand89
aus einer Bleikugel, die der Arzt an einer
langen Schnur hielt. Man brachte die Schwingungen
dieses Pendels mit dem Puls in Übereinstimmung
und las dann die Pendellänge an
einer Skala ab.


[image: Abb. 12]
Abb. 12. Galilei verbindet
das Pendel mit
einem Zählwerk.



Galilei hat seinem Sohne und seinem
Schüler Viviani, wie aus dessen Aufzeichnungen
hervorgeht, kurz vor seinem Tode sogar
die Konstruktion einer Pendeluhr entwickelt.

Sie besaß folgende Einrichtung. An dem
Pendel AB (Abb. 12) ist eine starke Borste C
befestigt. Diese greift in eine Lücke des Zahnrades
D, das sich auf der Achse F drehen
kann. Es ist ersichtlich, daß die Borste bei jedem Hin- und Hergehen
des Pendels dem Rädchen eine Drehung um einen Zahn erteilt.
Diese Drehung ließ sich leicht auf ein Zählwerk übertragen.
Nur bedurfte das Pendel, damit es nicht schließlich stillstand, von
Zeit zu Zeit eines Anstoßes. Galileis Bemühen mußte sich ganz
naturgemäß darauf richten, diesen Anstoß durch eine mechanische
Vorrichtung herbeizuführen. Abb. 13 gibt Galileis Zeichnung
wieder, die er kurz vor seinem Tode anfertigen ließ90. Über die
Prioritätsansprüche ist man geteilter Ansicht. Jedenfalls hat Huygens
die Pendeluhr unabhängig von Galileis Vorarbeiten erfunden.


[image: Abb. 13]
Abb. 13. Galileis Entwurf einer Pendeluhr91.



Galilei dehnte seine Untersuchungen auch auf Pendel verschiedener
Länge aus und fand, daß ein Pendel, um doppelt so
langsam zu schwingen wie ein anderes, viermal so lang sein muß,
während der neunfachen Länge eine dreimal so große Schwingungszeit
entspricht, so daß sich also die Pendellängen wie die Quadrate
der entsprechenden Schwingungszeiten verhalten92.

Man vermöge daher, fügt Galilei hinzu, sofort die Länge eines
Pendels von beliebiger Länge zu berechnen, auch wenn sein Aufhängepunkt
unsichtbar sei und man nur das untere Ende beobachten
könne. Galilei gibt dazu folgendes Beispiel: »Während mein
Gehilfe einige Schwingungen zählt, beobachte ich die Schwingungszahl
eines anderen Pendels von genau einer Elle Länge. Angenommen
mein Gehilfe habe 20 Schwingungen gezählt, während ich
240 erhalten habe. Die Quadrate dieser Zahlen sind 400 und 57600.
Das lange Pendel enthält somit 57600 solcher Teile, von denen
400 auf eine Elle gehen. Seine Länge ist also 57600 : 400 gleich
144 Ellen.«

Der Wurf.

Nachdem die Pendelbewegung als eine Modifikation der Fallbewegung
erkannt war, ergab sich dem Scharfsinn Galileis dasselbe
für den Wurf. Bezüglich dieses Vorganges war die bloße Spekulation
zu den ungereimtesten Ansichten gelangt. Einige Klarheit
findet sich zwar schon bei den Vorläufern Galileis93. Diesem
blieb es jedoch vorbehalten, auf Grund der von ihm erkannten
Prinzipien eine wahre und erschöpfende Analyse der Wurfbewegung
zu geben. Es war dies zunächst das Prinzip der Trägheit oder
des Beharrungsvermögens. Danach ist die Bewegung auf einer
unbegrenzten horizontalen Ebene, wenn alle Widerstände ausgeschlossen
sind, gleichförmig und unaufhörlich94. Wird dann, so
lautet das zweite Prinzip, der in Bewegung begriffene Körper
einer Kraft unterworfen, so setzt sich die neue Bewegung, die aus
der Wirkung jener Kraft hervorgeht, mit der ersten, schon bestehenden
zusammen.



Wahrscheinlich hat Galilei diese beiden Grundprinzipien der
Mechanik, nämlich das Trägheitsgesetz und das Gesetz von der
gegenseitigen Unabhängigkeit der auf einen Körper einwirkenden
Kräfte, aufgestellt, um das Koppernikanische System darauf zu
stützen. Man geht sogar so weit, diese Prinzipien weniger als das
Ergebnis von Versuchen, denn als Folgerungen aus dem Koppernikanischen
System anzusehen95. Richtiger ist wohl, daß Galilei
die Ergebnisse der Erforschung irdischer mechanischer Vorgänge
mit den nach der Theorie des Koppernikus gedeuteten Himmelserscheinungen
in gutem Einklang fand.

Im Grunde genommen handelt es sich bei Galileis Untersuchung
des Wurfes zunächst um die Anwendung des Gesetzes
vom Parallelogramm der Bewegungen, das uns bei ihm zum erstenmal
als allgemeines Prinzip begegnet, und noch nicht um das
Gesetz vom Parallelogramm der Kräfte, das sich zuerst in voller
Klarheit in Newtons Prinzipien ausgesprochen findet. Andererseits
betrachtete aber schon Galilei die erzeugten Bewegungen
nicht rein phoronomisch, sondern er faßte sie auch als Wirkungen
von Kräften auf. Mit Recht aber gilt es als einer der wichtigsten
Fortschritte der Mechanik, daß Galilei die Umstände, welche die
Bewegungen veranlassen, in ihren Wirkungen als unabhängig voneinander
erkannte. Newton selbst hat ihn deshalb als den Entdecker
des Satzes vom Parallelogramm der Kräfte bezeichnet96.
Wären Galilei indessen die in diesem Satz enthaltenen Vorstellungsweisen
so geläufig gewesen wie die Zusammensetzung der
Bewegungen, so würde er den Satz vom Parallelogramm der Kräfte
auf statische Probleme, wie sie z. B. das Verhalten der Körper
auf der schiefen Ebene darbietet, angewandt haben. Sehen wir
jetzt an einem besonderen Fall, wie Galilei die von ihm erkannten,
soeben erwähnten Prinzipien anwendet.

Ist die horizontale Ebene, auf der ein Körper sich dem Gesetz
der Trägheit zufolge fortbewegt, nicht unendlich, sondern begrenzt,
so wird der Körper, am Ende der Ebene angelangt, sich zwar
weiter bewegen, zu seiner gleichförmigen unzerstörbaren Bewegung
wird sich indes die durch die Schwerkraft erzeugte gesellen, so
daß eine zusammengesetzte Bewegung entsteht. Solcher Art nun
ist die Wurfbewegung. Der Körper wird eine Bahn von stetiger
Krümmung beschreiben, und zwar, wie sich leicht zeigen läßt,
eine Halbparabel.

Die horizontale Ebene, längs der sich der Körper gleichförmig
fortbewegt, sei AB. Am Ende B der Ebene fehlt die
Stütze, und der Körper unterliegt infolge seiner Schwere einer
Bewegung längs der Senkrechten BN. Man denke sich AB
nach E hin fortgesetzt und teile gewisse gleiche Strecken
BC, CD, DE darauf ab. Gelangt der Körper infolge seiner
gleichförmigen Bewegung nach C, so denken wir uns das durch
den Fall bedingte Stück CJ hinzugefügt. Der Körper wird sich
somit nach Ablauf derjenigen Zeit, welche der Bewegung von B
nach C entspricht, im Punkte J befinden. Während der Körper
infolge der gleichförmigen Bewegung
von C nach D gelangt,
also dasselbe Stück zurücklegt
wie vorher, ist die Fallstrecke
gleich 3CJ oder der Gesamtfallraum
DF gleich 4CJ. Hat
endlich nach Ablauf des dritten
Zeitteils der Körper infolge der
gleichmäßigen Bewegung die dreifache
Strecke BE zurückgelegt,
so würde ihn der Fall von B
nach L geführt haben, welche
Strecke das Neunfache von CJ ist usf. Nun verhalten sich die
Quadrate von BC, BD und BE, welche Stücke man als die Ordinaten
der Kurvenpunkte J, F und H bezeichnet, wie die Strecken
CJ, DF und EH, nämlich wie 1 : 4 : 9. Diese Strecken CJ, DF
und EH sind die Abszissen der Punkte J, F und H. Die analytische
Geometrie lehrt aber, daß alle Punkte, deren Abszissen
sich verhalten wie die Quadrate der zugehörigen Ordinaten, einer
Parabel angehören97.
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Abb. 14.
Galileis Ableitung der Wurfkurve98.



Galilei zeigte dann, daß der schräg aufwärts gerichtete Wurf
nichts neues darbietet, sondern in der gleichen Weise aus zwei
Bewegungen hervorgeht, deren Zusammensetzung als Wurfbahn
wieder eine Parabel liefert. Er bestimmt auch die Parabelamplituden
(Wurfweiten) und weist nach, daß Körper, die mit gleicher
Anfangsgeschwindigkeit (»gleichen Impulsen«) unter Winkeln abgeschossen
werden, die nach oben und unten gleich viel von 45°
abweichen, dieselbe Wurfweite besitzen99.

Aus der Tatsache, daß beim Spannen eines Seiles auch zwei
Kräfte wirken, nämlich die horizontale Spannkraft und das in
vertikaler Richtung wirkende Gewicht des Seiles, leitet Galilei
die Erscheinung ab, daß das Seil stets die Form einer krummen
Linie annimmt und bei einiger Länge nicht vollkommen horizontal
ausgespannt werden kann. Galilei ist oft des Irrtums geziehen
worden, daß er jene Linie, die später Kettenlinie genannt wurde,
mit der Parabel verwechselt habe. Er sagt aber ausdrücklich,
daß nicht gleiche, sondern nur ähnliche Verhältnisse vorlägen und
das gespannte Seil sich der parabolischen Form nur nähere100.

Obgleich Galilei sehr wohl wußte, daß die Wurflinie durch
den Luftwiderstand bedeutende Änderungen erfährt, hat er letzteren
bei seinen Ableitungen doch außer Betracht gelassen. Daß die
Ergebnisse der Theorie in der Wirklichkeit durch eine Reihe von
Nebenumständen beeinflußt werden, ohne jedoch deshalb ihren
Wert zu verlieren, war ihm vollkommen klar. Er selbst beweist
in aller Ausführlichkeit, daß genau genommen weder die durch
den Stoß hervorgerufene Bewegung gleichförmig, noch die Fallbewegung
gleichförmig beschleunigt, noch die Wurfkurve eine
Parabel ist. Letzteres treffe schon deshalb nicht zu, weil die
Richtung der Schwerkraft nicht sich gleich bleibt, sondern sämtliche
Lote nach dem Erdmittelpunkte zusammenlaufen. Bei weiten
Würfen aus Geschützen müsse dieser Umstand die Form der Kurve,
ganz abgesehen von dem Widerstand der Luft, schon merklich
beeinflussen. Wir sehen, daß hier schon im Keime das Problem
der Zentralbewegung, deren Gesetze erst Newton und Huygens
ermittelten, gegeben ist. Die durch den Stoß hervorgerufene, der
Theorie nach gleichförmige Bewegung wird aber, wie Galilei
weiter ausführt, durch den Luftwiderstand nicht nur verzögert,
sondern schließlich ganz vernichtet; und zwar geschehe dies um
so schneller, je leichter der Körper sei. Jede Fallbewegung müsse
endlich, auch bei den schwersten Körpern, infolge des mit der
Geschwindigkeit sehr stark anwachsenden Widerstandes der Luft
in eine gleichförmige Bewegung übergehen. Um dies zu entscheiden,
empfiehlt Galilei, je eine Kugel aus großer und aus geringer
Höhe senkrecht herabzuschießen. Obgleich der Theorie nach im
ersten Fall die Wirkung eine größere sein müsse, so werde man
doch das Umgekehrte finden, weil der Luftwiderstand die Geschwindigkeit,
die dem Geschoß durch die Kraft des Pulvers erteilt
werde, auf dem größeren Wege bedeutender hemme als auf
dem kleineren101. Beim schrägen Wurf müsse aus demselben
Grunde die Gestalt der Wurfkurve um so mehr von der Parabel
abweichen, je größer die Anfangsgeschwindigkeit sei. Die Nebenumstände,
die bei der Wurfbewegung in Betracht kommen,
hat Galilei somit erkannt und ihre Wirkung richtig ermessen.
Er kommt indessen zu der Ansicht, daß über all die unendlich
verschiedenen Möglichkeiten, die hinsichtlich der Schwere, der
Geschwindigkeit und der Form des geworfenen Körpers bestehen,
keine Theorie gegeben werden könne. Es bedurfte einer bedeutenden
Fortentwicklung der mathematischen Analyse und der Experimentierkunst,
um das »ballistische« Problem zu bewältigen
und die wirkliche Bahn eines geworfenen Körpers, die »ballistische
Kurve« zu bestimmen. Erst im 18. Jahrhundert haben Johann
Bernoulli und andere102 eine angenäherte Lösung dieser Aufgabe
gefunden103.

Das Prinzip der virtuellen Geschwindigkeiten.

Hiermit verlassen wir Galileis Untersuchungen über die Fall-
und Wurfbewegung, welche den dritten und vierten Tag seiner
»Unterredungen« ausfüllen und hier nur skizzenhaft geschildert
werden konnten. Diese Untersuchungen werden mit Recht als die
hervorragendste Leistung Galileis bezeichnet. Erst wenn man
berücksichtigt, daß Galilei auf diesem Gebiete kaum etwas anderes
vorfand als irrige Meinungen, vermag man den Ausspruch
Lagranges zu würdigen, daß ein außerordentliches Genie dazu
gehörte, um diesen Teil der »Unterredungen«, den man nie genug
bewundern könne, zu verfassen.



Wie wir sahen, liegen die Hauptverdienste Galileis auf dem
Gebiete der Dynamik. Ja, er hat diesen Teil der Mechanik, von
dem vor ihm nur einige verhältnismäßig unbedeutende, durch
Lionardo da Vinci, Tartaglia, Benedetti und andere geschaffene
Ansätze vorhanden waren, erst von Grund aus geschaffen.
Die Fundamente der Statik hatte die neuere Zeit dagegen aus
dem Altertum überliefert bekommen. Doch war auf diesem Gebiete
von Archimedes bis Galilei so wenig geschehen, daß
letzterem auch hier nicht nur die schärfere Begründung der schon
bekannten Sätze, sondern auch die Auffindung mancher neuen
Wahrheit vorbehalten blieb.


[image: Abb. 15]
Abb. 15. Ableitung des Hebelgesetzes aus
dem Prinzip der virtuellen Geschwindigkeiten.



Vor allem verdanken wir Galilei jene eigentümliche Verbindung
statischer und dynamischer Grundsätze, die wir heute als
das Prinzip der virtuellen, d. h. möglichen Geschwindigkeiten oder
Verschiebungen bezeichnen. Man versteht darunter die Geschwindigkeiten,
welche die Punkte eines Systems, an dem sich Kräfte
das Gleichgewicht halten, in dem Momente annehmen würden, in
dem das Gleichgewicht gestört wird. Das neue Prinzip besagt,
daß die im Gleichgewicht befindlichen Kräfte sich umgekehrt wie
jene Wege oder Verschiebungen verhalten. Findet die zunächst
nur gedachte Verschiebung wirklich statt, so ist die bei der einen
Bewegung geleistete Arbeit gleich derjenigen, die bei der entgegengesetzten
Bewegung geleistet würde. Wie an Hand dieser Vorstellungsweise
verborgene statische Beziehungen als bestimmte Verhältnisse
hervortreten, möge
an einigen Beispielen aus
Galileis Schriften gezeigt
werden. So ergibt sich die
Bedingung für das Gleichgewicht
am Hebel aus dem
Prinzip der virtuellen Geschwindigkeiten104
folgendermaßen:
Zwei Kräfte P und
Q (Abb. 15) greifen an den
Armen des Hebels ACB unter einem rechten Winkel an. Die
Verschiebungen bei einer Störung des Gleichgewichts sind AD
und BE. Diese können für einen sehr kleinen Winkel als
gerade, zu ACB senkrechte Stücke betrachtet werden. Es verhalten
sich dann die Kräfte, wenn Gleichgewicht besteht, umgekehrt
wie diese Verschiebungen (P : Q = BE : AD). Auf solche
Weise erkannte Galilei die Wahrheit, daß bei jeder Maschine
das, was an Kraft gewonnen wird, an Weg wieder verloren geht.

In ähnlicher Weise dehnt Galilei die Betrachtung an Hand
des neuen Prinzips, das er, ohne es mit einem besonderen Ausdruck
zu benennen, bei allen statischen
Untersuchungen anwendet, auf den
Flaschenzug und auf die schiefe Ebene
aus. Das Gleichgewicht auf letzterer
untersucht er für den Fall, daß ihre
Länge das Doppelte der Höhe beträgt
(Abb. 16). Es ist dann P = Q/2. Wie
Galilei hervorhebt, wird das Gleichgewicht
auch durch die mögliche Annäherung
und Entfernung der Gewichte in bezug auf den Erdmittelpunkt
bestimmt105. Sinkt nämlich P um h, so steigt Q längs
AB um h/2. Die Produkte aus dem bewegten Gewicht und der
Bewegung in vertikaler Richtung P · h und Q h/2 sind aber gleich,
da ja P = Q/2 ist.


[image: Abb. 16]
Abb. 16.
Galilei wendet das Prinzip der
virtuellen Geschwindigkeiten
auf die schiefe Ebene an.



Durch die Ermittlung der möglichen Verschiebungen findet
Galilei auch das Verhältnis von Kraft und Last beim Flaschenzug.
Er gelangt unter der Voraussetzung, daß die Wege s und w der
Kraft und der Last sich verhalten wie die Zahl der Seilstücke, über
welche sich die Last verteilt, zu der Gleichung P · s = Q · w. An
Stelle vorher zur Beurteilung des Gleichgewichts allein maßgebender
statischer Momente benützt Galilei für diesen Zweck die
Produkte aus den Gewichten und den Falltiefen, d. h. die Arbeit,
und erkennt als die Bedingung des Gleichgewichts den Satz, daß
die Arbeit der Kraft (Kraft mal Kraftweg) gleich der Arbeit der
Last (Last mal Lastweg) ist.

Die Gleichung P · s = Q · w führt auf die Proportion P : Q
= w : s. In Worten: Wenn zwei Kräfte im Gleichgewicht stehen,
so verhalten sie sich umgekehrt wie die entsprechenden Wege. Oder
auch: Was man mit einer Maschine an Kraft ersparen kann, geht
an Weg verloren. Man hat diesen Grundsatz wohl nach Descartes
benannt. In Wahrheit aber ist auch er auf Galilei zurückzuführen.



Mängel der Galileischen Mechanik.

Die wesentlichste Unfertigkeit, welche für die Mechanik trotz
dieser Erfolge zunächst noch bestehen blieb, war der Mangel einer
klaren Einsicht in das Gesetz vom Parallelogramm der Kräfte.
Galilei kannte zwar das Parallelogrammgesetz, er wandte es aber,
wie wir bei seiner Untersuchung der Wurfbewegung sahen, nur
zur Zusammensetzung von Bewegungen an. Dagegen findet sich
bei ihm kein Fall einer statischen Anwendung des Prinzips von
der Zusammensetzung der Kräfte.

Unfertig waren auch die Vorstellungen, zu denen Galilei
hinsichtlich des Wesens und der Wirkung des Stoßes gelangte.
Seine dynamischen Untersuchungen waren erfolgreich, solange er
sich auf die Wirkung von Kräften auf eine einzige Masse beschränkte,
wie es bei der Fall-, der Pendel- und der Wurfbewegung
zutrifft. Bei der Stoßbewegung liegt nun eine Aufgabe
höherer Ordnung vor, da es sich hier um das Verhalten von wenigstens
zwei Massen unter der Wirkung von Kräften handelt. Die
Schwierigkeit dieses Problems ahnte schon das Altertum, als es
die Frage aufwarf, warum ein kleiner Stoß auf einen Keil viel
mehr ausrichten könne als ein großer Druck106. Galilei widmete
dem Problem einen ganzen Abschnitt seiner »Unterredungen«.
Und wenn er es auch nicht auf mathematisch formulierte Gesetze
zurückzuführen vermochte, so ist doch der Grad der Einsicht, zu
dem er gelangte, ein hoher und für die weiteren Fortschritte bedeutsamer
gewesen.

Mit voller Klarheit spricht es Galilei aus, daß die Kraft
beim Stoße von zwei Umständen abhängt, die beide die zu messende
Energie bestimmen, nämlich von der Masse des stoßenden Körpers
und von seiner Geschwindigkeit. Galilei hebt hervor, daß jeder
Stoß Arbeit leistet, während das ruhende Gewicht keine Arbeit
leistet. Daher rührt auch seine Vorstellung, daß die Kraft des
Stoßes im Verhältnis zur Kraft des bloßen Druckes gleichsam unendlich
sei, weil bei letzterem der eine, die Energie mitbestimmende
Faktor, die Geschwindigkeit nämlich, gleich Null ist.

Galilei braucht daher für das ruhende, nur einen Druck ausübende
Gewicht mitunter den bekannt gewordenen Ausdruck totes
Gewicht (Peso morto). Seine Anschauung entspricht durchaus der
heutigen Vorstellungsweise, nach welcher die Bewegungsgröße eine
andere Dimension als der Druck besitzt und letzterer sich somit
zum Moment des Stoßes wie die Linie zur Fläche verhält. Wenn
also Galilei sagt, die Kraft des Stoßes sei im Verhältnis zur
Kraft des Druckes unbegrenzt groß107, so liegt darin nichts Unklares,
wie man ihm wohl vorgeworfen hat. Man muß vielmehr
in diesem Ergebnis die glänzende Verstandesschärfe Galileis anerkennen
und zugeben, daß das Wesen der Sache ohne die Anwendung
einer mathematischen Formel kaum zutreffender ausgedrückt
werden konnte.


[image: Abb. 17]
Abb. 17. Galileis Versuch über Kräftebeziehungen
in einem System von Körpern108.



In seine Betrachtungen über das Wesen des Stoßes hat
Galilei einen Versuch eingeflochten, der zu den später entdeckten
Kräftebeziehungen, die sich
innerhalb eines Systems von
Körpern darbieten, hinüberleitet.
Galilei brachte an
einer Wage zwei übereinander
befindliche Eimer durch
ein Gegengewicht ins Gleichgewicht.
Von diesen Eimern
war der obere mit Wasser
gefüllt, der untere dagegen
leer. Darauf ließ er das
Wasser durch eine im Boden
des oberen Eimers vorhandene
Öffnung in den unteren
Eimer fließen und beobachtete,
ob durch den Stoß des
Wassers auf den unteren Eimer das Gleichgewicht gestört wird. Es
zeigte sich folgender unerwarteter Verlauf. Während das Wasser
aus dem oberen Eimer in den unteren lief, blieb der Gleichgewichtszustand
des ganzen Systems trotz des Anpralls der Flüssigkeit
vollkommen erhalten. Die Seite mit den Eimern senkte sich nicht
um eines Haares Breite. In dem Augenblicke, in welchem das
Ausfließen begann, senkte sich das Gegengewicht jedoch, das
System erschien also sogar leichter. Sobald aber das Wasser den
unteren Eimer erreicht hatte, ging das System in den ursprünglichen
Gleichgewichtszustand zurück.

Galilei nennt diesen Versuch zwar sinnreich, vermochte sich
aber die Erscheinung doch nicht recht zu erklären. Wir wissen,
daß das anfängliche Steigen des mit den Eimern beschwerten
Wagearmes auf den Reaktionsdruck des ausfließenden Wassers
zurückzuführen ist. Eine zweite Druckverminderung tritt für diesen
linken Arm der Wage dadurch ein, daß das Gewicht des in der
Luft schwebenden, also noch im Fall begriffenen Wassers nicht
wirksam ist. Beide, ein Steigen des linken Armes bewirkende
Druckverminderungen werden aber von dem Augenblicke an, in
dem der Strahl den Boden des unteren Eimers erreicht, durch
die Wirkung des Stoßes vollkommen ausgeglichen.

Galilei untersucht die Festigkeit der Körper.

Grundlegend sind auch Galileis Untersuchungen über die
Festigkeit gewesen, wenn er auch unter dem Einfluß der Lehre
vom Horror vacui zu unrichtigen Vorstellungen gelangt ist.

Zunächst stellte er sich die Aufgabe, die Zugfestigkeit und
die Bruchfestigkeit zu bestimmen und ihr Verhältnis zu ermitteln.
Es waren Erfahrungen des praktischen Lebens, insbesondere der
Bau- und der Maschinentechnik, welche den Ausgangspunkt für
diese Untersuchungen bildeten. Es sei eine bekannte Erfahrung,
meint Galilei, daß eine Maschine mitunter im Kleinen als Modell
wohl gelinge, im Großen ausgeführt, aber nicht bestehen könne.
Eine größere Maschine, in den gleichen Proportionen wie eine
kleine hergestellt, besitze nämlich eine viel geringere Festigkeit. So
könne man auch kleine Obelisken und Säulen handhaben und aufrichten
ohne die Gefahr des Zerbrechens, während sehr große infolge
der eigenen großen Last bei jedem Zufall Gefahr liefen, zu
bersten. Nicht nur für Maschinen und Kunstwerke, sondern auch
für alle Naturkörper bestehe daher eine notwendige Grenze, über
die man nicht hinausgehen könne, wenn das Material dasselbe
bleibt und auch die Proportionen gewahrt werden. So würden
bei einem Baume von 200 Ellen Höhe zweifelsohne die Zweige
unter ihrem Eigengewicht abbrechen; es müßte denn die Materie
widerstandsfähiger gewählt, oder es müßten die Verhältnisse geändert,
z. B. bei sehr großen Tieren die Knochen unförmlich dick
gestaltet werden. Aus diesem Grunde fänden sich die Riesen des
Tierreiches nur im Wasser, weil dort ihr Gewicht durch den Auftrieb
ausgeglichen würde. Andererseits finde man, daß bei einer
Verminderung des Körpers die Kräfte nicht im gleichen Maße
abnehmen, sondern sogar relativ größer sind. Z. B. könne ein
kleiner Hund drei andere von gleicher Größe tragen, während ein
Pferd wohl kaum imstande sei, auch nur ein einziges Pferd auf
seinem Rücken fortzuschleppen.

Es sind das für die Einsicht in die Mechanik der Tiere und
der Pflanzen sehr wichtige Bemerkungen, die wir Galilei verdanken.
Zu ihnen fügt er die weitere Einsicht, daß auch die Anordnung
der Materie die Festigkeit in hohem Grade bedingt. Die
Kunst und die Natur, sagt er, bedienten sich der hohlen Körper
in tausend Fällen. Denn hier werde ohne Gewichtsvermehrung
die Festigkeit bedeutend gesteigert. Als Beispiele führt er die
Knochen und die Grashalme an. Galilei begnügt sich aber nicht
mit der allgemeinen Beobachtung
dieser Tatsache, sondern er zeigt
auch, daß sich die Bruchfestigkeiten
zweier Zylinder von gleicher
Masse und Länge (Abb. 18), von
denen der eine hohl, der andere
massiv ist, zueinander wie ihre
Durchmesser verhalten.


[image: Abb. 18]
Abb. 18. Galilei vergleicht die
Bruchfestigkeit hohler und massiver
Zylinder.



Auch für die oben erwähnten
Beobachtungen über die Inanspruchnahme
größerer und kleinerer Gegenstände, Organismen
und Maschinen findet Galilei den Grund in einem Satz der
Festigkeitslehre. Dieser besagt, daß der Widerstand der Körper
gegen das Zerbrechen, wenn die Formverhältnisse dieselben bleiben,
nicht mit der Masse, sondern in geringerem Maße wächst. Während
nämlich die Massen prismatischer Körper sich wie die dritten Potenzen
der ähnlichen Seiten verhalten, wächst der Widerstand gegen
das Zerbrechen nur wie die Quadrate dieser Seiten.

Seine Theorie der Bruchfestigkeit begründet Galilei in folgender
Weise. Denken wir uns (Abb. 19) einen parallelepipedischen
Balken in einer Mauer befestigt und mit Q belastet, so können
wir ihn als einen Winkelhebel STU betrachten, dessen Drehpunkt
T ist. An dem Arme TU wirkt die Last Q, an TS wirkt
der Gesamtwiderstand aller Fasern. TS ist die Hälfte der Höhe h
des Prismas, TU ist seine Länge. Setzen wir die Momente gleich,
so ist der Gesamtwiderstand X multipliziert mit h/2 = Q · l. Der
Gesamtwiderstand ist aber gleich einer Konstanten für die Einheit
des Querschnittes, multipliziert mit dem Querschnitt (b · h), also
gleich K · bh. Die Gleichung, eine der wichtigsten der technischen
Mechanik, nimmt also die Form an:


K · bh · h/2 = Q · l



oder die Bruchfestigkeit (oder relative
Festigkeit) des Balkens wird
ausgedrückt durch Q = ½ K · (bh2)/l.
Galilei nahm bei seiner Ableitung
auf die Elastizität der
Fasern noch keine Rücksicht. Für
Körper wie Glas und Stein ist
dies zulässig, da man für diesen
Fall die Annahme, welche Galilei allgemein macht, gelten
lassen darf, die Annahme nämlich, daß die Fasern sich vor dem
Abreißen nicht verändern, während sie in Wirklichkeit sich ja
zum Teil ausdehnen, zum Teil verkürzen und nur in einer gewissen
Zone (neutrale Fasern) ihre Länge beibehalten, so daß das Zerreißen
aller Fasern nicht gleichzeitig stattfindet, wie Galilei voraussetzt.
Unter Berücksichtigung der Elastizität der Körper gilt
daher in der heutigen Mechanik ein kleinerer, in der Form aber
dem von Galilei gefundenen ganz entsprechender Wert:


(1/6 K (bh2)/l).



[image: Abb. 19]
Abb. 19. Galilei untersucht die
Bruchfestigkeit eines Balkens109.




[image: Abb. 20]
Abb. 20. Galilei untersucht die Bruchfestigkeit
von Prismen.



An diese Untersuchung
anknüpfend,
zeigt Galilei nun weiter,
weshalb ein Prisma
auf schmaler Basis eine
größere Bruchfestigkeit
besitzt als ein
solches auf breiter (siehe Abb. 20). In beiden Fällen bleibt der
Hebelarm (BD) der Last unverändert. Auch der Widerstand ändert
sich nicht, da er in beiden Fällen gleich dem Widerstande aller
Fasern der Basis AB ist. Was sich dagegen ändert, ist der Hebelarm
des Widerstandes. Er ist im ersten Falle die Hälfte von AC,
im zweiten dagegen nur die Hälfte von BC. Dem größeren Hebelarm
entspricht aber ein größeres Moment, und diesem wieder eine
größere relative Festigkeit.

Die Mechanik der Flüssigkeiten und der Gase.

Auch der Mechanik der flüssigen Körper, die seit Archimedes
keine Förderung erfahren hatte, wurde von Galilei zuerst
wieder Beachtung geschenkt. Zunächst stellte er in seiner
Schrift über die schwimmenden Körper110 eine Nachprüfung der
von Archimedes gefundenen hydrostatischen Gesetze an und bestätigte
ihre Richtigkeit. Dadurch gelangte, gegenüber der unrichtigen
Behauptung der Aristoteliker, daß das Schwimmen eines
Körpers vor allem von seiner Form abhänge, die richtige Erkenntnis
wieder zur Geltung. Diese Erkenntnis gipfelt darin, daß das
Schwimmen vom spezifischen Gewicht abhängt, und daß ein Körper
schwimmt, wenn sein spezifisches Gewicht kleiner ist als dasjenige
der verdrängten Flüssigkeit. Die Aristoteliker waren zu ihrem
Trugschluß durch die bekannte Erscheinung geführt worden, daß
dünne Metallplatten auf dem Wasser schwimmen. Galilei machte
demgegenüber darauf aufmerksam, daß solche Platten in einer
Vertiefung auf der Oberfläche des Wassers ruhen und daß sie
untersinken und nicht wieder emporsteigen, sobald sie ganz in die
Flüssigkeit eingetaucht werden. Eine Erklärung des Schwimmens
dünner Metallplatten oder Nadeln auf einer spezifisch leichteren
Flüssigkeit vermochte erst das 18. Jahrhundert nach der Entdeckung
der Oberflächenspannung zu geben. Letztere gab auch Aufschluß
über eine Erscheinung, über die Galilei sich keine Rechenschaft
zu geben vermochte, die Erscheinung nämlich, daß Wassermassen
auf Blättern sich im Zusammenhang erhalten, ohne zu zerfließen.

Um das Sinken und Steigen von Körpern in Flüssigkeiten
aus dem spezifischen Gewichte der Flüssigkeiten zu erklären, stellte
Galilei folgenden Versuch an. Er brachte eine Wachskugel in
reines Wasser und bemerkte, daß sie untersank. Erhöhte er
darauf das spezifische Gewicht der Flüssigkeit, indem er Salz darin
löste, so stieg die Kugel bei einem bestimmten Konzentrationsgrade
wieder empor.

Galilei entwickelte ferner für die Beschaffenheit der Flüssigkeiten
eine Auffassung, die bis auf den heutigen Tag allen Untersuchungen
auf dem Gebiete der Hydromechanik als Grundlage
gedient hat. Danach bestehen die Flüssigkeiten aus isolierten
Teilchen, die sehr beweglich sind und deshalb dem geringsten
Drucke folgen. Infolgedessen pflanzt sich jeder Druck durch die
ganze Masse der Flüssigkeit fort.

In dem Bestreben, die Mechanik der Flüssigkeiten auf die zunächst
an festen Körpern gewonnenen Grundsätze der allgemeinen
Mechanik zurückzuführen, wandte Galilei zum ersten Male das
Prinzip der virtuellen Geschwindigkeiten auf hydrostatische Verhältnisse
an. Er schuf damit für dieses Gebiet ein neues Beweisverfahren,
das besonders durch Pascal in seiner ganzen Bedeutung
erfaßt und in vollem Umfange angewandt wurde.

Archimedes hatte für die Untersuchung der statischen Verhältnisse
den Begriff des statischen Moments geschaffen und bei
der Erklärung der einfachen Maschinen sein Augenmerk vornehmlich
auf die Gewichte und ihre Abstände vom Drehpunkt gerichtet.
Stevin und Galilei dagegen faßten die statischen Verhältnisse
vom dynamischen Gesichtspunkt auf und betrachteten die Gewichte
und deren bei einer Verschiebung des Systems auftretende,
also virtuelle, Falltiefen oder vertikale Verschiebungsgrößen als
maßgebend für die Beurteilung der Gleichgewichtsbedingungen.
Dieses Prinzip der virtuellen Geschwindigkeiten oder Verschiebungen,
wie man es genannt hat, läuft im Grunde genommen auf
den Satz hinaus, daß Gleichgewicht besteht, wenn die Arbeit der
Kraft gleich der Arbeit der Last ist, da ja das Produkt aus dem
Gewicht und der vertikalen Verschiebung als die geleistete Arbeit
betrachtet wird.

Am einfachsten und durchsichtigsten gestaltet sich bei Galilei
die Anwendung des Prinzips der virtuellen Geschwindigkeiten in
dem Falle, in dem es sich um das Eintauchen eines prismatischen
Körpers in ein gleichfalls prismatisches mit Flüssigkeit gefülltes
Gefäß handelt. Galilei vergleicht die Verschiebung oder, was
sich dafür auch setzen läßt, die Geschwindigkeit des Prismas
mit derjenigen Verschiebung, die der Flüssigkeitsspiegel in entgegengesetzter
Richtung erfährt. Offenbar verhalten sich die Verschiebungen
oder die Geschwindigkeiten des Prismas und des
Spiegels umgekehrt wie die entsprechenden Flächen, nämlich die
Grundfläche des Prismas und die Oberfläche des Flüssigkeitsspiegels.
Wird das Prisma wieder herausgezogen, so findet in entsprechender
Weise ein Sinken des Spiegels statt. Das Produkt aus Gewicht
und Geschwindigkeit des eingetauchten Körpers wird dann, wenn
Gleichgewicht bestehen soll, gleich dem Produkte aus Gewicht und
Geschwindigkeit der gehobenen Flüssigkeitsmasse gesetzt und so
das Prinzip der virtuellen Geschwindigkeiten zur Anwendung gebracht.
Galilei dehnte es auch auf das Verhalten der Flüssigkeiten
in kommunizierenden Röhren aus. Die Analogie zwischen
diesem Verhalten und dem soeben geschilderten Vorgang konnte
ihm nicht entgehen. Entspricht doch dem Eintauchen des Prismas
und dem dadurch bewirkten Emporheben des Spiegels ein Herabdrücken
der Flüssigkeit in der engeren und ein Steigen in der
weiteren Röhre, wobei sich gleichfalls die Verschiebungen umgekehrt
wie die Querschnitte verhalten.

Auch mit Erfindungen hat Galilei die Hydromechanik bereichert.
Er erfand eine hydrostatische Schnellwage und konstruierte
eine hydraulische Maschine, für die ihm Venedig ein
Patent verlieh111.

Wir haben hiermit die Art der Behandlung, die Galilei den
Problemen der Mechanik angedeihen ließ, kennen gelernt und
werden ihm die Berechtigung, von neuen Wissenszweigen zu sprechen,
voll zugestehen müssen. Durchdrungen von der Bedeutung
des erschlossenen, auf der innigen Verknüpfung des Versuches
mit der mathematischen Ableitung beruhenden neuen Weges, ruft
er am Schlusse seines dritten Gespräches aus: »Die in dieser Abhandlung
vorgeführten Sätze werden, wenn sie in die Hände
anderer gelangen, immer wieder zu neuen, wunderbaren Erkenntnissen
führen. Und es wäre denkbar, daß in solcher Weise
eine würdevolle Behandlung sich allmählich auf alle Gebiete der
Natur erstreckte«. Diese Vorahnung sollte schon ein Menschenalter
nach Galileis Hinscheiden durch die Taten eines Newton,
Huygens und anderer Forscher der Erfüllung nahe gebracht
werden. Indes schon Galilei selbst hat sich durchaus nicht auf
die Mechanik beschränkt, sondern, wenn auch in bescheidenem
Maße und mit geringerem Erfolge, seine Untersuchungen den übrigen
Gebieten der Naturlehre zugewendet.

Daß die Luft sich beim Erwärmen ausdehnt, war schon dem
Altertum bekannt. Beruhen doch auf diesem Verhalten manche
physikalische Schaustücke Herons. Galilei scheint trotz allen
Dunkels, das die Geschichte des Thermometers umgibt, der
erste gewesen zu sein, der diese Ausdehnung zum Messen des
Wärmezustandes benutzt hat. Zwar enthalten seine Schriften, soweit
sie noch erhalten sind, kaum mehr als eine Andeutung
über diesen Gegenstand. So heißt es im »Dialog« an einer Stelle,
man dürfe nicht zweifeln, daß heißes Eisen beim Erkalten eher
von 10 Grad auf 9 Grad sich abkühle als von 10 auf 6. Indes
ist unter Grad hier jedenfalls nur eine ganz unbestimmt gelassene
Einheit zu verstehen.

Angaben der älteren Biographien weisen darauf hin, daß Galilei
schon vor 1597, als er sich mit den Werken Herons beschäftigte,
ein Thermoskop herstellte, das er bei seinen Vorträgen zeigte112.
Es bestand aus einer unten offenen und
oben in eine Kugel endigenden Röhre
(Abb. 21), in der sich eine Flüssigkeit
auf- und abbewegte. Letzteres geschah,
sobald die in der Kugel eingeschlossene
Luft erwärmt oder abgekühlt wurde,
da sie dementsprechend einen größeren
oder kleineren Raum einnahm. Gleichzeitig
mußte sich aber auch jede
Schwankung des Luftdrucks an diesem
Instrument bemerkbar machen. Infolgedessen
waren nur innerhalb eines
kurzen Zeitraumes angestellte Versuche
vergleichbar.
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Abb. 21.
Galileis Thermoskop113.



Eine Verbesserung dieses Instrumentes
bestand darin, daß man der
Röhre eine horizontale Lage gab und
die Luft nur durch ein Flüssigkeitströpfchen
absperrte. Letzteres wurde bei den durch Wärmeunterschiede
hervorgerufenen Volumschwankungen hin- und herbewegt114.
Ein Freund Galileis115 kam schon auf den trefflichen
Gedanken, ein solches, seinen Zwecken entsprechend abgeändertes
Thermoskop zur Bestimmung der Körperwärme von Kranken zu
benutzen.



Galileis Untersuchungen über den Schall.

Galilei hat auch unter den Neueren zuerst sich eingehender
mit akustischen Untersuchungen beschäftigt. Zwar rührt das
erste neuere Werk116 über diesen Gegenstand von Mersenne
her, während die Untersuchungen Galileis nur gelegentliche Bemerkungen
über akustische Dinge bringen. Man muß jedoch annehmen,
daß Mersenne, der mit Galilei in regem Verkehr stand,
seine Kenntnisse im wesentlichen Galilei verdankte. Mersenne
gebührt das Verdienst, die Forschungsergebnisse des Meisters ausführlicher
dargestellt und durch eigene Untersuchungen vervollständigt
zu haben.

Galilei behandelte im Anschluß an die von ihm entdeckten
Gesetze der Pendelschwingungen die Saitenschwingungen und zwar
zunächst das Phänomen des Mitschwingens117, das im physikalischen
Denken nicht geschulte Zeitgenossen aus einer Art Sympathie
erklären zu können glaubten118. Die Abhängigkeit der
Tonhöhe von der Schwingungszahl erkannte Galilei durch folgenden
Versuch. Er fuhr mit einem scharfen Eisen über eine
Messingplatte. Jedesmal, wenn er dabei einen deutlichen Ton
erhielt, waren auf der Platte, entsprechend den Schwingungen des
Eisens, eine Menge feiner Striche in völlig gleichen Abständen
eingegraben. Erzielte er durch Ändern der Geschwindigkeit
einen höheren Ton, so waren die Striche gedrängter; wurde
der Ton dagegen tiefer, so nahmen die Abstände zu und
zeigten dadurch eine geringere Zahl von Schwingungen an. Diese
Schwingungen machten sich auch dadurch bemerklich, daß das
Eisen, jedesmal wenn beim Hinwegstreichen über die Messingplatte
ein Ton entstand, in der Faust erzitterte, so daß die
Hand ein Schauer durchfuhr. Der Vorgang, sagt Galilei, sei
genau derselbe, als wenn wir flüstern und laut sprechen. Nur
im letzteren Falle empfinde man im Kehlkopf und im Schlunde
ein Zittern.

Die Zahl der in der Zeiteinheit bei bestimmten Tönen entstandenen
Striche bot nun Galilei das Mittel, einen vorher nur
in seiner physiologischen Wirkung bekannten Vorgang der messenden
physikalischen Untersuchung zu unterwerfen. Zunächst richtete
es Galilei so ein, daß zwei bestimmte Töne, die er auf seiner
Messingplatte durch schnelleres und langsameres Streichen erzeugte,
den Zusammenklang bildeten, den man in der Musik
als Quinte bezeichnet. Als Galilei darauf die Striche zählte
und ihre Entfernung ausmaß, fand er, daß auf 30 Striche, d. h.
Schwingungen, des einen Tones 45 Striche oder Schwingungen des
anderen kamen.

Bisher hatte man die Tonhöhe nur in ihrer Abhängigkeit von
der Länge der schwingenden Saiten betrachtet und auch hierbei
einfache Beziehungen entdeckt. Galilei erkannte als das
Grundgesetz der Akustik, daß die Höhe eines Tones von der
Anzahl der Schwingungen abhängt, welche der tönende Körper
in der Zeiteinheit macht. Er fand durch jenen einfachen, soeben
geschilderten Versuch, daß diese Schwingungszahlen für den Grundton,
die Quarte, die Quinte und die Oktave sich verhalten wie
1 : 4/3 : 3/2 : 2 = 6 : 8 : 9 : 12.

Galilei untersuchte ferner die Töne schwingender Saiten
in ihren Beziehungen zur physikalischen Beschaffenheit dieser
Saiten. Das Ergebnis war folgendes: Bei gleicher Spannung
und Beschaffenheit entsteht die Oktave durch Verkürzung der
Saite auf die Hälfte. Bei gleicher Länge und Beschaffenheit
erhält man die Oktave, wenn man die Spannung vervierfacht.
Will man bei gleicher Länge und Spannung die Oktave erhalten,
indem man die Saite feiner wählt, so muß man ihre
Dicke auf ein Viertel reduzieren. Indessen wird das akustische
Verhältnis, wie Galilei hervorhebt, nicht durch die Länge, die
Spannung und den Querschnitt der Saite verursacht, sondern
durch die Zahl der Schwingungen oder Lufterschütterungen, die
unser Trommelfell treffen und es im gleichen Tempo mitschwingen
lassen.

Für diese Erscheinung des Mitschwingens oder der Resonanz
gibt Galilei folgende Erklärung: Die Schwingungen der Saite
versetzen die Luft in Bewegung. Jede mit der angeschlagenen
gleich gestimmte Saite fängt, weil sie im selben Tempo zu
vibrieren vermag, beim ersten Impulse an, sich ein wenig mit zu
bewegen. Es werden nun aber ein zweiter, dritter und viele
andere Impulse hinzugefügt; und weil sämtliche Impulse die
Saite zur passenden Zeit treffen, so wird schließlich die Schwingung
der mitschwingenden Saite ebenso ergiebig wie diejenige der angeschlagenen.



Auch die Erscheinung der Konsonanz und der Dissonanz sucht
Galilei aus dem Verhältnis der Schwingungszahlen und aus der
Beschaffenheit des Gehörorgans zu erklären. Konsonant seien diejenigen
Töne, die in einer gewissen Ordnung das Trommelfell erschüttern.
Dissonante Töne dagegen bewirkten, daß die Knorpel
des Trommelfells sich in steter Qual befänden, weil die Erschütterungen,
die solche Töne hervorriefen, nicht rhythmisch zusammenträfen.

Auch auf die Erscheinung der stehenden Wellen machte
Galilei aufmerksam. Er füllte ein Glas zum Teil mit Wasser
und brachte das Glas durch Streichen zum Tönen. Es zeigten
sich dann Erhöhungen und Vertiefungen der Oberfläche, die bestehen
blieben, solange der Ton dauerte. Sprang der Ton in die
höhere Oktave über, so zerfiel jede Welle in zwei Wellen.

Galileis optische und magnetische Untersuchungen.

Mit optischen Untersuchungen hat sich Galilei, abgesehen
von seiner Mitwirkung bei der Erfindung des Fernrohrs, kaum
beschäftigt. Doch zeugt es von Divinationsgabe, daß er eine
endliche Geschwindigkeit des Lichtes annahm, obgleich sein
Versuch, sie zu messen, scheiterte. Der Versuch selbst war so
gut ausgedacht, daß wir ihn trotzdem schildern wollen, weil er sich
im Prinzip mit der später von Fizeau erdachten erfolgreichen
Versuchsanordnung deckt119.

In beiden Fällen handelt es sich nämlich um ein rasches Hin-
und Hersenden von Lichtsignalen zwischen zwei weit voneinander
entfernten Orten. Bei Galilei erhielten zwei Personen Laternen.
Sie wurden zunächst auf kurze Entfernung einander gegenübergestellt.
Jeder hatte dann sein Licht wiederholt aufzudecken und
sofort wieder abzublenden. Das kurze Aufdecken erfolgte jedesmal,
wenn der eine Beobachter das Licht des zweiten Beobachters
erblickte. Darauf wurde der Abstand zwischen beiden Personen
auf eine Meile vergrößert und das Experiment wiederholt. Wäre
dann die Beantwortung der Signale in einem langsameren Tempo
erfolgt, so hätte man daraus auf die Zeit, die das Licht zu
seiner Fortpflanzung gebraucht, schließen können. Die Entfernung
war indessen zu gering und der Wechsel erfolgte nicht rasch und
nicht gleichmäßig genug. Infolgedessen verlief der Versuch ohne
Ergebnis. Wir werden später sehen, daß Fizeau ein solches erzielte,
ohne die Entfernung erheblich zu vergrößern, und zwar dadurch,
daß er eine mechanische Vorrichtung ersann, die einen
gleichmäßigen Wechsel der Signale innerhalb des Bruchteils einer
Sekunde ermöglichte.

Zur Beschäftigung mit den magnetischen Erscheinungen wurde
Galilei durch das Studium des Gilbertschen Werkes veranlaßt.
Er ließ sich dabei von dem Bestreben leiten, den Magnetismus,
auf dessen kosmische Bedeutung Gilbert zum ersten Male hingewiesen
hatte, zur Erklärung astronomischer Vorgänge zu verwerten.
Betrachtungen über den Magnetismus bilden daher einen
nicht unwesentlichen Teil seines großen Dialogs über die Weltsysteme120.
Das erwähnte Bestreben offenbart sich darin, daß
er die unveränderliche Richtung der Erdachse aus der magnetischen
Natur der Erde zu erklären sucht und darauf hinweist, daß der
Mond »wie durch magnetische Kraft gebannt« stets ein und dieselbe
Seite der Erde zukehre121. Gilbert ging darin noch weiter
und suchte auch die Drehung der Erde um ihre Achse aus dem
Magnetismus zu erklären. Er nahm an, daß jede magnetische
Kugel, wenn keine Widerstände sie daran hindern, sich um sich
selbst drehen müsse. Diese Ansicht vermochte der in mechanischen
Dingen Gilbert weit überlegene Galilei indessen nicht
zu teilen. Wohl aber erblickt er in den Bewegungen, welche
die Erde nach der koppernikanischen Lehre ausführt, eine Analogie
zu den Bewegungen des Magneten, der »in ähnlicher,
vielleicht in derselben Weise« eine horizontale und eine vertikale
Kreisbewegung (infolge der Deklination und Inklination)
besitze122.

In der Erkenntnis, daß »der Magnet dem menschlichen Verstande
ein weites Forschungsfeld« darbiete, hat sich Galilei auch
mit der Tragkraft des Magneten, sowie mit der Herstellung von
Armaturen und ihrer Wirkung eingehender befaßt. Durch Armierung
eines Magnetsteins verstärkte er seine Kraft auf das Achtfache.
Den Grund dieser Erscheinung erblickt er in dem Umstand,
daß die geglättete Armatur das angezogene Eisenstück in viel
mehr Punkten berühre als die gröbere und rauhere Substanz des
Magnetsteins. In einem anderen Falle123 will Galilei durch Armierung
die Tragfähigkeit auf das Achtzigfache gesteigert und
bewirkt haben, daß der Magnet 26mal soviel trug, als er Gewicht
besaß.

Im vorstehenden haben wir die Verdienste Galileis um die
Begründung der neueren Naturwissenschaft kennen gelernt und
gesehen, wie überall das mathematische und induktive Verfahren
durch diesen Mann zum Durchbruch kam. Fast sämtliche Gebiete
der Naturlehre empfingen die kräftigste Anregung. Vor allem
aber wurde das ganze Gebiet dieser Wissenschaft von den Auswüchsen
metaphysischer Betrachtungsweise, mit denen es vorher
so sehr verquickt war, befreit. Galileis Eigenart entsprach es
nämlich, daß er sich stets der Grenzen der Naturforschung bewußt
blieb und sich darauf beschränkte, die Erscheinungen in ihrem
Verlaufe und in ihrem Zusammenhange mit verwandten Vorgängen
scharf zu erfassen, ohne in ein unfruchtbares Suchen nach den
letzten Gründen zu verfallen. Eine solche Beschränkung ist für
die Erneuerung der Naturwissenschaft, wie sie im Beginn des
17. Jahrhunderts erfolgte, von höchstem Werte gewesen. Bevor
wir uns dem weiteren Ausbau des von Galilei geschaffenen Lehrgebäudes
zuwenden, scheint es geboten, auch der Persönlichkeit
des einzigartigen Mannes gerecht zu werden.

Galileis Persönlichkeit und Schriften.

Galilei war nach den Berichten seiner Zeitgenossen groß,
stark gebaut und von ehrwürdigem Aussehen (siehe das Titelbild).
Die Stirn war hoch, der Blick voll Feuer und seine Rede angenehm
und ausdrucksvoll. Dabei war er kein einseitiger Gelehrter.
Die Erholungsstunden widmete er der Musik und der Malerei.
Sogar einige Sonette sind von ihm vorhanden. Diese künstlerische
Veranlagung Galileis kam in seinen Schriften dadurch
zum Ausdruck, daß sie neben ihrer wissenschaftlichen Bedeutung
sprachlich zu dem Vollendetsten gehören, was die italienische
Literatur des 17. Jahrhunderts hervorgebracht hat. Gelehrte
Unterhaltungen führte Galilei nur mit seinen Freunden, suchten
Unberufene ihn in solche hineinzuziehen, so wußte er geschickt
abzulenken.

Die gegen ihn gerichteten Verfolgungen setzten sich bis über
das Grab hinaus fort. Sogar das letztere wurde ihm streitig gemacht.
Erst ein Jahrhundert nach Galileis Tode wurde seinem
letzten Wunsche gewillfahrt, indem man die irdischen Überreste
des großen Forschers in der Kirche Santa Croce zu Florenz bestattete.
Ein prächtiges Denkmal schmückt jetzt diesen Ort. Von
gleicher Tragik war das Geschick der handschriftlichen Hinterlassenschaft
Galileis. Von seinem Sohne sehr vernachlässigt, von
einem Enkel in einer skrupulösen Anwandlung zum Teil verbrannt,
gelangte sie endlich in die Hände Vivianis, der Galilei die
letzten schlimmen Lebensjahre ertragen geholfen. Vivianis Absicht,
diese Geistesschätze durch eine Herausgabe zu heben, wurde
jedoch vereitelt. In Florenz, wo mit dem Enkel desjenigen Mediceers,
der Galilei in seinem Lande eine Ehrenstätte bereitete,
Andächtelei und Priesterherrschaft den Thron bestiegen hatten,
war der Name des großen Mannes geradezu verhaßt geworden.
Viviani sah sich schließlich in der Furcht, daß ihm auf obrigkeitlichen
Befehl die Schriften abgenommen werden könnten,
genötigt, sie einem Verstecke anzuvertrauen. Erst im nachfolgenden
Jahrhundert wurden Galileis Manuskripte wieder
entdeckt. Sie sollten schon als Makulatur in die Hände eines
Krämers wandern, als man noch rechtzeitig ihren Wert erkannte
und wenigstens einen Teil in die Bibliothek zu Florenz
hinüberrettete.

Eine Gesamtausgabe der Werke Galileis124 erschien um die
Mitte des 19. Jahrhunderts. Eine auf Grund der eingehendsten
Vorarbeiten veranstaltete neue Ausgabe besorgte Favaro. Sie
wurde durch staatliche Mittel ermöglicht und umfaßt zwanzig
große Bände125.

Um das Bekanntwerden der Werke Galileis hat sich ein
Straßburger Professor namens Bernegger verdient gemacht.
Bernegger unterhielt mit Galilei und mit Kepler einen lebhaften
Briefwechsel126 und übersetzte mehrere Schriften Galileis
ins Lateinische, um sie dadurch der gelehrten Welt zugänglicher
zu machen. Galilei selbst hatte nämlich seine Werke zum großen
Teil in der Muttersprache veröffentlicht. Sein Hauptwerk, der
»Dialog« über die beiden hauptsächlichsten Weltsysteme (Deutsch
von E. Strauß im Jahre 1891 herausgegeben), erschien in der
lateinischen, von Bernegger besorgten Ausgabe schon 1635,
also nur wenige Jahre nach der ersten Veröffentlichung durch
Galilei127.




4. Die Ausbreitung der induktiven
Forschungsweise.

Der vorige Abschnitt war ausschließlich einer Darstellung und
Würdigung der von Galilei geschaffenen Grundlagen der neueren
Wissenschaft gewidmet. Es gilt jetzt zu zeigen, wie sich das neue
Verfahren der Naturforschung in Italien und bald darauf auch in
den nördlichen Ländern Europas ausbreitete.

Zunächst fand Galilei in Italien eine Anzahl begeisterter
Schüler, die sein Werk fortsetzten, wenn ihnen auch nur ein bescheideneres
Können verliehen war. Vivianis und seiner Bemühungen
haben wir schon gedacht. Ferner ist Torricelli zu
nennen, der vor allem zur Fortsetzung der Arbeiten Galileis
berufen war. Beide Männer hatten während der qualvollen Monate,
welche der Auflösung des Meisters vorhergingen, mit diesem in
unmittelbarem Verkehr gestanden und pietätvoll aufgezeichnet,
was den unermüdlichen Geist während der letzten Spanne seines
Erdenwallens beschäftigte. Sie umstanden mit den Angehörigen
das Sterbebett, an dem leider auch die Bevollmächtigten der Inquisition
nicht fehlten.

Die Versuche der Florentiner Akademie.

An Torricelli und Viviani schlossen sich eine Anzahl von
gleichem Streben erfüllter Männer an. So entstand in Florenz
ein Verein, der sich die Aufgabe stellte, die Natur auf dem Wege
des Experimentes zu erforschen.

Unter den Mitgliedern dieser Accademia del Cimento128 (Schule
des Versuches) sind folgende hervorzuheben: Der Anatom Borelli,
welcher die Mechanik auf das Gebiet der Physiologie ausdehnte;
der aus Dänemark gebürtige Steno, dessen Untersuchung der
toskanischen Gebirge die neuere Geologie einleitete; ferner Redi,
bekannt geworden durch seine Experimente über die Urzeugung;
Domenico Cassini, der Galileis astronomische Arbeiten fortsetzte
und später in Paris die Leitung der neu errichteten Sternwarte
übernahm. Diese Männer, die uns im weiteren Verlaufe der
Geschichte noch wiederholt begegnen werden, stellten gemeinsam
in dem Zeitraum von etwa 1657 bis 1667 eine Fülle grundlegender,
meist physikalischer Versuche an, ohne sich dabei von theoretischen
Erwägungen leiten zu lassen. Zwar liegt darin eine gewisse Einseitigkeit
und ein Abweichen vom Geiste Galileis, der nirgends
zu einem bloßen Experimentator herabsinkt. Trotzdem war das
Unternehmen bei dem damaligen Mangel sicherer empirischer
Grundlagen ein höchst verdienstvolles.

Die Accademia del Cimento bestand nur zehn Jahre. Dann
wurde sie infolge der in Florenz aufkommenden hierarchischen
Strömung wieder aufgelöst129. Gleichzeitig wurden jedoch die von
ihren Mitgliedern erhaltenen Resultate bekannt gegeben130. Da die
betreffende Schrift für die weitere Entwicklung der experimentellen
Physik von großer Bedeutung war, so soll hier einiges daraus
mitgeteilt werden. Sie beginnt mit der Beschreibung und der
Gebrauchsanweisung wichtiger Meßinstrumente. Vor allem sind
hier das Thermometer, das Hygrometer, das Aräometer und das
Pendel zu nennen.

Der umfangreichste Abschnitt trägt die Überschrift: Versuche
über den natürlichen Druck der Luft. Er enthält die Beschreibung
des Barometers und schildert zahlreiche, im Vakuum angestellte
Versuche.

Ein Abschnitt handelt von der Herstellung und Wirkung der
Kältemischungen. Ein anderer enthält den ersten Versuch über
Wärmestrahlung. Eine größere Eismasse wurde in einiger Entfernung
von einem Hohlspiegel aufgestellt. Brachte man dann
ein empfindliches Thermometer in den Brennpunkt des Spiegels,
so sank die Quecksilbersäule unter die Temperatur der umgebenden
Luft. Die weiteren Abschnitte handeln von der Ausdehnung der
festen Körper durch die Wärme,
von der Zusammendrückbarkeit
des Wassers, der Fortpflanzungsgeschwindigkeit
des Schalles und
des Lichtes, dem Magnetismus,
der Elektrizität und der Wurfbewegung.
Die Akademiker zogen
also alle Gebiete der Physik in
den Bereich ihrer Versuche. Allerdings
war der Erfolg sehr verschieden.
Während man, wie wir
sogleich im einzelnen sehen werden,
auf dem Gebiete der Mechanik
die wertvollsten Aufschlüsse erlangte,
waren die Ergebnisse auf
den Gebieten des Magnetismus und
der Elektrizitätslehre nur gering.

Wir wenden uns den wichtigsten
Untersuchungen, Entwürfen
und Entdeckungen der Florentiner
Physiker zu und geben
zunächst in Abb. 22 ein Gefäßbarometer
in der zur Zeit der
Akademie gebräuchlichen Form
wieder. Seine Teilung wurde durch
eingebrannte Glasperlen bewerkstelligt.
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Abb. 22. Das in den Abhandlungen
der Accademia del Cimento dargestellte
Gefäßbarometer131.




Daß die Quecksilbersäule von
der auf dem Quecksilberspiegel
CBD lastenden Luft getragen
wird, bewiesen die Akademiker
folgendermaßen: Sie verbanden
den kleinen, in der Abbildung
links befindlichen Ansatz luftdicht
mit einer Spritze. Zogen sie den Kolben heraus, so sank das
Quecksilber in der Röhre beträchtlich, wurde dagegen durch Hineindrücken
des Kolbens auf die in dem weiten Gefäß befindliche Luft
ein Druck ausgeübt, so stieg das Quecksilber entsprechend dem
größeren auf CBD lastenden Gesamtdruck über A hinaus.

Der Apparat (Abb. 22) eignete sich auch vortrefflich, um die
Abhängigkeit der Gasspannung von der Temperatur nachzuweisen.
Als die Florentiner Physiker nämlich den kleinen Ansatz hermetisch
schlossen und die über dem Quecksilberniveau abgesperrte
Luftmenge durch Eis abkühlten, bemerkten sie, daß das Quecksilber
in der Röhre fiel, während es beim Erwärmen der abgeschlossenen
Luft entsprechend der durch die Temperatursteigerung
erzeugten Druckzunahme stieg.

Um Versuche im Vakuum anzustellen, bedienten sich die
Akademiker, in Ermangelung einer Luftpumpe, der in Abb. 23
dargestellten, ohne weiteres verständlichen Vorrichtung.
Sie erweiterten den oberen Teil des Barometers
zu einem Gefäß, das durch einen Deckel
luftdicht geschlossen werden konnte. An diesem
Deckel wurden Gegenstände befestigt und deren Verhalten
untersucht, nachdem man in dem Apparat
die Torricellische Leere in der bekannten Weise
hergestellt hatte. So wurde z. B., wie die Abbildung
andeutet, eine nur wenig Luft enthaltende, zugebundene
Blase in das Vakuum gebracht und auf diese
Weise erkannt, daß sie infolge einer der Luft
zukommenden Expansivkraft erheblich anschwillt.
Durch einen ähnlichen Versuch wurde nachgewiesen,
daß das Steigen von Flüssigkeiten in engen Röhren
auch im Vakuum stattfindet, also mit dem Luftdruck
in keiner Beziehung steht.
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Abb. 23. Vorrichtung
der
Akademiker,
um Versuche
im Vakuum
anzustellen132.



Die erste Erwähnung findet das Emporsteigen der
Flüssigkeiten in engen Röhrchen bei Lionardo da Vinci (1490).
Die genauere Untersuchung dieser unter dem Namen Kapillarität
bekannten Erscheinung erfolgte indessen erst im 17. Jahrhundert
durch das Akademiemitglied Borelli. Borellis Werk über diesen
Gegenstand133 erschien gesondert von den Veröffentlichungen der
Akademiker, an deren Kapillaritätsversuchen er Teil genommen
hatte. Was Borelli darin schildert, sind die heute jedermann
geläufigen, bis zum 17. Jahrhundert indessen infolge ihrer Unscheinbarkeit
übersehenen Kapillaritätserscheinungen. Sie waren
selbst Pascal noch nicht bekannt. In seinem berühmten Werk
»Über das Gleichgewicht der Flüssigkeiten«134 behauptet er nämlich,
eine Flüssigkeit setze sich in kommunizierenden Röhren stets ins
Gleichgewicht, wie auch der Durchmesser dieser Röhren beschaffen
sei. Offenbar kann es sich hier nur um eine vorgefaßte Meinung
und nicht um das Ergebnis einer Prüfung handeln, die Pascal
sofort von der Unrichtigkeit seiner Behauptung überzeugt hätte.
Borelli entdeckte nicht nur das Ansteigen, sondern auch den
Zusammenhang mit der Beschaffenheit der Röhre. War letztere
im Innern feucht, so erfolgte das Ansteigen rascher. Die
Höhe erwies sich ferner abhängig von dem Durchmesser der
Röhre. Borelli fand, daß die Steighöhe dem Durchmesser umgekehrt
proportional ist (h : hʹ= dʹ : d). Zog er die Röhre aus
der Flüssigkeit heraus, so blieb so viel davon im Innern hängen,
wie der Steighöhe entspricht.


[image: Abb. 24]
Abb. 24. Durch Kapillarwirkung hervorgerufene Bewegungen.



Borelli entdeckte auch die mit der Kapillarität zusammenhängende
Erscheinung, daß sich schwimmende Körper (Holzplatten
oder sehr leichte auf dem Wasser schwimmen bleibende Metallplatten)
innerhalb einer gewissen Entfernung gegenseitig anziehen,
wenn sie von der Flüssigkeit benetzt werden (Abb. 24). Dagegen
fand er Abstoßung, wenn der eine Körper benetzt wird, der andere
aber nicht. Eine befriedigende Erklärung dieser merkwürdigen
Erscheinungen vermochte das 17. Jahrhundert noch nicht zu geben.
Die erste Theorie der Kapillarität begegnet uns um die Mitte
des 18. Jahrhunderts135.



Die Mitglieder der Akademie stellten auch das erste wirkliche
Thermometer her. Das von Galilei zum Messen der
Temperatur gebrauchte Instrument war nur ein Thermoskop, d. h.
es zeigte nur ein Mehr oder Minder von Wärme an. Auch machte
sich an ihm jede Schwankung des Luftdrucks bemerkbar.

Ähnliche Thermoskope erfanden auch Guericke und Drebbel.
Guerickes Apparat bestand aus einer mit Luft gefüllten Metallkugel,
an die sich unten eine U-förmig gebogene, zur Hälfte mit
Flüssigkeit gefüllte Röhre anschloß (Abb. 25). In dieser Röhre
befand sich ein Schwimmer, der wieder durch einen über eine Rolle
geschlungenen Faden, wie die Abbildung zeigt, mit einer schwebenden
Figur verbunden war. Letztere bewegte sich auf- und abwärts
in dem Maße, in dem die Flüssigkeit, entsprechend den Volumänderungen
der in der Kugel eingeschlossenen Luft, fiel und stieg.


[image: Abb. 25]
Abb. 25. Guerickes Thermoskop136.



Eine ähnliche Vorrichtung, bei der eine Flüssigkeit durch
die Temperaturschwankungen eines mit Luft gefüllten Gefäßes
zum Steigen und Fallen gebracht wurde, verfertigte Drebbel137.
Er bezeichnete seinen Apparat als ein Perpetuum mobile und
suchte den Glauben zu erwecken, daß es sich hier um eine der
Ebbe und Flut des Meeres entsprechende
Erscheinung handle138. Galilei erhielt im
Jahre 1612 Kenntnis von dem Apparate
Drebbels, der bis in die neuere Zeit
hinein für den Erfinder des Thermometers
gegolten hat. Ein wirkliches Thermometer,
das vom Wechsel des Luftdruckes
nicht merklich beeinflußt wurde, war erst
das Instrument, dessen sich die Accademia
del Cimento bei ihren Untersuchungen
bediente (siehe Abb. 27). Höchst wahrscheinlich
waren Galilei und Drebbel, ohne von einander zu
wissen, zur selben Vorstufe gelangt139. Wem dagegen die Erfindung
des eigentlichen Thermometers zu verdanken ist, weiß man
nicht. Das Instrument wurde schon 1641, also vor der Gründung
der Akademie in Italien gebraucht. Die grundsätzliche Neuerung,
um deren Zustandekommen sich vielleicht mehrere Physiker der
Florentiner Schule verdient gemacht haben, bestand darin, daß
die Kugel und die Röhre luftleer gemacht und letztere oben, anfangs
durch Siegellack und später durch Zuschmelzen, vollkommen
geschlossen wurde. Auf diese Weise war der Luftdruck, der bei
den Apparaten Galileis, Drebbels und Guerickes neben
den Temperaturveränderungen die Schwankungen der Flüssigkeit
veranlaßte, ausgeschlossen.


[image: Abb. 26]
Abb. 26. Drebbels Thermoskop.




[image: Abb. 27]
Abb. 27.
Das in den Abhandlungen
der Accademia del Cimento
dargestellte Thermometer140.



Als Flüssigkeit, deren Ausdehnung zum Messen der Wärme
diente, benutzte man Weingeist. Die Skala besaß zwar hundert
Teile; doch waren die Angaben sehr schwankend, da man keine
festen, leicht bestimmbaren Punkte zugrunde legte, sondern für
die niedrigste, sowie die höchste in Toskana beobachtete Temperatur
gewisse Punkte der Skala festsetzte. Erst nach der Auflösung
der Akademie brachte eines ihrer Mitglieder141 die noch
heute gebräuchlichen Fundamentalpunkte, nämlich den Schmelzpunkt
und den Siedepunkt des Wassers, in Vorschlag. Die Verfertigung
der Thermometer wird in den Abhandlungen der Accademia
del Cimento mit folgenden Worten beschrieben: »Zunächst
hat der Glasbläser eine Kugel von geeigneter Größe herzustellen
und ihr eine Röhre anzufügen. Die Füllung geschieht folgendermaßen:
Die Kugel wird erhitzt und dann plötzlich das offene
Ende in Weingeist getaucht, der langsam hineinsteigt. Das letzte
Nachfüllen wird mit einem Trichter besorgt, der einen ganz
dünn ausgezogenen Hals hat. Das Rohr wird vorher in gleiche
Teile geteilt und jeder Teilstrich durch eine eingebrannte, weiße
Glasperle bezeichnet. Dann wird das Thermometer erwärmt und
endlich, nachdem der Weingeist den gewünschten höchsten Stand
erreicht hat, vollkommen geschlossen.« Weitere Versuche betrafen
die Ausdehnung des Wassers beim Gefrieren und seine Zusammendrückbarkeit.
Man füllte ein metallenes Gefäß142 mit Wasser, verschloß
das Gefäß und brachte es in eine Kältemischung, deren
Anwendung zu wissenschaftlichen Zwecken gleichfalls ein Verdienst
der Akademie ist. Die Ausdehnung des Wassers bei seiner
Umwandlung in Eis erfolgte mit solch unwiderstehlicher Gewalt,
daß das Gefäß zersprang, ein Versuch, der ja in den Bestand
der Vorlesungsversuche des heutigen Physikunterrichts übergegangen
ist.

Auch das Maß der beim Gefrieren eintretenden Ausdehnung
bestimmten die Akademiker; und zwar fanden sie, daß sich das
Wasser bei diesem Vorgang im Verhältnis von 8 : 9 ausdehnt.
Ihre Kältemischung stellten sie aus Schnee her, dem sie Kochsalz,
Salpeter oder Salmiak beimengten.

Daß sich beim Auflösen von Salpeter die Temperatur erniedrigt,
war wohl schon im 16. Jahrhundert bekannt geworden.
Als merkwürdig und unerklärlich erwähnt Descartes die Kältemischungen
aus Salz und Schnee in seiner
Schrift über die Meteore143. An den Nachweis,
daß das Wasser sich auszudehnen vermag,
mußte sich die Frage knüpfen, ob diese
Flüssigkeit auch zusammengedrückt werden
kann. Um darüber eine Entscheidung herbeizuführen,
schloß man Wasser in eine
silberne Kugel ein und suchte ihre Form
durch Pressen und Hämmern zu verändern144.
Dabei bedeckte sich ganz wider Erwarten
die Kugel mit Wasser (siehe Abb. 28), das
offenbar durch das Silber hindurchgepreßt
worden war.


[image: Abb. 28]
Abb. 28. Versuch der
Akademiker über die
Zusammendrückbarkeit
des Wassers145.



Wie Galilei, so mühten sich die Akademiker auch ab, die
Schall- und Lichtgeschwindigkeit zu bestimmen. Ihr Verfahren,
die Schallgeschwindigkeit zu messen, bestand darin, daß sie die
Zeit, die zwischen dem Aufblitzen und dem Knall eines entfernten
Geschützes verfließt, durch Pendelschwingungen ermittelten. Auf
die Temperatur der Luft wurde hierbei noch keine Rücksicht genommen.
Ihr Ergebnis, 1111 Par. Fuß in der Sekunde, kam dem
wahren Werte näher als die früheren Bestimmungen. Indessen
glaubten die Akademiker irrigerweise, aus den von ihnen erhaltenen
Werten schließen zu dürfen, daß der Wind auf die Schallgeschwindigkeit
keinen Einfluß habe.

Die Bemühungen, die Geschwindigkeit des Lichtes zu ermitteln,
konnten zu keinem Ergebnis führen, da man noch zu keiner neuen
Methode gelangt war, sondern das von Galilei vorgeschlagene
Signalverfahren benutzte.

Endlich sei noch erwähnt, daß die Akademie manchen Satz,
den Galilei nur ausgesprochen, aber noch nicht auf seine Richtigkeit
geprüft hatte, durch das Experiment erhärtete. So wurde
eine Kugel von einem hohen Turme horizontal fortgeschossen,
während man gleichzeitig eine gleich große Kugel von demselben
Standort frei herabfallen ließ. Es zeigte sich, daß beide Kugeln,
wie Galilei behauptet, zur selben Zeit aufschlugen.

Einige Überreste des physikalischen Apparats, den die Akademiker
für ihre Versuche geschaffen, finden sich noch in Florenz146.
Die Akademie selbst, die sich mit unvergänglichem Ruhm bedeckt
hat, wurde schließlich auf Betreiben der römischen Kurie geschlossen.
Zum Glück war religiöse Unduldsamkeit nicht mehr
imstande, die Fackel der Wissenschaft zum Erlöschen zu bringen.
Fast zur selben Zeit als die Florentiner Akademie aufgelöst wurde,
entstanden nämlich nach ihrem Vorbilde die großen Akademien in
London und Paris, die ihre glorreiche Laufbahn bis auf den
heutigen Tag fortgesetzt haben und nebst zahlreichen Schwestergesellschaften
Hochburgen wissenschaftlicher, von keinerlei Rücksichten
gehemmter Forschung bilden.

Mit optischen Dingen hat sich unter den Mitgliedern der
Akademie besonders Torricelli beschäftigt. Er stellte winzige
Glaskügelchen her und lehrte sie als einfache Mikroskope von bedeutendem
Vergrößerungsvermögen gebrauchen. Er befaßte sich
ferner mit geometrischen Untersuchungen über die Wirkung der
Linsen und konstruierte Teleskope, welche diejenigen Galileis
übertrafen147. Aber nicht nur die Schüler und die Anhänger
Galileis beschritten eifrig den Weg des Versuches, sondern auch
seine Gegner, die ihm besonders aus der Ecclesia militans erstanden,
verfolgten häufig denselben Weg. Es war immerhin ein
Zugeständnis dieser Kreise an den Geist der neueren Zeit, daß
man nicht mehr, wie in früheren Jahrhunderten, den Bannstrahl
und scholastisches Gezänke für ausreichend hielt, um das Emporkommen
neuer Wahrheiten zu unterdrücken. Ein solcher Gegner
Galileis und der koppernikanischen Lehre war der Jesuit
Riccioli. Er hat sich trotz dieser Gegnerschaft Verdienste um
die Astronomie und die Mechanik erworben.

Giovanni Battista Riccioli (1598–1671) unternahm es,
in Gemeinschaft mit Grimaldi, die Gesetze des Falles, die von
Galilei nur für die schiefe Ebene experimentell nachgewiesen
waren, für den freien Fall zu prüfen. Beide Männer ließen um
1640 von einem Turm Kugeln aus verschiedener Höhe herabfallen
und maßen, während der eine oben, der andere unten stand, die
Zeit. Um letztere zu messen, bedienten sie sich kleiner Pendel,
die 6 Schwingungen in der Sekunde machten. Riccioli unternahm
seine Versuche in der Absicht, Galilei zu widerlegen
und selbst das wahre Gesetz des Falles zu finden. Um die Werke
Galileis lesen zu können, mußte er die Erlaubnis seiner Oberen
einholen, da Galileis Schriften von der Indexkongregation verboten
waren. Ricciolis Ergebnisse sind in folgender Tabelle
wiedergegeben:



	Anzahl der Pendelschwingungen
	Fallhöhe in Fuß
	Fallraum in gleichen Zeiten
	Verhältnis der Fallstrecken



	5
	10
	10
	1



	10
	40
	30
	3



	15
	90
	50
	5



	20
	160
	70
	7



	25
	250
	90
	9




Ricciolis und Grimaldis Fallversuche entsprachen also
vollkommen dem von Galilei für den Fall über die schiefe Ebene
gefundenen, für den freien Fall aber noch nicht bewiesenen Gesetz.
Es macht dem Charakter beider Forscher alle Ehre, daß sie ihre
eigene Niederlage unumwunden eingestanden und die Anhänger
Galileis von den Versuchsergebnissen in Kenntnis setzten.

Spätere Versuche Ricciolis bezweckten, den Einfluß der
Luft auf fallende Körper zu ermitteln. Schon Galilei hatte den
Widerstand der Luft für größere Geschwindigkeiten als recht erheblich
angenommen und zum Beweise dieser Annahme einen Versuch
vorgeschlagen, den aber erst die Mitglieder der Accademia
del Cimento zur Ausführung brachten. Galilei schlug vor, man
solle eine Flintenkugel aus einer Höhe von 100 Ellen senkrecht
auf eine Eisenplatte herab schießen und diesen Versuch in einer
Entfernung von wenigen Ellen wiederholen. Es sei wahrscheinlich,
daß im ersteren Falle die Kugel infolge der längeren Wirkung
des Luftwiderstandes mit geringerer Geschwindigkeit auf das
Eisen treffen werde als im zweiten, obgleich bei dem Schuß aus
größerer Entfernung die durch das Pulver erhaltene Geschwindigkeit
durch den Fall noch wesentlich vergrößert werde. Ob diese Vermutung
richtig sei, müsse sich an der größeren oder geringeren
Formveränderung der Kugel ergeben. Die Akademie fand diese
Vermutung bestätigt, denn die aus großer Höhe herabgeschossene
Kugel war tatsächlich weniger verändert148.

Bemerkenswert sind auch Ricciolis Versuche über diesen
Gegenstand. Er stellte zwei Tonkugeln von gleichem Gewicht
her, von denen die eine massiv war und 10 Zoll Durchmesser
besaß, während die andere hohl war und einen Durchmesser
von 20 Zoll hatte. Beide Kugeln ließ Riccioli von der Höhe
des Campanile zu Bologna herabfallen. Dabei zeigte es sich,
daß die massive Kugel die 280 röm. Fuß betragende Strecke
in 3,2 Sekunden durchlief, während die hohle 4,2 Sekunden
brauchte. Ferner stellte Riccioli Fallversuche mit Kugeln von
Blei, Ton, Wachs und Holz an und beobachtete, daß der spezifisch
schwerere Körper schneller als der spezifisch leichtere fällt.

Riccioli war zwar ein Gegner des koppernikanischen Systems.
Er hat sich aber um die Astronomie trotzdem verdient gemacht,
indem er unter dem Titel Almagestum novum (1651) ein bedeutendes,
eine Menge von Tatsachen bietendes Sammelwerk dieser
Wissenschaft herausgab.

Grundlegende optische Untersuchungen.

Auch für die Lehre vom Licht wurden um diese Zeit neue
experimentelle Grundlagen geschaffen. Das geschah vor allem
durch Grimaldi.

Francesco Maria Grimaldi wurde 1618 in Bologna geboren,
wirkte dort als Lehrer der Mathematik und starb 1663.
Er war ein sehr gelehrter Mann und ein hervorragender Beobachter.
Sein Hauptgebiet war die Optik, in die er tiefer einzudringen
verstand als irgend jemand vor ihm. Das Werk, in dem Grimaldi
seine Beobachtungen und Lehren über diesen Gegenstand
zusammenfaßte,
erschien
erst einige Jahre
nach seinem Tode
unter dem Titel
Physico-Mathesis
de lumine, coloribus
et iride149.
In diesem Buche
findet sich nicht
nur die erste
Beschreibung des
durch ein Prisma erzeugten Sonnenspektrums150, es wird darin auch
über merkwürdige Erscheinungen berichtet, welche dem Gesetz der
geradlinigen Fortpflanzung des Lichtes zu widersprechen schienen,
und mit dem Namen der Beugung belegt wurden.


[image: Abb. 29]
Abb. 29. Grimaldis Nachweis der Beugung des Lichtes151.




[image: Abb. 30]
Abb. 30. Grimaldi beobachtet die
Beugung an einem Lichtkegel.



Grimaldi ließ Sonnenlicht
durch eine feine Öffnung in ein
dunkles Zimmer fallen und brachte
in das so erhaltene Lichtbündel einen
undurchsichtigen Körper (s. Abb. 29).
Fing man vermittelst eines Schirmes
CD den Schatten auf, so besaß dieser
eine größere Breite (MN), als der
Konstruktion entsprach. Ferner war
der Schatten von farbigen Streifen
umgeben, die seiner Begrenzung
parallel liefen und sich auch in das
Innere des Schattens erstreckten.
Ließ Grimaldi durch die Öffnungen
CD und GH (siehe Abb. 30) einen
Lichtkegel fallen, der von dem Schirm IK aufgefangen wurde, so
besaßen die Grundflächen dieses Kegels nicht den Durchmesser
NO, den die geometrische Konstruktion auf Grund der geradlinigen
Fortpflanzung des Lichtes fordert, sondern einen größeren
Durchmesser IK.

Diese Erscheinungen, insbesondere die zuerst beschriebene,
die offenbar nicht mit der infolge der Brechung auftretenden
Farbenzerstreuung identisch war, veranlaßte Grimaldi, das Licht
als eine wellenförmige Bewegung zu betrachten. »Wie sich um
einen Stein, den man ins Wasser wirft, kreisförmige Wellen bilden«,
sagt er, »ebenso entstehen um den Schatten des undurchsichtigen
Gegenstandes jene glänzenden Streifen. Und so wie jene kreisförmigen
Wellen nichts anderes sind als angehäuftes Wasser, um
das sich eine Furche hinzieht, so sind auch die glänzenden Streifen
nichts anderes als das Licht selbst, das durch eine heftige Zerstreuung
ungleichmäßig verteilt und durch schattige Intervalle getrennt
wird. So wie endlich die kreisförmigen Wasserwellen breiter
werden, wenn sie sich von der Quelle ihrer Erregung entfernen,
ebenso bemerken wir dasselbe an den glänzenden Streifen, je
weiter sie von dem Anfange ihrer Erregung abstehen«152.

Wir finden hier die erste Andeutung der Undulations- oder
Wellentheorie des Lichtes, die in der neuesten Zeit zur vollen
Geltung gelangte, da sie nicht nur sämtliche Lichterscheinungen
erklärte, sondern in manchen Fällen sogar bisher unbekannte
Phänomene vorherzusagen gestattete.


[image: Abb. 31]
Abb. 31. Grimaldi entdeckt die Interferenz des
Lichtes.



Der Gedanke, daß das Licht aus einer feinen Flüssigkeit bestehe,
die in wellenförmiger Bewegung begriffen sei, kehrt in
Grimaldis Ausführungen immer wieder. Auch die wichtige Beobachtung,
daß »Licht
zu Licht addiert«, wie
es später bei Arago
lautet, Finsternis geben
kann, hat Grimaldi
zuerst gemacht: »Ein
erleuchteter Körper
kann dunkel werden«,
sagt er153, »wenn zu dem
Licht, das er empfängt,
noch neues Licht hinzutritt«.
In dem Laden eines verdunkelten Zimmers wurden zwei
Löcher angebracht, durch welche Licht fiel. Jeder Lichtkegel gab
für sich auf dem weißen Schirm einen hellen, gegen die Ränder rötlichen
Fleck. Ließ Grimaldi nun die Lichtkegel teilweise übereinander
greifen, (s. Abb. 31) so fand er, daß die Kreisbögen,
welche den Mittelraum des von den übergreifenden Rändern eingeschlossenen
Stückes begrenzen, dunkel erscheinen. Durch diese
Versuche war die Interferenz des Lichtes entdeckt. Auf den Gedanken,
das weiße Licht aus farbigem zusammenzusetzen, ist Grimaldi
noch nicht gekommen. Durch weitere Versuche hat er
aber dargetan, daß weißes Licht durch bloße Reflexion, wie er
sich ausdrückt, in farbiges Licht verwandelt werden kann. Zu
diesem Zwecke, ließ Grimaldi154 das Sonnenlicht auf eine feingeritzte
Metallplatte und von dort auf einen Schirm fallen. Es
zeigten sich durch Beugung entstandene farbige Streifen. Wir
begegnen also schon hier an der Schwelle der neueren Physik dem
Verfahren, mittelst dessen heute die Gitter zur Erzeugung eines
Beugungspektrums hergestellt werden.

Grimaldi selbst hat aus dem Verhalten seiner geritzten
Platte gegen das Licht schon die im Tierreich an Federn, Insektenflügeln
usw. so häufig vorkommenden Schillerfarben erklärt,
eine Untersuchung, welche die neuere Zoologie wieder aufnahm
und die Brücke155 zu einem vorläufigen Abschluß brachte.

Der zuletzt erwähnte Versuch mußte in Grimaldi schon die
Überzeugung wachrufen, daß die Farben Bestandteile des weißen
Lichtes und nicht etwas den Körpern Eigentümliches sind. Die
Farben, sagt er wiederholt, seien nichts vom Lichte Verschiedenes,
das etwa in den farbigen Körper ohne die Gegenwart des Lichtes
vorhanden wäre. Die Ursache der Körperfarben erblickt Grimaldi
vielmehr in dem, was wir heute den molekularen Bau der
Körper nennen würden. Er meint nämlich156, ihre Ursache beruhe
wahrscheinlich auf der Lage der Poren, also auf dem Gefüge
der Stoffe, wodurch gerade diejenige Farbe, die dem betreffenden
Körper eigentümlich sei, zurückgeworfen werde. Die Farbe selbst,
so führt er weiter aus, ist danach eine durch die Natur des reflektierenden
Körpers hervorgerufene Modifikation des Lichtes und
besteht wahrscheinlich in einer Änderung der Bewegungsform und
der Geschwindigkeit des letzteren. Wie die Töne durch die Verschiedenartigkeit
der Luftschwingungen hervorgerufen würden, so
würden auch die Farben dadurch erzeugt, daß das Auge von Erzitterungen
des Lichtes getroffen werde, deren Geschwindigkeit
verschieden groß sei und so die Unterschiede der Farben bedinge.
Alles das sind Anschauungen, die für die weitere Entwicklung der
Optik grundlegend gewesen sind.

Daß Grimaldi zwischen der Auffassung, ob das Licht stofflicher
Natur sei oder in einem reinen Bewegungsvorgang bestehe,
noch nicht scharf genug zu unterscheiden vermochte, tut dem Werte
seiner Versuche keinen, und dem Werte der an diese Versuche
geknüpften Lehren nur geringen Abbruch157. Man findet daher
bei den bedeutendsten Physikern des 17. Jahrhunderts, vor allem bei
Hooke und Newton, manche Spuren seiner Anregungen, wenn
auch beide Forscher auf diese Anregungen in ihren Werken nicht
immer hinweisen158.

Die Erforschung der Elektrizität und des Magnetismus.

Nicht nur in Italien, sondern auch in den übrigen Kulturländern
hatte das induktive Verfahren Wurzel geschlagen. Teils
unabhängig von Galilei und seiner Schule, teils angeregt von
dieser, erstand eine stetig wachsende Schar von Forschern, welche
die Unfruchtbarkeit der alten Methode erkannten und mit
vereinten Kräften die Naturwissenschaften in das neue Fahrwasser
hinüberzulenken strebten. Während in Italien diese
Wissenschaften durch das Verhalten der in mittelalterlicher
Denkweise beharrenden Kreise, wenn auch nicht unterdrückt, so
doch in hohem Grade gehemmt wurden, erwies sich im Verlauf
des 17. Jahrhunderts der Boden Englands und der Niederlande
für ihre Entwicklung besonders günstig. Im nördlichen Europa
waren durch die Reformation die Fesseln des blinden Autoritätsglaubens
gesprengt worden. Zwar wurde diese Bewegung bald
durch neue Schranken eingedämmt. In Deutschland ließen sie auch
die politischen Verhältnisse weniger zum Durchbruch kommen.
Eine tiefgehende Wirkung blieb jedoch nicht aus. Sie trat auch
in den Geisteserzeugnissen jener Zeit zutage. In England vor allem
fand seit dem Zeitalter Elisabeths eine Neugestaltung der gesamten
Lebensverhältnisse, sowie eine Ausdehnung des Gesichtskreises
und des Machtbereiches statt, die eine in diesem Lande
nie vorher in solchem Maße gesehene Entfaltung aller Kräfte zur
Folge hatten. »Unter den Waffen«, sagt der Geschichtsschreiber
dieser Periode159 »wuchs der Handel. Die Erhaltung des Friedens
im Innern erfüllte das Land mit Wohlstand und Reichtum; man
sah Paläste aufsteigen, wo sonst Hütten gestanden hatten«. Hier
war es, wo damals das Wort »Wissen ist Macht«160 erklang. Und
daß dieses Wort seitdem gewürdigt wurde, ist eine der Ursachen
von Englands Emporblühen gewesen, das, wie Bacon es einmal
ausdrückte, seine natürliche Stellung in der Welt gewann.

Der bedeutendste Forscher, der uns zu Beginn der neueren
Zeit auf dem Boden Englands begegnet, ist Gilbert. Ihm verdanken
wir die erste wissenschaftliche Behandlung der elektrischen
und der magnetischen Erscheinungen. Das Ergebnis seiner Untersuchungen
hat Gilbert in dem Werke161 »Über den Magneten«
niedergelegt. William Gilbert wurde in Colchester im Jahre
1540162 geboren. Er lebte seit 1573 als Arzt in London und
wurde von der Königin Elisabeth zu ihrem Leibarzt ernannt. Er
starb in London im Jahre 1603.

Zu seinen Untersuchungen wurde Gilbert durch die »Magia
naturalis« Portas, besonders aber durch den Umstand angeregt,
daß die Magnetnadel und der Erdmagnetismus für die Schifffahrt
von solch außerordentlicher Bedeutung geworden waren.
Während aber Porta seine Darstellung der physikalischen Erscheinungen
noch mit phantastischem und abenteuerlichem Beiwerk
vermengte, betrat Gilbert gleich Galilei den Weg der
von Vorurteilen und unbegründeten Voraussetzungen absehenden,
auf Versuche sich aufbauenden Forschung. Das Ergebnis dieser
Bemühungen war ein wissenschaftliches, die Grundlagen für ein
weites Gebiet enthaltendes Werk, mit dessen Inhalt wir uns der
Hauptsache nach bekannt machen wollen.

Gilbert gebrauchte für seine Versuche kräftige Magnetsteine
von geeigneter Größe und gab ihnen die Kugelform. »Der so
geformte Stein« sagt er, »ist das getreue und vollkommene Ebenbild
der Erde; wir wollen ihn daher Terrella163 nennen«. Um die
Pole des Magneten zu finden, nahm er die Terrella in die Hand
und legte einen dünnen Eisendraht über den Stein. Letzteren
bezeichnete er dort, wo der Draht haftete, mit Kreide. Darauf
brachte er die Mitte des Drahtes an eine andere Stelle, sowie an
eine dritte und an eine vierte, und versah jedesmal den Stein in
der Längsrichtung des Drahtes mit einem Strich. »Diese Striche«,
sagt Gilbert, »werden den Meridianen vergleichbare Linien auf
der Terrella darstellen. Und es wird sich deutlich zeigen, daß
sie in den Polen der Terrella zusammenlaufen.« In gleichem Abstande
von diesen Polen der Terrella ließ sich dann ein größter
Kreis ziehen, der dem Äquator entsprach.


[image: Abb. 32]
Abb. 32. Die Pole eines kugelförmigen
Magneten aufzufinden.
(Aus Gilbert, De magnete.)
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Abb. 33. Die Teilung eines
Magneten.
(Aus Gilbert, De magnete.)



Ein anderes Verfahren, die Pole aufzufinden, besteht nach
Gilbert darin, daß man sich einer Magnetnadel bedient, die mit
einer Vertiefung versehen und auf der Spitze einer Nadel so angebracht
ist, daß sie sich frei bewegen kann. Diese Vorrichtung
wird so auf den Stein AB in C gestellt, daß sich die Nadel im
Gleichgewicht befindet (Abb. 32). Darauf wird die Richtung der
ruhenden Nadel mit Kreide bezeichnet, dann das Instrument auf eine
andere Stelle gebracht und die Richtung wieder vermerkt. »Geschieht
dies an recht vielen Stellen, so wird man aus dem Zusammenlauf
der Linien den einen Pol an dem Punkte A, den andern bei B
finden. Den Pol selbst zeigt die dem Steine genäherte Nadel dadurch
an, daß sie sich rechtwinklig zur Oberfläche einstellt und
auf den Pol und somit nach dem Mittelpunkt des Steines hinweist.«

Für seine Versuche über die Teilung des Magneten wählte
Gilbert einen länglichen Magnetstein AD, mit dem Nordpol A
und dem Südpol D, und teilte ihn in zwei gleiche Teile. Darauf
ließ er den Teil AB in einem Gefäß auf Wasser schwimmen. Er
bemerkte, daß der Nordpol A nach Süden zeigte und D nach
Norden. B und C aber, die vorher miteinander verbunden gewesen,
waren jetzt zum Nord- und Südpol geworden. Der Südpol
B zog den Nordpol C an. »War kein Hindernis vorhanden und
das Gewicht aufgehoben, wie es auf der Oberfläche des Wassers
der Fall ist, so näherten sich diese Pole und vereinigten sich.
Näherte man jedoch den Pol A dem Pole C des anderen Steines,
so flohen sie einander.« Es handelte sich bei diesen Schilderungen
Gilberts nicht etwa immer um ganz neue Entdeckungen. Wir
finden aber vor ihm keine solche klare, wissenschaftlich zu nennende
Darstellung. Einen Vorläufer besaß Gilbert in Petrus Peregrinus,
dessen im Jahre 1269 entstandene Abhandlung »Über den
Magneten« die älteste im Abendlande angestellte Untersuchung
über diesen Gegenstand und zugleich eins der frühesten Zeugnisse
dafür ist, daß die Anfänge der experimentellen Forschung bis
auf das Mittelalter zurückzuführen sind164.

Von dem Inhalt der Schrift des Petrus Peregrinus erhalten
wir durch folgende Kapitelüberschriften eine ungefähre Vorstellung:
Auf welche Weise der Magnet Eisen anzieht. – Wie das mit
dem Magneten berührte Eisen nach den Himmelspolen gerichtet
wird. – Über die wechselseitige Anziehung des Nord- und Südpols.
– Vorschrift, die Pole aufzufinden. Sie lautet: Man bringe
den Magnetstein in ein hölzernes Gefäß. Dieses läßt man in
einem größeren mit Wasser gefüllten Behälter schwimmen. Der
Stein dreht dann das Gefäß, wie ein Seemann sein Schiff dreht,
bis die Pole sich nach den Himmelsrichtungen einstellen.

Von den magnetischen Erscheinungen wußte Gilbert die
elektrischen wohl zu unterscheiden, während vor ihm in dieser
Hinsicht eine große Unklarheit herrschte. Bis zu seiner Zeit
kannte man die elektrische Anziehung fast nur am Bernstein.
Durch Gilberts Versuche wurde bewiesen, daß sich diese Kraft
auf alle festen Substanzen und sogar auf Flüssigkeiten erstreckt.
Tropfen, denen Gilbert elektrisierte Körper näherte, erhoben sich
auf ihrer Unterlage. Die Einwirkung der Elektrizität auf Metalle
stellte Gilbert fest, indem er diese in der Form leicht beweglicher
Nadeln anwandte und zeigte, daß sie von elektrisierten
Körpern angezogen werden. Daß zwischen den letzteren auch
eine Abstoßung stattfindet, ist von Gilbert übersehen worden.
Ganz unbekannt blieb ihm die elektrische Abstoßung jedoch nicht,
da er wenigstens die Beobachtung machte, daß die Flamme sich
von einem elektrisierten Körper fortbewegt.

Gilbert elektrisierte außer dem Bernstein auch Diamant,
Saphir, Rubin, Opal, Amethyst, Beryll, Bergkristall, Schwefel und
Harz. Er wies nach, daß all diese Substanzen nicht nur Spreu anziehen,
sondern auch sämtliche Metalle, Holz, Blätter, Steine, Erde,
sogar Wasser und Öl, kurz, »alles, was durch unsere Sinne wahrgenommen
werden kann«. Um aber durch Versuche festzustellen,
wie diese Anziehung stattfindet und welches die Stoffe sind, die
alle Körper auf solche Weise anziehen, richtete er sich einen
3–4 Zoll langen Zeiger aus Metall her und brachte diesen auf
der Spitze einer Nadel, ähnlich wie bei einem Kompaß, leicht beweglich
an. Näherte er nun diesem Zeiger Bernstein oder Bergkristall,
nachdem er sie gerieben hatte, so geriet der Zeiger sofort
in Bewegung.

Der Magnet, bemerkt Gilbert, äußere seinen Magnetismus
ohne vorhergehendes Reiben, sowohl im trockenen als im feuchten
Zustande, in der Luft wie im Wasser, ja selbst, wenn die dichtesten
Körper, seien es Platten aus Holz und Stein oder Scheiben
aus Metall, dazwischen gebracht seien. Der Magnet wirke aber
nur auf magnetische Körper, während elektrische Substanzen alles
anzögen. Auch vermöge der Magnet bedeutende Lasten zu tragen,
während der elektrisierte Körper nur sehr kleine Gewichte bewege165.

Die magnetischen Erscheinungen waren infolge der Verwendung,
welche die Boussole seit dem 12. Jahrhundert in Europa
sowohl für die Schiffahrt als auch beim Bergbau erfahren hatte166,
weit mehr als die elektrischen beachtet worden. So konnte die
als Deklination bezeichnete Abweichung der Nadel aus der Nord-Südrichtung
einem aufmerksamen Beobachter nicht wohl entgehen.
Columbus hatte die Änderungen der Deklination auf seiner Reise
nach Westen bemerkt und war sogar auf den Gedanken gekommen,
diese Änderungen zur Bestimmung der geographischen
Länge zu benutzen. Er beobachtete 200 Seemeilen über Ferro
hinaus eine westliche Deklination von fünf Graden. Bei der
weiteren Fahrt nach Westen vergrößerte sich diese Abweichung,
während sie in Europa damals östlich war. Die Neigung der um
eine horizontale Achse drehbaren Magnetnadel war gleichfalls bereits
bekannt. Gilbert selbst teilt mit, daß ihre Größe im Jahre
1576 für London gleich 71° 50ʹ gefunden sei167.


[image: Abb. 34]
Abb. 34. Gilbert untersucht die Stellung eines
kleineren Magneten zu seiner Terrella168.



Gilberts wesentlichstes Verdienst bestand darin, daß er
alle erdmagnetischen Erscheinungen unter einem Gesichtspunkt
vereinigte, indem er die Erdkugel für einen einzigen großen Magneten
erklärte. Zu dieser
Auffassung gelangte er,
als er das Verhalten der
Nadel gegen einen kugelförmigen
Magneten eingehend
untersuchte und
es mit dem Verhalten der
Magnetnadel gegen die
Erde verglich. Daraus,
daß die Nadel sich an
den Polen eines kugelförmigen
Magneten senkrecht
zur Oberfläche einstellt
(s. Abb. 34), schloß
Gilbert, daß die Inklination
in den nördlichen
Teilen der Erde größer
sein müsse als in London,
eine Vermutung, die später durch Hudson während seiner Entdeckungsreisen
in den polaren Gegenden Amerikas bestätigt wurde.
Hudson fand nämlich im Jahre 1608 schon unter dem 75. Grad
nördlicher Breite eine nahezu senkrechte Einstellung der Inklinationsnadel.
Dies war der Annahme Gilberts nicht ganz entsprechend.
Er meinte nämlich, der magnetische Nordpol müsse
mit dem geographischen zusammenfallen, wie er ja auch die tägliche
Drehung als eine Folge des Erdmagnetismus auffaßte.
Galilei, der Gilbert schätzte und seine Ergebnisse im wesentlichen
gelten ließ, wies jedoch die Ansicht, daß jede freischwebende,
magnetische Kugel sich um ihre Achse drehen müsse, als irrtümlich
zurück.

Von dem Nachweis, daß die Erde ein kugelförmiger Magnet
ist, war es nur ein Schritt zu dem Gedanken, daß auch die übrigen
Weltkörper, insbesondere der Mond und die Sonne, mit magnetischer
Kraft begabt seien169. Gilbert zögerte nicht, diesen Schluß
zu ziehen und als Anhänger des koppernikanischen Systems die
Bewegung der Weltkörper, sowie die Erscheinung von Ebbe und
Flut auf den Magnetismus zurückzuführen. Hierin folgte ihm
auch Kepler, dessen Ansichten über die magnetische Kraft der
Sonne wir später kennen lernen werden.

Da Gilbert die geographischen Pole mit den magnetischen
zusammenfallen ließ, bedurfte die Erscheinung der Deklination
einer besonderen Erklärung. Gilbert, dem noch wenig Beobachtungsmaterial
zur Verfügung stand, hielt die Verteilung von
Wasser und Land für die Ursache jener Abweichung der Nadel.
Seiner Meinung nach mußte im Innern größerer Kontinente, wo
der Einfluß des Meeres aufhörte, auch die Deklination verschwinden.
Die wenigen Beobachtungen, welche die Seefahrer damals gesammelt
hatten, waren geeignet, diese irrige Ansicht zu unterstützen.

Zwar wußte Gilbert noch keine eigentliche Theorie der von
ihm gefundenen Tatsachen zu geben, wenn er auch die elektrischen
Erscheinungen in ähnlicher Weise, wie es schon das Altertum
versucht hatte, auf Ausflüsse zurückführte. Wie man die Luft
als einen Ausfluß der Erde betrachten müsse, so beruhe die Elektrisierbarkeit
der Körper darauf, daß eine gewisse feinste Flüssigkeit,
die erforderlich sei, um den Zusammenhang der Körper zu
bewirken, infolge der Reibung aus ihnen herausgetrieben werde.
Dieses Fluidum sollte die elektrische Anziehung leichter Körper
vermitteln, ebenso wie nach Gilberts Ansicht die Luft es ist,
welche die ihrer Unterstützung beraubten Körper veranlaßt, sich
dem Mittelpunkt der Erde zu nähern. Diese Vorstellung von einer
oder mehreren Flüssigkeiten als Trägern der elektrischen Erscheinungen,
die uns bei den Alten und bei Gilbert im Keime
begegnet, wurde vom 18. Jahrhundert, das sich in hervorragendem
Maße der Erforschung der Reibungselektrizität zuwandte, festgehalten
und zu einer wissenschaftlichen Theorie entwickelt.

Hinsichtlich der magnetischen Erscheinungen
verzichtete Gilbert auf eine physikalische Erklärung.
Er hielt diese Erscheinungen für die Folge
einer Beseelung der Materie. Jenseits der Ausflüsse,
welche die elektrischen Vorgänge veranlassen
sollten, befinde sich der leere Raum, das Vakuum,
durch das hindurch unmöglich eine materielle Einwirkung
stattfinden könne. Daher nahm Gilbert
– und auch hierin folgte dem Physiker der Astronom
Kepler – in den Weltkörpern eine Art seelischer
Kraft an. Das große Rätsel von der Wirkung
der Materie in die Ferne begegnet uns also schon
hier an der Schwelle der neueren Naturwissenschaft170.

Der Mangel an klaren theoretischen Vorstellungen
beeinträchtigt indessen nicht den Wert
experimentell gewonnener Ergebnisse. Und diese
sind es, die wir Gilbert in reichem Maße verdanken.
Hervorgehoben seien noch seine Versuche
mit bewaffneten oder armierten Magneten. Letztere
stellte er dadurch her, daß er die Pole eines natürlichen
Magneten mit Eisenkappen bedeckte (siehe
Abb. 35). Es zeigt sich, daß die Tragkraft durch
eine derartige Armierung bedeutend zunimmt. So
trug ein Magnet vor der Armierung 2 und nach
der Armierung 12 Unzen Eisen. Die Abbildung
zeigt uns einen armierten Magneten, der zwei
andere von gleicher Größe trägt171.


[image: Abb. 35]
Abb. 35.
Gilberts Versuche
mit armierten
Magneten172.



Mit dem Werke Gilberts kaum in Parallele zu stellen ist
das dickleibige Buch eines gelehrten Deutschen, das wenige Jahrzehnte
später (1634) erschien. Es führt den Titel »Magnes sive
de arte magnetica« und hat den in Würzburg eine Professur bekleidenden
Jesuitenpater Athanasius Kircher zum Verfasser.
Kircher steht mit Porta, Schwenter und ähnlichen vom
Forschergeist der neuen Zeit noch weniger erfüllten Männern auf
einer Stufe. Er ist kein Physiker wie Gilbert oder Galilei,
sondern schildert mit vielen Worten überraschende naturwissenschaftliche
Erscheinungen und den Laien fesselnde, naturwissenschaftliche
Spielereien. Wir haben Kirchers gesamtes, auch
die Optik und andere Zweige der Naturlehre betreffendes Wirken
schon in einem früheren, jene Übergangszeit behandelnden
Abschnitt gewürdigt (Bd. I. S. 427). Hier sei als von Bedeutung
nur noch hervorgehoben, daß er die Stärke des Magneten
mittelst der Wage zu bestimmen suchte. Einen großen Umfang
in Kirchers Werk nehmen seine Vorschläge ein, mit Hilfe
des Magnetismus Krankheiten zu heilen. Auch manche Erscheinungen
der Tierwelt, z. B. die Züge der Vögel, werden auf diese
Naturkraft zurückgeführt. Ein besonderer Abschnitt ist dem
Magnetismus der Liebe (Magnetismus amoris) gewidmet. Das Buch
schließt mit der Betrachtung, daß Gott totius naturae magnes,
der Magnet der gesamten Natur, sei.

Ganz hiervon abweichend und mit derjenigen Gilberts und
Galileis verwandt war die Geistesart eines anderen Deutschen,
Ottos von Guerickes, der nicht nur die Luftpumpe erfand,
sondern zu den ersten Erforschern der magnetischen und ganz
besonders der elektrischen Erscheinungen zu rechnen ist. Von
Guericke rührt auch die erste, zwar noch sehr einfache Elektrisiermaschine
her. Sie findet sich in seinem Werke »De vacuo
spatio« abgebildet (siehe Abb. 36) und beschrieben. Zu ihrer Herstellung
füllte Guericke eine Glaskugel mit geschmolzenem
Schwefel. Nach dem Erkalten wurde das Glas zerschlagen und
die so erhaltene Schwefelkugel auf eine Achse gesteckt, die auf
zwei Stützen ruhte. Als Reibzeug diente die trockene Hand; ein
Konduktor fehlte noch. Immerhin war es die erste maschinelle
Vorrichtung zum Erzeugen von Elektrizität. Die geriebene Kugel
zog Papier, Federn und andere leichte Gegenstände an und führte
sie mit sich herum. Wassertropfen, die man in ihre Nähe brachte,
gerieten in eine wallende Bewegung. Auch wurden ein Leuchten
und ein Geräusch wahrgenommen, wenn man der Schwefelkugel
nach dem Reiben den Finger näherte. Vermittelst dieser Maschine
entdeckte Guericke auch die von Gilbert noch übersehene Abstoßung
gleichnamig elektrisierter Körper. Ferner bemerkte er,
daß ein von der Kugel abgestoßener Körper wieder angezogen
wird, nachdem er mit dem Finger oder mit dem Boden in Berührung
gekommen ist. Brachte er z. B. eine Feder zwischen
die elektrisierte Kugel und den Fußboden, so hüpfte diese Feder
auf und nieder. Auch daß sich die Elektrizität der Kugel vermittelst
eines leinenen Fadens fortleiten läßt, wurde von Guericke
nachgewiesen.


[image: Abb. 36]
Abb. 36. Guerickes Elektrisiermaschine173.



Guericke beobachtete sogar schon, daß Körper elektrisch
werden, wenn man sie der geriebenen Schwefelkugel nur nähert.
Er war also ein Vorläufer von Aepinus, der als der eigentliche
Erforscher der Influenzerscheinungen betrachtet werden muß.
Leider fand Guericke auf diesem Gebiete nicht die Beachtung,
die man seiner Luftpumpe und den Magdeburger Halbkugeln
zollte. Die Laien vermochten ihm hier nicht zu folgen, und die
Gelehrten ließen Guerickes Entdeckungen der Vergessenheit anheimfallen174.

Die Begründung einer Philosophie der Erfahrung.

In ganz anderer Weise wie Galilei und Gilbert machte
sich zur selben Zeit der Engländer Francis Bacon (1561–1626)
um die Erneuerung der Naturwissenschaften verdient. Hatte
Gilbert gleich Galilei aufbauend und durch die Tat geschaffen,
so wirkte Bacon mehr zerstörend und durch das Wort. Er war
es, der die damalige geistige Atmosphäre von jenen Trübungen
reinigen half, die ihr aus der aristotelisch-scholastischen Periode
noch anhafteten. Dabei unterstützte ihn eine klare und gefällige
Ausdrucksweise. Mit beredten Worten kämpft er in seinem
Hauptwerk, dem neuen Organon175, gegen alles, was die Menschheit
von der Ausübung des induktiven Verfahrens bisher zurückgehalten
hatte. Es sind das nach ihm vor allem die »Idole« oder
falschen Begriffe, die zum Teil in der Natur des Menschen begründet
sind, teils aber aus dem Zusammenleben entspringen.

Nicht der menschliche Sinn ist bei Bacon das Maß der
Dinge. Vielmehr geschehen alle Auffassungen der Sinne und des
Verstandes nach der Natur des Menschen und nicht nach der
Natur des Weltalls. Der menschliche Verstand gleicht »einem
Spiegel mit unebener Fläche, der seine Natur mit den Strahlen
der Gegenstände vermengt«. Aber auch die Eigenart der einzelnen
Menschen bedinge wieder eine besondere Auffassung. Ferner beeinflusse
die so oft unzutreffende Benennung von Sachen und Vorgängen
den Geist in merkwürdiger Weise, so daß »bloße Worte
die Menschen zu zahllosen leeren Streitigkeiten und Erdichtungen
verleiten«. Der größte Anlaß zu Irrtümern rühre aber von den
Täuschungen der Sinne her. Alles, was die Sinne erschüttere,
werde über das gestellt, bei dem dies nicht unmittelbar der Fall
sei, wenn auch letzteres das Wichtigere sein sollte. Darauf müsse
man es z. B. zurückführen, daß die Natur der gewöhnlichen Luft
fast unbekannt sei. Die wahre Erklärung der Natur vollziehe
sich durch passende Versuche, wobei die Sinne nur über den
Versuch, der Versuch aber über die Natur das Urteil zu sprechen
habe.

Das Ziel der Wissenschaften besteht nach Bacon darin, das
menschliche Leben mit neuen Erfindungen und Hilfsmitteln zu
bereichern. Doch könne man auf einen weiteren Fortschritt nur
hoffen, wenn die Naturwissenschaft vorzugsweise solche Versuche
aufnehme, die zwar keinen unmittelbaren Nutzen gewähren, aber
zur Entdeckung der Ursachen und der Gesetze dienen. Ferner
sei nicht nur die Zahl der Versuche zu vermehren, sondern es
müsse durch eine neue Methode eine bestimmte Regel eingeführt
werden. Ein unbestimmtes, sich selbst überlassenes Experimentieren
sei ein reines Umhertappen und verwirre nur die Menschen,
anstatt sie zu belehren. Wenn aber die Naturforschung nach
einer festen Regel in Ordnung und Zusammenhang vorschreite,
so lasse sich Besseres für die Wissenschaft erhoffen.

Manche der bisherigen Erfindungen seien derart, daß niemand
vorher eine Ahnung von ihnen gehabt, sondern dergleichen als
Unmöglichkeiten betrachtet haben würde. Bacon erinnert an die
Erfindung der Feuerwaffen und des Kompasses. Man dürfe daher
hoffen, daß die Natur in ihrem Busen noch vieles verborgen halte,
was mit dem bisher Gefundenen keine Verwandtschaft und Ähnlichkeit
habe, sondern weitab von den Wegen der Einbildungskraft
liege. Unzweifelhaft werde es im Laufe der Jahrhunderte zum
Vorschein kommen, ebenso wie es mit dem Früheren auch geschehen
sei. Aber auf dem von ihm gezeigten Wege werde dies
schneller und sicherer geschehen.

Trotz dieser unleugbar richtigen Grundsätze einer Philosophie
der Erfahrung würde es verkehrt sein, Bacon für einen Naturforscher
oder gar, wie es auch wohl geschehen ist, für den eigentlichen
Begründer der neueren Naturwissenschaft zu halten. Das,
was er forderte, war durch Galilei, Gilbert und andere längst
Wirklichkeit geworden. In allen Ländern regte sich ein neuer,
dem experimentellen Verfahren zugewandter Geist. Bacons Verdienst
war es, daß er diesen in einer klaren, oft prophetischen Weise
zum Ausdruck brachte. Wir dürfen ihn also nicht als den Erfinder,
wohl aber als einen beredten Verkünder der induktiven Forschungsweise
bezeichnen. Es sei daher noch einiges über die Eigenart
und den Lebensgang dieses merkwürdigen Mannes mitgeteilt.

Francis Bacon wurde am 22. Januar 1561 in London
geboren. Er bekundete frühzeitig eine hervorragende Begabung.
Mit 13 Jahren bezog er die Universität, mit 16 Jahren veröffentlichte
er seine erste Schrift, in der er bereits sein Lebenswerk, den
Kampf gegen die scholastische Philosophie, aufnahm. Die Anregung
dazu ist Bacon von verschiedenen Seiten gekommen. An vielen
Orten waren während des 16. Jahrhunderts Männer aufgetreten,
die sich dem Einfluß der aristotelischen Lehren zu entziehen und
selbständig an das Studium der Natur zu gehen strebten. Unter
ihnen ist vor allem der Italiener Telesio zu nennen, dessen
Hauptwerk »De natura rerum« im Jahre 1565 erschienen war176.
Sowohl Bacon als auch Giordano Bruno zollten dem Telesio
große Anerkennung.

Bei einem Aufenthalt in Frankreich hatte Bacon dagegen
in Palissy einen Mann kennen gelernt, der ohne die Kenntnis der
griechischen und lateinischen Quellen sich der Erforschung der
Natur widmete und durch seine Erfindungen und Entdeckungen die
Aufmerksamkeit der gelehrten Kreise Frankreichs auf sich gezogen
hatte. Palissy machte wichtige Erfindungen auf dem Gebiete der
Keramik und beschrieb ein von ihm angelegtes Mineralienkabinett.
Er bekämpfte die Alchemie, erklärte die Versteinerungen für Überreste
von Lebewesen und entwickelte in seiner Abhandlung über
die Gewässer und die Quellen ein klares geologisches Verständnis.
Dieser seltene Mann177 hielt in Paris Vorträge, denen auch
Bacon beiwohnte.

Von Beruf war Bacon Staatsmann. Eine glänzende Beredsamkeit,
vereinigt mit einem oft allzu geschmeidigen Wesen, unterstützte
sein ehrgeiziges Streben. Sprach er, so hatte er seine Zuhörer
so in der Gewalt, daß jeder fürchtete, er möchte schon am
Ende angekommen sein. Staffel auf Staffel erklimmend, dabei
wenig wählerisch in seinen Mitteln, gelangte Bacon schließlich
zur höchsten Würde, indem ihn der König zum Großkanzler und
zum Baron von Verulam erhob. Dies geschah zu einer Zeit, als
sich in England die Anzeichen bevorstehender politischer Umwälzungen
immer mehr geltend machten und der Widerstand des
Parlaments gegen die Krone und deren Vertreter in stetem Wachsen
begriffen war. Eins der ersten, indessen nicht schuldlosen Opfer
dieses Streites ist Bacon geworden.

Damals war die Unsitte, Beamten Geldgeschenke zu machen,
in England sehr verbreitet. Auch Bacon nahm solche entgegen,
um den Aufwand, den seine Stellung mit sich brachte, zu bestreiten.
Bacon wurde infolgedessen der Bestechlichkeit bezichtigt, wenn
er auch beteuerte, bei seiner amtlichen Tätigkeit auf die Schenker
niemals Rücksicht genommen zu haben. Das Parlament hielt
jedoch Bestechlichkeit in mehr als zwanzig Fällen für erwiesen,
und das Haus der Lords verurteilte den Kanzler und obersten
Richter Englands zum Verlust seiner Stelle. Niemals dürfe Bacon
wieder ein öffentliches Amt bekleiden, noch im Parlament sitzen,
auch solle er aus der Nähe des Hofes verbannt sein, so lautete
das harte, wenn auch gerechte Urteil178. Die Verurteilung geschah
im Jahre 1621. Den Rest seines Lebens verbrachte Bacon in
der Zurückgezogenheit, mit der Abfassung philosophischer Werke
beschäftigt.

Obgleich Bacon auf Experimente drang und lehrte, daß alle
Philosophie von der Erfahrung ausgehen müsse, hat er keinen
Versuch von Bedeutung angestellt. Sein mathematisches und
physikalisches Wissen war selbst für seine Zeit gering. Er kannte
die Werke Galileis und Gilberts, hatte jedoch zu ihrem eingehenden
Studium offenbar keine Muße gefunden. Während Galilei
mit dem Fernrohr den Himmel durchforschte, zweifelte Bacon,
ob Instrumente von Nutzen seien179. Auch blieb er Zeit seines
Lebens ein Gegner der koppernikanischen Lehre. Ebensowenig
fanden die Fortschritte der Mechanik, die wir Galilei und seinen
Schülern verdanken, die Beachtung Bacons. Auf diesem Gebiete
beharrte er gänzlich in den Fesseln der Scholastik, die er im
übrigen bekämpfte. Man höre nur seine Ausführungen über die
Bewegung des Zitterns. »Sie ist,« heißt es180, »die einer ewigen
Gefangenschaft, in der die Körper nicht ihrer Natur entsprechend
gestellt sind, sich aber auch nicht ganz schlecht befinden. Sie
bewegen sich deshalb hin und her, weil sie weder mit ihrem Stand
zufrieden sind, noch es wagen, weiter vorzuschreiten.« Als eine
Bewegung solcher Art faßte er z. B. diejenige des Herzens auf.
Ja, er kennt sogar eine »Bewegung aus Abscheu vor Bewegung«.
Daß er an dem aristotelischen Begriff der Leichtigkeit und Schwere
festhielt und z. B. zu untersuchen empfahl, ob die Luft ein absolut
leichter oder ein schwerer Körper sei, darf uns daher nicht wunder
nehmen181.



Trotz seines Unvermögens, Eigenes in der von ihm gewollten
Richtung zu vollbringen, ist Bacons Einfluß nicht zu unterschätzen.
Seine Werke haben manche tüchtige Kraft ermuntert,
sich in den Dienst der großen, von Bacon in den Vordergrund
gerückten Aufgabe zu stellen, der Aufgabe nämlich, die wahre
Herrschaft des Menschen dadurch zu begründen, daß letzterer sich
zum Herren der Naturkräfte mache. In der Philosophie ist Bacon
der Urheber derjenigen Richtung, die von der Erfahrung ausgeht
und als Realismus bezeichnet wird. Auch auf die Pädagogik hat
sich sein Einfluß erstreckt. Comenius, der Vater der neueren Pädagogik,
wurde in erster Linie durch Bacons Schriften veranlaßt,
das größte Gewicht auf die Anschauung zu legen. »Die Jugend recht
unterrichten«, sagt Comenius, »heißt nicht ihr einen Mischmasch
von Worten, Phrasen, Sentenzen und Meinungen einstopfen, sondern
ihr das Verständnis für die Dinge öffnen. Warum sollen wir nicht
statt fremder Bücher das lebendige Buch der Natur aufschlagen?182
Fast niemand lehrt Physik durch Anschauung und Experiment.
Alle unterrichten durch mündlichen Vortrag des aristotelischen
Werkes oder eines anderen.«

Die Denkweise des 17. Jahrhunderts.

Neben Italien, Frankreich, den Niederlanden und England
hat sich auch Deutschland an der Neubegründung der Naturwissenschaften
beteiligt. Hier war das koppernikanische System
entstanden; von hier aus hatte die Reformationsbewegung einen
großen Teil der europäischen Menschheit ergriffen. Zwar drohte
die befreiende Kraft, welche dieser Bewegung innewohnte, unter
neuen starren Formen, sowie in endlosen Religionskämpfen zu ersticken.
Die evangelische Hierarchie war nicht weniger darauf
bedacht, die Lehrfreiheit zu beschränken, wie es in Italien durch
den katholischen Klerus geschah. Ebensowenig wie in diesem
Lande hätte es an deutschen Hochschulen ein Gelehrter wagen
dürfen, sich zur koppernikanischen Weltanschauung zu bekennen.
Dazu kam in den protestantischen Ländern ein solch weitgehender
Haß gegen den Katholizismus, daß selbst vernünftige Neuerungen,
wenn sie von Rom ausgingen, zurückgewiesen wurden. So erging
es z. B. der von Gregor XIII. im Jahre 1582 ins Leben gerufenen
Reform des Kalenders. Bis dahin hatte die Christenheit
mit dem julianischen Jahr von 365¼ Tagen gerechnet, obgleich
schon Hipparch und Ptolemäos wußten, daß die Dauer des
Jahres geringer ist. Alle Bemühungen, den stetig wachsenden
Fehler des Kalenders zu beseitigen, an denen auch Koppernikus
lebhaften Anteil genommen, waren vergeblich geblieben. Dieser
Fehler belief sich zur Zeit Gregors schon auf 10 Tage. Er
wurde dadurch ausgemerzt, daß man die Tage vom 5. bis zum
15. Oktober 1582 ausfallen ließ und anordnete, daß in Zukunft
die Säkularjahre, sofern sie nicht durch 400 teilbar sind, gewöhnliche
Jahre bleiben sollten183.

Die allgemeine Annahme des gregorianischen Kalenders wurde
besonders durch Kepler befürwortet, der 1613 als Begleiter des
Kaisers auf dem Reichstage zu Regensburg erschien. Die protestantischen
Stände betrachteten jedoch die Frage als eine Religionssache
und lehnten jeden Vermittlungsvorschlag ab. Volle
hundert Jahre dauerte es, bis der Verwirrung ein Ende bereitet
wurde und dank den Bemühungen eines Leibniz die Kalenderreform
in den protestantischen Gegenden Deutschlands Eingang
fand184.

Wie bezüglich des Kalenders und des koppernikanischen
Systems, so übte damals in allen Dingen eine noch nicht hinlänglich
geläuterte Religiosität einen überwiegenden Einfluß aus. Indem
sie sich auch mit politischen Interessen verquickte und den Gegensatz
des alten und des neuen Bekenntnisses in Kriegen und Verfolgungen
zum Ausdruck brachte, wie sie die Menschheit blutiger
und zerstörender kaum gesehen, verlieh dieser auf Irrwegen befindliche
Religionseifer dem 17. Jahrhundert sein eigentümliches
Gepräge. Bevor jedoch in Deutschland der dreißigjährige und in
England der Bürgerkrieg entfesselt wurde, Begebenheiten, die in
der Entwicklung dieser Länder einen langen Stillstand herbeigeführt
und viele Keime in ihrem Ansatz zerstört haben, hatte
der wissenschaftliche Sinn dort schon in solchem Maße Wurzel
geschlagen, daß er wohl gehemmt, nicht aber wieder vernichtet
werden konnte. Während des 16. und des 17. Jahrhunderts lief
die geistige Entwicklung, zumal in Deutschland darauf hinaus, die
scholastisch-aristotelische Denkweise zurückzudrängen und zunächst
das humanistisch-philologische, dann aber auch das naturwissenschaftliche
Element an deren Stelle zu setzen. Zwar blieb das
Denken der großen Masse, dem Gesetz der Trägheit zufolge, das
auch auf geistigem Gebiete seine Geltung hat, zunächst noch in
den alten Banden befangen. Indes nahm während der Generationen,
welche dem deutschen Religionskriege vorangingen, die
Zahl der selbständig denkenden Männer stetig zu. Gleichzeitig
erlebten Kunst, Gewerbfleiß und Handel einen bedeutenden Aufschwung
und wirkten befruchtend auf viele Zweige der Wissenschaft.

Einen Beweis, welches Ansehen Aristoteles trotzdem noch
immer genoß, bietet die Geschichte der Entdeckung der Sonnenflecken.
Als nämlich im Jahre 1611 der Jesuit Scheiner sie
fast gleichzeitig mit Fabricius und Galilei auffand, meinte
sein geistlicher Vorgesetzter, es könne sich hier nur um Fehler
der Gläser oder der Augen handeln, da er den Aristoteles
zweimal durchgelesen und nichts von derartigen Dingen gefunden
habe. Scheiner ließ sich jedoch durch dieses Urteil nicht beeinflussen.
Er stellte etwa 2000 Beobachtungen185 über die Sonne
zusammen und dehnte seine Forschungen mit Erfolg auf den Vorgang
des Sehens und die Beschaffenheit des Auges aus.




5. Die Astronomie im Zeitalter Tychos und Keplers.

Koppernikus hatte das heliozentrische Weltsystem gegründet.
Durch deutsche Geistesarbeit sollte es auch seinen weiteren Ausbau
erfahren und auf den Boden unzweifelhafter Gewißheit erhoben
werden. Zu dieser Tat war Johannes Kepler berufen,
der bedeutendste Astronom, den Deutschland im 17. Jahrhundert
hervorgebracht hat. Nicht nur die Forschungen Keplers, sondern
auch sein Lebensgang verdienen eingehender gewürdigt zu
werden.

Keplers Entwicklungsgang.

Johannes Kepler wurde am 27. Dezember 1571 in dem
württembergischen Städtchen Weil geboren. Schon im frühesten
Lebensalter begann für ihn eine Kette von Widerwärtigkeiten, die
sich durch sein ganzes Leben hindurch fortsetzen sollten. Es ist
ein eigenartiges Stück Kulturgeschichte, das uns dieser Lebensgang
darbietet. Keplers schwächlicher Körper wurde wiederholt
von Krankheiten heimgesucht. Im Elternhause herrschte ehelicher
Zwist. Der Vater nahm Kriegsdienste. Nach seiner Rückkehr
verlor er durch Übernahme einer Bürgschaft seine geringe Habe.
Später zog er von neuem hinaus. Er fiel im Kampfe gegen die
Türken. Nach einer freudlosen Jugend wurde Kepler, da er
seines schwächlichen Körpers wegen für einen praktischen Beruf
untauglich war, in eine Klosterschule und darauf in das theologische
Stift zu Tübingen geschickt.

»Was auf dem Gebiete der Geometrie und der Astronomie
vorkam«, schrieb Kepler später186, »begriff ich ohne Schwierigkeit.
Ich wurde auf Kosten des Herzogs von Württemberg unterhalten.
Meine Fortschritte in der Gelehrsamkeit bewies mein
Mysterium cosmographicum.« Es ist dies Keplers im Jahre 1596
erschienenes astronomisches Erstlingswerk, das uns nach Inhalt
und Bedeutung noch beschäftigen wird.

Die Anregung zu mathematischen und astronomischen Studien
empfing Kepler durch den in Tübingen lehrenden Mästlin.
Mästlin (1550–1631) bekleidete dort die Professur für Mathematik
und Astronomie. Er war ein Anhänger der koppernikanischen
Lehre und soll auch Galilei für diese gewonnen haben.
Mästlin hat das »aschfarbene« Licht des Mondes daraus erklärt,
daß das Sonnenlicht von der Erde auf den Mond zurückgeworfen
werde.
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Abb. 37. Johannes Kepler187.



Zwischen Mästlin und Kepler entwickelte sich ein freundschaftliches
Verhältnis. In dem Maße, wie Keplers Interesse
für die Astronomie zunahm, wurde er der damals herrschenden
Theologie entfremdet. Letztere war nämlich im evangelischen
Württemberg zu einer Orthodoxie erstarrt, die jede freie Regung
hemmte und in Dogmen zum Ausdruck kam, die in das wahrhaft
religiöse Gemüt Keplers keinen Eingang fanden. Als Kepler
sich dazu noch als ein Anhänger der koppernikanischen Lehre
bekannte, war es um seine theologische Laufbahn geschehen. Er
wurde als ungeeignet für den Kirchendienst bezeichnet und konnte
von Glück sagen, daß er durch Mästlin eine Stelle in Graz erhielt.
Hier mußte er Mathematik und Rhetorik vortragen, sowie
den Kalender schreiben, wobei die Voraussage des Wetters und
der politischen Ereignisse von besonderer Wichtigkeit war. Mit
welch schwerem Herzen mag der so aufrichtige Mann oft dies
Geschäft erledigt haben, das er selbst als die »eitelste, aber notwendige
Amtsarbeit« bezeichnete! »Mutter Astronomie müßte gewißlich
Hunger leiden«, sagte er ein anderes Mal, »wenn die
Tochter Astrologie nicht das Brot erwürbe.« Daß Kepler übrigens
in gewissem Sinne eine Einwirkung kosmischer Vorgänge auf
irdische Begebenheiten für möglich hielt, ersieht man aus dem
Schlußabschnitt seines »ausführlichen Berichtes über den im Jahre
1607 erschienenen Kometen und dessen Bedeutung«188. Kepler
führt darin aus, er wolle nicht unbedingt in Abrede stellen, daß
durch Kometen Seuchen hervorgerufen werden könnten. Wenn
nämlich der Schwanz die Erde berühre, so könne es geschehen,
daß die Luft verunreinigt werde. Da dies aber selten vorkomme,
so müsse man nach einem anderen Grunde suchen, um eine etwaige
natürliche Wirkung der Kometen zu erklären. »Ist etwas daran«,
so fährt er fort, »daß nach der Ordnung der Natur Überschwemmung,
Trockenheit oder Pestilenz durch einen Kometen verursacht
und also vorbedeutet werden, so muß dies folgendermaßen zugehen:
Wenn im Himmel etwas Seltsames entsteht, so empfinden
dies alle Kräfte der natürlichen Dinge. Diese Sympathie mit dem
Himmel erstreckt sich besonders auf die Kraft, die in der Erde
steckt und ihre inneren Zustände beherrscht. Die Folge ist, daß
diese Kraft feuchte Dämpfe emportreibt, wodurch Regen und Überschwemmung
und schließlich allgemeine Seuchen entstehen.«

Auch der Mensch, wenn er selbst blind wäre, besitze doch
dergleichen empfindliche und auf den Himmel aufmerkende Kräfte,
die durch einen im Himmel auftauchenden Kometen ebenfalls beunruhigt
würden und nicht allein zu unnatürlichen Bewegungen
des Geblütes und infolgedessen zu Krankheiten, sondern auch zu
starken Gemütserregungen Veranlassung geben könnten. Diese
Auffassung Keplers ist weit verschieden von dem abergläubischen
Hang zur Sterndeuterei, der seine Zeit beherrschte. Sind
es doch gerade Keplers Forschungen gewesen, welche der Astrologie
den Boden entzogen haben. »Die sogenannten Irrsterne,«
sagt einer seiner Biographen189, »die durch ihre Bewegungen die
Schicksale bestimmen sollten, irrten nun nicht mehr, und die
mystische Deutung, welche die Astrologie diesem Umherschweifen
gab, verlor jeden Anhalt.«

Trotzdem war Kepler, wenn er als Astronom sein Brot verdienen
wollte, zum astrologischen Frondienst gezwungen. Dieser
Umstand brachte ihn auch in Berührung mit zwei geschichtlichen
Persönlichkeiten, mit Kaiser Rudolf II. und Wallenstein, deren
Hang zur Astrologie bekannt genug geworden ist. Ein glücklicher
Zufall fügte es, daß die von Kepler seinem ersten Kalender einverleibten
Prophezeiungen, ein strenger Winter nämlich und der
Ausbruch von Unruhen, wirklich eintrafen. Ein Erfolg dieser Art
wurde damals von der urteilslosen Menge höher eingeschätzt als
die Abfassung eines gelehrten Buches.

Die freie Entfaltung der Wissenschaft wurde zu Keplers Zeit
auch durch das Fehlen desjenigen ethischen Momentes, das wir als
akademische Lehrfreiheit bezeichnen, und das wir auch heute noch
immer gegen rückwärts gerichtete Bestrebungen verteidigen müssen,
in hohem Grade gehemmt. Eine Lehrfreiheit konnte sich nur in
dem Maße entwickeln, in dem der Streit mit Worten und das
gegenseitige Ausspielen von Autoritäten durch die greifbaren und
logisch verknüpften Ergebnisse der exakten Forschung zurückgedrängt
wurden. Der letzteren ist es zu danken, daß das αὐτὸς ἒφα
(Er, d. h. der Meister, hat's gesagt) allmählich verstummte
und eine neue, die Wahrheit kündende Sprache an dessen Stelle
trat, die Sprache nämlich, in welcher die Natur auf die an sie
gerichteten Fragen Antwort gibt.

Zu der Zeit, die wir kennzeichnen, konnte ein Mästlin von
dem Senat der evangelischen Universität Tübingen gezwungen
werden, die Astronomie entgegen seiner Überzeugung nach dem
System des Ptolemäos zu lehren und gegen den gregorianischen
Kalender zu schreiben. Als er zauderte, erteilte man ihm einen
Verweis. Mästlin mußte sich fügen, wenn er nicht seine Stelle
verlieren wollte. Er entledigte sich der aufgezwungenen Arbeit,
indem er einige unbedeutende Mängel des Kalenders rügte. In
eine neue Verlegenheit geriet Mästlin, als Kepler ihm von Graz
seine erste astronomische Arbeit, das Mysterium cosmographicum190,
zusandte, damit sie in Tübingen im Druck erschiene. Der Senat
erhob Einwendungen, weil die dem Werke zugrunde liegende Lehre
von der Bewegung der Erde das Ansehen der heiligen Schrift
schädigen könne. »Was ist zu tun?« schrieb Kepler darauf an
Mästlin. »Ich denke, wir machen es wie die Pythagoreer und
teilen nur uns gegenseitig mit, was wir entdecken. Ich möchte
Dir um meinetwillen keine Feinde machen.« Die Schwierigkeiten
wurden schließlich überwunden. Das Werk erschien, und der
jugendliche Verfasser sandte es an Tycho und an Galilei, die
bedeutendsten zeitgenössischen Astronomen, mit denen er auch
später in Verbindung blieb.

Keplers Konstruktion der Planetensphären.

Das Bestreben, das Kepler nicht nur bei der Abfassung
seiner ersten Schrift, sondern auch bei allen übrigen Arbeiten beherrschte,
gipfelt darin, einfache arithmetische oder geometrische
Beziehungen zwischen den Entfernungen und den Geschwindigkeiten
der Planeten nachzuweisen. Die Lösung des ersten Teiles
dieser Aufgabe hat er in seinem »Mysterium« vergeblich gesucht,
während ihm die Bewältigung des zweiten Problems nach großen
Mühen gelungen ist.

Als Kepler seine wissenschaftliche Tätigkeit begann, war
die Naturwissenschaft von pythagoreischen und platonischen, auf
Zahl und Maß sich gründenden Spekulationen überwuchert. Dieser
Geist war es, der auch in Keplers Erstlingswerk zum Ausdruck
kam.

Die Zahl der damals bekannten Planeten betrug sechs: Merkur,
Venus, Erde, Mars, Jupiter, Saturn. Den Grund für diese
Zahl glaubte Kepler in der Existenz der fünf regelmäßigen Körper
gefunden zu haben, die er zwischen die für kugelförmig gehaltenen
Planetensphären einschaltete. Wir wollen ihn dieses Mysterium,
auf das er so stolz war, daß er einmal äußerte, er würde die
Ehre dieser Entdeckung nicht um den Besitz des Kurfürstentums
Sachsen preisgeben, selbst verkünden lassen: »Die Erdbahn liefert
die Sphäre, die das Maß aller übrigen ist. Um diese Sphäre
(η in Abb. 38) beschreibe ein Dodekaëder. In der Sphäre, welche
dieses umschließt, liegt die Bahn des Mars (♂ in Abb. 38). Um
die Marssphäre beschreibe man ein Tetraëder. Eine diesem Körper
umschriebene Kugelfläche würde die Bahn des Jupiter enthalten
(s. Abb. 39, γ). Letztere umschließe mit einem Würfel; die umschriebene
Sphäre (α) enthält die Bahn des Saturn (♄). Ferner
errichte innerhalb der irdischen Sphäre ein Ikosaëder; die demselben
eingeschriebene Kugelfläche enthält die Bahn der Venus
(s. Abb. 38, ♀). Beschreibt
man innerhalb ihrer Sphäre
ein Oktaëder, so umschließt
das letztere die Sphäre des
Merkur.«
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Abb. 38.
Keplers Konstruktion der Planetensphären.



Kepler legt also eine
Folge von sechs Kugelflächen
zugrunde, denen die fünf
regulären Körper ein- bzw.
umgeschrieben sind. Es
zeigte sich, daß die Radien
jener sechs Sphären ungefähr
den von Koppernikus
ermittelten verhältnismäßigen
Entfernungen der Planeten
entsprachen. Die von
Koppernikus berechneten Werte weichen indes von den später
geltenden erheblich ab. Auch wurde die Annahme, daß die Planeten
sich in Kreisen bewegen, von Kepler selbst durch die mühevolle
Arbeit der nachfolgenden Jahre widerlegt. Das »Mysterium« war
daher nur ein Versuch, dem man indessen seine Berechtigung nicht
absprechen darf. Besteht doch die Tätigkeit des Forschers, wenn
es sich um einen Fortschritt von grundlegender Bedeutung handelt,
meist in der Aufstellung einer neuen Idee und der sich daran
anschließenden Prüfung, ob das gesamte Tatsachenmaterial sich
in den Rahmen dieser Idee einfügen läßt. Ähnlich verfuhr auch
Galilei. Zunächst entwickelte er aus dem Begriff der gleichförmig
beschleunigten Bewegung alle Umstände derselben. Dann
zeigte er durch den Versuch, daß die Körper beim Fall über die
schiefe Ebene ein Verhalten zeigen, das dem Begriff der gleichförmig
beschleunigten Bewegung entspricht. Auch unsere heutige
Naturwissenschaft besteht in der Vereinigung von Gedankenerzeugnissen,
die sich als Systeme, Hypothesen und Theorien darstellen,
mit der Summe des zurzeit bekannten Tatsachenmaterials. Weder
die Gebilde einer nicht genügend gestützten Spekulation, noch die
Erfahrungstatsachen allein sind Wissenschaft. Kepler selbst gesteht
einmal, er habe 19 Hypothesen ersonnen und wieder verworfen,
ehe er zu der wahren, den Tatsachen entsprechenden Vorstellung
gelangt sei.


[image: Abb. 39]
Abb. 39. Keplers Konstruktion der Planetensphären. Orbium planetarum
dimensiones et distantias per quinque regularia corpora geometrica exhibens.
α = Sphaera Saturni. β = Cubus. γ = Sphaera Jovis. δ = Tetraëder.
ε = Sphaera Martis. ζ = Dodekaëder. η = Orbis Terrae. θ = Ikosaëder.
ι = Sphaera Veneris. κ = Oktaëder. λ = Sphaera Mercurii. m = Sol.
(Abb. 38 und 39 sind Keplers Mysterium cosmographicum entnommen;
siehe Opera omnia, Bd. I.)



Fortschritte der Beobachtungskunst.

Keplers Aufenthalt in Steiermark dauerte nicht lange. Der
von Jesuiten erzogene Erzherzog Ferdinand, der spätere Kaiser
Ferdinand der Zweite, wurde einige Jahre nach der Veröffentlichung
des »Mysteriums« Keplers Landesherr. Als solcher begann
er den Protestantismus mit der Wurzel auszurotten. Wie
ein Verbrecher wurde Kepler, der sich in Graz eine glückliche
Häuslichkeit gegründet hatte, des Landes verwiesen. Dieses Ereignis,
so traurig es für den Betroffenen war, hatte das Gute im
Gefolge, daß es Kepler in persönliche Berührung mit Tycho,
dem Meister der astronomischen Beobachtungskunst, brachte.
Erst dadurch, daß Kepler Tychos Beobachtungen verwerten
konnte, wurde es ihm möglich, seine Lebensaufgabe, die in
der Erforschung der wahren Bewegung der Planeten bestand, zu
erfüllen.

Tycho Brahe191 stammte aus Schweden. Er wurde im
Jahre 1546 geboren und zeigte schon als Jüngling, angeregt
durch die Beobachtung einer Sonnenfinsternis und das Studium
des Almagest, ein großes Interesse für die Himmelskunde.
Auch der Alchemie war er zugetan. Ja, er hoffte, durch sie
die zur Errichtung einer Sternwarte erforderlichen Mittel zu
bekommen.

Als Tycho eines Abends im November des Jahres 1572 sein
alchemistisches Laboratorium verließ und den Blick auf den ihm
wohlbekannten Sternenhimmel lenkte, nahm er einen neuen, vorher
nicht gesehenen Stern in der Cassiopeia wahr. Andere hatten
diesen Stern schon einige Tage vor Tycho gesehen. Einen Monat
später hatte das neue Gestirn an Glanz den Jupiter fast erreicht.
Im Frühling des Jahres 1572 erschien es als Stern erster Größe;
darauf nahm es stetig ab. Im Beginn des folgenden Jahres besaß
es kaum mehr als 5. Größe, um im Jahre 1574 ganz zu verschwinden.

Die Astronomen gerieten über dieses Vorkommnis in eine
leicht begreifliche Erregung. Da man mit Aristoteles den Fixsternen
ein wandelloses Sein zuschrieb, glaubten die meisten, die
Erscheinung habe innerhalb der planetaren Region stattgefunden.
Daran knüpften sich die unsinnigsten Vermutungen. Nach einigen
war das in Frage kommende Gestirn sogar vom Jupiter in Brand
gesteckt worden. Demgegenüber wies Tycho nach, daß der neue
Stern sich jenseits der äußersten Planetensphäre befunden haben
müsse, da er seine Stellung zu den Fixsternen nicht verändert
habe. Der Zufall fügte es, daß das plötzliche Aufleuchten eines
Sternes innerhalb des kurzen Zeitraums von 1572–1604 wiederholt
vorkam, wodurch den Astronomen die Wichtigkeit genauer
Fixsternverzeichnisse von neuem nahegelegt wurde.

Keine Wissenschaft ist so sehr durch fürstliche Gunst gefördert
worden wie die Astronomie. Allerdings hat dabei oft
weniger das Interesse für den Gegenstand den Ausschlag gegeben,
als der Glaube, daß in den Sternen das Schicksal geschrieben sei.
Dies erfuhr auch Tycho. Durch die Freigebigkeit des dänischen
Königs192 wurde er in den Stand gesetzt, auf einem zwischen
Schonen und Seeland gelegenen Inselchen193 eine Sternwarte zu
errichten, wie sie die Welt in gleicher Großartigkeit noch nicht
gesehen. Diese Warte erhielt den Namen Uranienborg. Sie blieb
20 Jahre die Arbeitsstätte Tychos, dem sich hervorragende Mitarbeiter
zugesellten. Tychos größtes Verdienst bestand darin,
daß er den astronomischen Messungen einen bis dahin nicht erreichten
Grad von Genauigkeit verlieh und auf diese Weise den
Grund für jeden weiteren astronomischen Fortschritt legte. Um
die Rektaszension eines Sternes zu finden, hatte man bisher am
Tage den Abstand des Mondes von der Sonne bestimmt und in
der darauffolgenden Nacht die Stellung des Mondes mit derjenigen
der Sterne verglichen. Eine weit größere Sicherheit wurde dadurch
erreicht, daß Tycho die Venus, die mitunter am Tage sichtbar
ist, zu diesem Zwecke verwertete, anstatt des seine Stellung
rasch ändernden Mondes. Der Unterschied der Rektaszensionen
zweier Sterne ergibt sich aus der Zeit, die zwischen ihren Kulminationen
verfließt. Ein hierauf sich gründendes Verfahren zur
Ortsbestimmung der Gestirne setzt aber die Benutzung genau
gehender Uhren voraus. Tychos Augenmerk war daher schon
auf eine möglichst scharfe Bestimmung des Zeitablaufs gerichtet.
Da er jedoch auf Sanduhren und auf Räderuhren ohne Pendelvorrichtung
angewiesen war, ließ sich diese Aufgabe nur unvollkommen
lösen.

Besonders übertraf Tycho seine Vorgänger in der Genauigkeit
des Winkelmessens. Zuerst benutzte er einen Kreuzstab.
Später (1569) ließ er einen riesigen Quadranten aus Holz verfertigen,
den uns Abb. 40 zeigt. Die Teilung befand sich auf
einem Messingreif, dessen Halbmesser sich auf 6 m belief. Die
Ablesung erfolgte mittels eines an einem Metallfaden herabhängenden
Lotes. Die Beobachtungen erfolgten durch die beiden Lochvisiere.
Infolge der gewaltigen Dimensionen des an einem vertikalen
drehbaren Eichenpflock befestigten Quadranten war die
Genauigkeit der Messung eine beträchtliche.


[image: Abb. 40]
Abb. 40. Tychos Riesenquadrant194.



Tychos Riesenquadrant war unter freiem Himmel aufgestellt
und daher nicht lange brauchbar. Einen handlichen, kleineren,
von Tycho konstruierten Apparat, dessen Einrichtung und Gebrauch
ohne weiteres verständlich ist, zeigt Abb. 41. Die Schenkel
dieses Apparates besaßen eine Länge von 1,6 m.



Das Urbild des heutigen Theodoliten endlich war Tychos
Azimutalquadrant, dessen Einrichtung Abb. 42 (s. S. 124) erläutert.
Der Apparat bestand aus Messing und war, trotzdem er weit geringere
Dimensionen aufwies, als sie der Riesenquadrant besaß,
doch von solcher Genauigkeit, daß sich die Winkel bis auf die Minute
daran ablesen ließen.

Tycho ließ ferner eine
Himmelskugel aus Kupfer
anfertigen, die etwa 1000
Sterne in der nach seinen
Messungen berichtigten
Stellung zeigte. Die Kreise
dieser Kugel waren gleichfalls
in Minuten geteilt.
Dementsprechend erforderte
ihre Herstellung auch
die Summe von 5000 Talern.


[image: Abb. 41]
Abb. 41. Tychos Distanzenmesser.



Zur Annahme des
koppernikanischen Systems
konnte Tycho sich nicht
verstehen, da ihm wie keinem
anderen die Schwierigkeiten
bekannt waren,
welche diesem System noch
entgegenstanden. Eine Bewegung,
die im Laufe eines
halben Jahres den Ort der
Erde um das Doppelte
ihres Abstandes von der
Sonne verändere, müsse,
so schloß Tycho mit Recht, auch eine Änderung in der
gegenseitigen Stellung der Fixsterne bewirken. »Eine jährliche
Bewegung195«, schreibt er, »würde die Fixsternsphäre196 in eine
solche Ferne rücken, daß die von der Erde beschriebene Bahn
im Vergleich zu jener Entfernung verschwindend klein sein müßte.
Hältst Du es für möglich, daß der Raum zwischen der Sonne, dem
angeblichen Zentrum der Welt, und dem Saturn noch nicht 1/700
des Abstandes der Fixsternsphäre betrage? Zudem müßte dieser
Raum sternenleer sein. Dies ist notwendig der Fall, wenn die
jährliche Bahn der Erde, von den Fixsternen betrachtet, nur den
Durchmesser einer Minute haben soll. Dann werden aber schon
die Fixsterne dritter Größe, deren scheinbarer Durchmesser
gleichfalls eine Minute beträgt, an Umfang gleich der Erdbahn
sein.« Dieser Einwand Tychos wurde dadurch hinfällig, daß,
wie man nach der Erfindung des Fernrohrs wahrnahm, die Fixsterne
überhaupt keinen scheinbaren Durchmesser besitzen, sondern
als bloße Lichtpunkte erscheinen, eine Tatsache, die wieder für
die Behauptung der Koppernikaner sprach, daß sich die Fixsterne
in ungeheurer Entfernung befänden. Der von Tycho geforderte
Nachweis einer Parallaxe, deren Größe zugleich einen Schluß auf
die Entfernung der Fixsterne gestattet hätte, sollte, wie wir später
sehen werden, erst im 19. Jahrhundert dem Scharfsinn und der
Beobachtungskunst eines Bessel gelingen197. Tychos Bemühungen,
eine Parallaxe nachzuweisen, um dadurch die koppernikanische
Lehre auf ihre Richtigkeit zu prüfen, blieben ohne Erfolg.


[image: Abb. 42]
Abb. 42. Tychos Azimutalquadrant, aus dem der heutige Theodolit hervorgegangen
ist198. Das aus Messing hergestellte Instrument diente zur
Bestimmung des Azimuts und der Höhe. Der Azimutalkreis NP ruhte
auf vier Säulen. Der Höhenquadrant besaß fast 2 Ellen Radius und
war mit Minuteneinteilung (BC) und Diopterlineal (DE) versehen.



Außer den astronomischen Bedenken machte sich bei Tycho
der koppernikanischen Lehre gegenüber auch ein für jene Zeit
charakteristischer Mangel an richtigen mechanischen Begriffen
geltend. So erhebt er den landläufigen Einwand, daß ein
fallender Körper, wenn die Erde sich bewege, unmöglich in lotrechter
Richtung die Oberfläche treffen könne. Ferner meint er,
die »träge, dicke« Erde sei zu den Bewegungen, die Koppernikus
ihr zuschreibe, viel zu ungeschickt.

Andererseits sah Tycho aber wohl ein, daß die Erscheinungen,
welche die Planeten zeigen, sich besser mit der neuen Lehre als
mit der geozentrischen Ansicht vereinigen ließen. Er stellte deshalb199
ein neues System auf, das zwischen dem geozentrischen und
dem heliozentrischen eine vermittelnde Stellung einnahm. Danach
sollte sich die Sonne in einem exzentrischen Kreise um die im
Mittelpunkte ruhende Erde bewegen, die Planeten sollten indes
gleichzeitig die Sonne umkreisen (s. Abb. 43, S. 126). Tychos
System fand nur geringen Beifall. Kaum einer unter den angeseheneren
Astronomen nahm es an.

Als Tycho auf der Höhe seines Ruhmes stand, ereilte ihn
ein trauriges Geschick. Sein hoher Gönner starb200, und nun erhoben
sich zahlreiche Feinde und Neider. Auf ihr Betreiben hin
wurden Tycho die für die Uranienborg bestimmten Gelder entzogen
mit der Begründung, seine Untersuchungen seien nicht nur
nutzlos, sondern sogar »voll schädlicher Kuriosität«. Dem großen
Forscher, den Bessel später einen König unter den Astronomen
nannte, wurde von der Regierung bedeutet, er möge sich mit dergleichen
Arbeiten nicht mehr befassen201. Damit war das Schicksal
der Uranienborg besiegelt. Die Verblendung, welche der aufstrebenden
Naturwissenschaft so manchen Schaden zugefügt, hatte
wieder einen ihrer unrühmlichen, zum Glück aber auch erfolglosen
Siege errungen. Tycho, der schließlich sogar tätlichen Angriffen
ausgesetzt war, rettete von seinen Instrumenten und Aufzeichnungen
das Wertvollste und kehrte seinem Vaterlande den Rücken.
Wiederum war es fürstliche Gunst, die ihm und seiner Wissenschaft
eine neue Stätte bereitete. Auf Veranlassung Kaiser Rudolfs
des Zweiten siedelte Tycho nach Prag über. Dort wurde
er zum kaiserlichen Astronomen ernannt.


[image: Abb. 43]
Abb. 43. Tychos System202.



Von Prag aus erfolgte im Jahre 1599 Tychos Ruf an Kepler,
dessen Schicksale wir bis zu dem Zeitpunkte verfolgt haben, in
dem die Unduldsamkeit der Kirche den in gesicherten Verhältnissen
lebenden Mann in eine hilflose Lage versetzt hatte. Kepler
wurde Tychos Hilfsrechner und erhielt die Erlaubnis, das umfangreiche
Beobachtungsmaterial Tychos nach eigenem Ermessen
zu verwerten.

»Ich halte es«, schrieb Kepler später203 »für eine Fügung der
Vorsehung, daß bei meiner Ankunft gerade der Mars untersucht
wurde. Durch die Bewegungen dieses Gestirnes müssen wir zu
den Geheimnissen der Astronomie gelangen oder darin beständig
unwissend bleiben«. Der Mars machte nämlich von jeher unter
den Planeten die größten Schwierigkeiten, was sich daraus erklärt,
daß seine Bahn am meisten vom Kreise abweicht. Andererseits
bietet dieser Himmelskörper den Vorteil, daß man seinen Umlauf
in wenigen Jahren beobachten kann, während die übrigen äußeren
Planeten eine weit längere Beobachtungszeit erfordern.

Tychos Marsbeobachtungen erstreckten sich über einen Zeitraum
von 16 Jahren. Sie verteilten sich ferner auf die ganze Bahn
des Planeten und waren bis auf einige Minuten richtig, besaßen
also eine bisher unerreichte Genauigkeit204.

Die Entdeckung der Keplerschen Gesetze.

Daran, daß die Himmelskörper kreisförmige Bahnen beschreiben,
hatte vor Kepler niemand gezweifelt. Kepler war
der erste, der diesen, fast als Axiom betrachteten Grundsatz
verließ. Zunächst untersuchte er, ob sich bessere Resultate unter
der Annahme ergeben würden, daß die Bahn des Planeten die
Form eines Ovals besäße. Endlich, als sich eine genügende
Übereinstimmung zwischen Rechnung und Beobachtung auch dadurch
nicht erreichen ließ, kam er auf den Gedanken, anstatt des
Ovals die Ellipse zugrunde zu legen. Und siehe da, während nach
den von Koppernikus entworfenen Tafeln der beobachtete Ort
des Mars im Jahre 1608 um nahezu 5 Grad von dem berechneten
abwich, zeigte Kepler in seinem ein Jahr später herausgegebenen
Hauptwerk: »Über die Bewegungen des Mars«205, daß der Fehler
fast ganz verschwindet, wenn man den Planeten eine Ellipse beschreiben
läßt, in deren einem Brennpunkte sich die Sonne befindet.

Wenige Entdeckungen sind in solchem Maße das Ergebnis
mühevoller, Jahrzehnte dauernder Arbeit gewesen wie diese Entdeckung
Keplers. In der an den Kaiser gerichteten Widmung
führt er in scherzhaftem Tone folgendes aus: Die Astronomen
hätten bisher den Mars nicht zu überwältigen vermocht. Dem
trefflichen Heerführer Tycho indessen sei es in zwanzigjährigen
Nachtwachen gelungen, alle Listen des Feindes auszukundschaften.
Dadurch habe Kepler Mut bekommen. Und es sei ihm gelungen,
Mars gefügig zu machen. Er biete nun dem Kaiser seine Dienste
an, auch die Verwandtschaft des Mars, nämlich Jupiter, Venus
und Merkur, in gleicher Weise zu bezwingen, doch möge man die
Schatzkammer anweisen, daß sie ihm die Mittel zu diesem Feldzug
auszahle. Die letzten Worte gestatten einen Schluß auf die
ständige Not, in der sich Kepler bis an das Ende seines Lebens
befand. Tycho war bald nach Keplers Eintreffen gestorben206
und letzterer zu seinem Nachfolger ernannt. Die Schatzkammer
des Kaisers befand sich indessen meist im Zustande der Erschöpfung,
wofür insbesondere die Goldkocher sorgten, die Rudolfs
Hang zur Alchemie auszunutzen verstanden. Kepler
klagt: »Ich stehe ganze Tage in der Hofkammer und bin für die
Studien nichts. Ich stärke mich jedoch mit dem Gedanken, daß
ich nicht dem Kaiser allein, sondern dem ganzen menschlichen
Geschlechte diene, daß ich nicht nur für die Gegenwart, sondern
auch für die Nachwelt arbeite«.

Nach dem Tode Kaiser Rudolfs wurde Keplers Lage noch
schlimmer. Er erhielt eine Anstellung in Linz, wo er Mathematik
lehren und Vermessungen überwachen mußte. Trotz aller Widerwärtigkeiten
verlor er jedoch sein großes Ziel nicht aus den Augen.
Das unwürdigste Schauspiel, das uns in der Lebensgeschichte
Keplers begegnet, ist der gegen seine Mutter geführte Hexenprozeß.
Eine kurze Darstellung desselben läßt uns nicht nur
einen Einblick in die damals herrschenden Rechtszustände tun,
sie bezeugt auch den bewundernswerten Charakter Keplers.
Die Mutter des großen Astronomen lebte in einem kleinen schwäbischen
Städtchen. Eine ihrer Nachbarinnen erkrankte und verbreitete
das Gerede, sie sei von Frau Kepler behext worden. Der
Vogt des Ortes wußte die Angelegenheit zu einem Hexenprozeß
aufzubauschen. Erschwerend wirkte dabei der Umstand, daß die
Angeklagte bei einer Verwandten erzogen war, die man als Hexe
verbrannt hatte. Einzig und allein ihrem Sohn Johannes, der von
Linz herbeieilte, gelang es, die Mutter vor der Folter und dem
Scheiterhaufen zu bewahren. Die übrigen Söhne hatten sich zurückgezogen,
und mit Kepler befreundete Juristen besaßen nicht den
Mut, für die arme, verfolgte Frau einzutreten, die bald, nachdem
sie freigesprochen, infolge der erlittenen Behandlung starb. Gibt
es unter den Gestalten, in denen menschliche Größe uns begegnet,
eine solche, der wir größere Bewunderung zollen können, als
Kepler? Die eigene Sicherheit gering schätzend, zieht er gegen
den Wust eines mittelalterlichen Gerichtsverfahrens zu Felde, um
die Mutter zu retten207. Und während der dadurch verursachten,
jahrelangen Aufregung enthüllt er die Gesetze, nach denen sich
der Lauf der Welten regelt.

Unermüdlich hatte Kepler während der ersten Jahrzehnte
des 17. Jahrhunderts trotz seiner untergeordneten Amtstätigkeit,
die ihn nicht einmal vor der Sorge um das tägliche Brot bewahrte,
zwei Aufgaben verfolgt. Einmal galt es, auf Grund der eigenen
und der Beobachtungen Tychos Planetentafeln zu entwerfen,
welche die bisherigen ungenauen Tafeln übertrafen. Die zweite,
höhere Aufgabe bestand in der Begründung einer mit dem System
des Koppernikus in Einklang stehenden Theorie der Planetenbewegung.
Beide Aufgaben hat Kepler glänzend gelöst und daneben
noch Wertvolles auf den Gebieten der Mathematik und der
Optik geleistet.

Die neuen Tafeln, die in Anerkennung der Verdienste Kaiser
Rudolfs um die Förderung der Astronomie die rudolfinischen genannt
wurden, erschienen erst gegen das Ende Keplers208. Während
der letzten Jahre ihrer Abfassung konnte die mühevolle Arbeit
durch die von Bürgi und Neper erfundenen Logarithmen verringert
werden209. Fast ein Jahrhundert blieben die rudolfinischen
Tafeln ein unentbehrliches Hilfsmittel der Astronomen, dann erst
wurden sie durch neue, bessere ersetzt.

Koppernikus hatte sich darauf beschränkt, eine zum Teil
noch mit den Mängeln der geozentrischen Ansicht behaftete bloße
Beschreibung des Planetensystems zu geben. Kepler war dagegen
bestrebt, gesetzmäßige Beziehungen innerhalb dieses Systems aufzudecken.
Das Mißlingen seiner ersten Versuche ist darauf zurückzuführen,
daß es ihm noch an genügendem Beobachtungsmaterial
fehlte. Erst durch die Verbindung mit Tycho gelangte er in den
Besitz desselben, und im Jahre 1609, also ein Jahrzehnt nach
Tychos Tode, veröffentlichte er die Entdeckung, daß die Planetenbahnen
Ellipsen seien. Damit war das seit alters geheiligte Axiom
von der Kreisbewegung beseitigt. Ebensowenig konnte die Ansicht,
daß die Bewegung der Himmelskörper eine gleichförmige
sei, aufrecht erhalten werden. Kepler wies nach, daß ein Planet
sich in der Sonnennähe schneller als in der Sonnenferne bewegt.
Die Geschwindigkeiten stehen nach ihm in einem solchen Verhältnis,
daß die Flächenstücke, die von dem Leitstrahl, d. h. der
den Planeten mit der Sonne verbindenden Geraden, beschrieben
werden, für gleiche Zeiten gleiche Größe besitzen. (Siehe Abb. 44.)

Damit waren die Gesetze enthüllt, nach denen die Bewegung
jedes einzelnen Planeten vor sich geht210. Es galt noch die
Beziehung zu finden, die alle Planeten verknüpft und sie als Glieder
eines Systems erscheinen läßt. Die Lösung dieses Problems wurde
erst nach einem weiteren Jahrzehnt mühevoller Arbeit gefunden
und 1619 in der »Weltharmonie« bekannt gegeben.


[image: Abb. 44]
Abb. 44. Zur Erläuterung des zweiten Keplerschen
Gesetzes. Werden die Stücke ttʹ und TTʹ
von dem Planeten in gleichen Zeiten zurückgelegt,
so ist ttʹS der Fläche nach gleich TTʹS.



Seit dem Jahre 1595 brütete Kepler, wie er sich selbst einmal
ausdrückt, mit der ganzen Kraft seines Geistes über die Einrichtung
des Koppernikanischen Systems. Unablässig suchte er
von drei Dingen die Ursache zu ergründen, nämlich von der Anzahl,
der Entfernung und der Bewegung der Planeten211. Endlich
konnte er ausrufen: »Dasjenige, dem ich den größten und besten
Teil meines Lebens gewidmet
habe, ist jetzt
gefunden und die Wahrheit
auf eine Weise erkannt,
die selbst meine
glühendsten Wünsche
übersteigt«212. Die als
drittes Keplersches
Gesetz bekannte Beziehung
zwischen den Umlaufszeiten
und den Entfernungen
zweier Planeten
lautet dahin, daß
sich die Quadrate der
Umlaufszeiten wie die
dritten Potenzen der
mittleren Abstände von der Sonne verhalten213. Besitzt z. B. ein
Planet eine Umlaufszeit von 27 Jahren, so läßt sich nach diesem
Gesetze folgern, daß er neunmal so weit wie die Erde von der
Sonne entfernt ist, denn 12 : 272 = 1 : 729 = 13 : 93. Dieses Verhältnis
findet sich beim Saturn annähernd verwirklicht. Er hat
eine Umlaufszeit von 30 Jahren, und seine Entfernung von der
Sonne ist dementsprechend etwas größer als neun Halbmesser der
Erdbahn. Wir erkennen aus dieser Betrachtung, daß die genaue
Bestimmung des Abstandes der Erde von der Sonne von der größten
Bedeutung ist. Kepler kannte die absolute Größe dieses Abstandes
noch nicht. Er setzte ihn in seinen Berechnungen gleich eins, benutzte
also für die Entfernungen der Planeten nur die relativen Werte.



Die naheliegende Gefahr, die entdeckten Gesetze nach Art
der Pythagoreer als Ursachen zu betrachten, vermied Kepler. Versteht
man unter der Entdeckung der Ursache einer Erscheinung ihre
Zurückführung auf andere, in ihrer Gesetzmäßigkeit erkannte Vorgänge,
so war Kepler schon bemüht, auch nach dieser Richtung die
Planetenbewegungen zu untersuchen. Die endgültige Bewältigung
dieses Problems blieb jedoch Newton vorbehalten. Ihm gelang
es, die Zentralbewegung gleich der Fall- und Wurfbewegung aus
der Schwere zu erklären. Daß die Schwerkraft nicht nur an der
Oberfläche der Erde, sondern auf kosmische Entfernungen hin
wirkt, hat indessen schon Kepler ausgesprochen. Seiner Ansicht
nach würden zwei Körper, auf die kein dritter wirkt, aufeinander
zueilen und sich vereinigen. Und zwar würden sich, wie er ausführt,
die zurückgelegten Wege umgekehrt wie die Massen der
betreffenden Körper verhalten. »Liefe der Mond nicht um die
Erde, so würde sich die Erde nach dem Monde um den 54. Teil
des Abstandes beider Weltkörper bewegen, und der Mond würde
sich um die übrigen 53 Teile nach der Erde senken. Dann würden
sie aufeinander treffen, vorausgesetzt, daß beide gleiche Dichte
besitzen214«.

Erklären ließ sich die Bewegung der Planeten jedoch erst, als
man das Gesetz vom Beharrungsvermögen auch auf sie ausdehnte,
wie es Galilei bezüglich aller irdischen Bewegungen getan hatte.
Kepler war nämlich noch in dem Irrtum befangen, daß die Planeten
zu ihrer Bewegung um die Sonne eines fortgesetzten Antriebes
bedürften. Dieser sollte in der Sonnenrotation gegeben
sein, die Kepler daher schon als Erklärungsprinzip forderte, bevor
ihr Vorhandensein beobachtet war. Drehte sich die Sonne
nicht um sich selbst, so würden nach Keplers Meinung die Planeten
diesen Zentralkörper nicht umkreisen, sondern sich auf ihn
stürzen, während doch in der Tat die Sonnenrotation aufhören
könnte, ohne daß die Bewegungen der Planeten eine Änderung
erführen. Zu erklären blieb dann noch die ungleiche Dauer, welche
die Umläufe der Planeten beanspruchen. Kepler äußert sich
darüber mit folgenden Worten: »Hätten die Planeten nicht ein
natürliches Widerstreben, so ließe sich keine Ursache angeben,
warum sie nicht der Achsendrehung der Sonne aufs genaueste
folgen sollten. Nun aber gehen zwar alle Planeten nach der Richtung,
in der die Sonne rotiert, aber der eine langsamer als der andere.
Sie vermengen nämlich nach gewissen Verhältnissen mit der Geschwindigkeit
des Bewegers die Trägheit ihrer eigenen Masse«215.
Die bewegende Kraft der Sonne, die sich auf die Planeten erstrecken
sollte, wurde von Kepler als eine Art Magnetismus betrachtet.
Er berief sich dabei auf Gilbert, der ja auch die Erde
als einen Magneten angesehen habe. Wie der Magnet die Nadel,
so sollte nach Kepler die Sonne vermöge ihrer Rotation die Erde
und die übrigen Planeten mit sich herumführen.

Kepler wußte, daß die Lichtintensitäten sich umgekehrt wie
die Quadrate der Entfernungen des beleuchteten Gegenstandes
von der Lichtquelle verhalten. Er erörtert daher die Frage, ob
die Wirkungen jener bewegenden Kraft der Sonne sich nicht etwa
ebenso verhalten, streift damit also schon an die Entdeckung des
Newtonschen Gravitationsgesetzes.

Keplers weitere astronomische Leistungen.

Kepler besitzt auch ein gewisses Anrecht auf die Entdeckung
der Sonnenflecken. Es war am 28. Mai des Jahres 1607, zu einer
Zeit, als das Fernrohr noch nicht erfunden war, als Kepler in
seinem Tagebuche eine seltsame Beobachtung vermerkte216. Er
war nämlich mit älteren, aus der Zeit Karls des Großen stammenden
Nachrichten bekannt geworden, nach welchen man Merkur
vor der Sonne als kleinen schwarzen Fleck gesehen haben wollte217.
Um zu prüfen, ob dies möglich sei, verfuhr Kepler an einem
Tage, an dem Sonne und Merkur in Konjunktion standen, folgendermaßen:
Er ließ die Sonnenstrahlen durch eine enge Öffnung in
ein dunkles Zimmer treten und fing das Sonnenbild vermittelst eines
Papierschirmes auf (s. Abb. 45, S. 134). Zur großen Überraschung
Keplers zeigte sich ein kleiner, verschwommener Fleck, den er
für Merkur hielt.



Ohne Zweifel hat es sich in diesem, wie in jenem älteren
Falle, um Sonnenflecken gehandelt, da Merkur, wie spätere Rechnungen
ergeben haben, am Tage der Beobachtung sich nicht vor
der Sonnenscheibe befand und auch zu klein ist, um sich bei
einer Konjunktion in der geschilderten Weise bemerklich zu machen.

Mehrfach hat sich Kepler auch mit
den Kometen beschäftigt, die er und
Tycho unter die Himmelskörper versetzten,
während die meisten sie für atmosphärische
Erscheinungen hielten. »Man
möge es mir«, sagt er, »nicht übelnehmen,
daß ich eine neue Ansicht einführe oder
vielmehr der alten Lehre des Anaxagoras
und des Demokrit folge und dem Himmel
zuschreibe, was man bisher nicht glauben
wollte, daß nämlich darin ebensowohl etwas
Neues entstehen kann, wie hier auf der
Erde«. Nach Kepler soll nämlich die
überall befindliche himmlische Luft, der
Äther, durch Zusammenziehung aus sich
heraus die Kometen entstehen lassen, von
denen der Himmel so voll sei, wie das
Meer voll von Fischen. Kepler setzte
sich damit in Widerspruch mit Aristoteles,
der den meisten damals noch als
Autorität galt. Aristoteles schrieb nämlich
den Himmelskörpern ein wandelloses
Sein zu und ließ die Welt des Werdens
und Vergehens erst unter dem Monde beginnen.
Die Planeten bekunden dagegen
nach ihm, zumal durch ihre ungleichmäßige
Bewegung, eine mittlere Stellung zwischen beiden Regionen.
Diese Lehre des Aristoteles wurde besonders durch das Aufleuchten
neuer Fixsterne in den Jahren 1572, 1600 und 1604 und
deren späteres allmähliches Verschwinden widerlegt.


[image: Abb. 45]
Abb. 45. Kepler erblickt
einen Sonnenflecken, den
er für den Merkur hält218.



Über den Stern vom Jahre 1604 hat Kepler ausführlich berichtet.
Er zeigte, daß auch dieser neue, im Sternbilde der Schlange
entstandene Stern seine Stellung zu den Fixsternen nicht veränderte.
Daraus schloß er, daß es sich nicht etwa um einen Planeten oder
einen Kometen handeln könne. »Wollte Gott, daß diejenigen,
die ein langes Gewäsch vom Ursprung dieses Sternes machen,
zuvor Tychos Ausführungen über den Stern vom Jahre 1572 lesen
möchten, damit sie mit so kindischen Gedanken, als sollte dieser
Stern vom Jupiter oder Mars angezündet worden sein, daheim
blieben.« So schreibt Kepler in seinem Bericht über einen ungewöhnlichen
neuen Stern, der im Oktober 1604 erschien. Ein
Faksimileabdruck dieses Berichtes wurde zusammen mit dem Faksimiledruck
einer Schrift, in der David Fabricius über den neuen
Stern von 1604 berichtete, vor kurzem veröffentlicht219. Die Schrift
von Fabricius erschien 1606 in Magdeburg unter dem Titel
»Himmlischer Herold«.

Es gewährt einen besonderen Reiz zu sehen, in welcher
Weise die beiden Forscher ein und denselben Gegenstand behandelt
haben. Dort David Fabricius, der überzeugte Astrolog,
der die Bedeutung des Wundersterns seinen staunenden
Landsleuten auslegt; hier Kepler, der sich in sehr skeptischer
Weise über die Bedeutung des neuen Gestirns ausspricht220. Was
der Stern zu bedeuten habe, schreibt Kepler, sei schwerlich zu
ergründen. Entweder bedeute er uns Menschen nichts oder er
habe solch hohe wichtige Dinge zu bedeuten, daß sie aller Menschen
Sinn und Vernunft überträfen.

Eine gewisse Wirkung auf die Menschen äußere ein solcher
Stern insofern, als die ganze Natur eine verborgene Art habe,
die vom Himmel kommenden Lichtstrahlen zu verspüren und sich
danach zu regeln. Sehr wohl könne auch ein Potentat durch das
Erscheinen des neuen Sternes zu einem Wagnis ermuntert oder
auch von einem solchen abgeschreckt werden, indem er das neue
Licht als ein vom Himmel selbst gegebenes Zeichen betrachte.

Nicht ohne Humor bemerkt Kepler, viel zu bedeuten habe
der Stern auch dadurch, daß er den Verlegern viel Arbeit und
Gewinn bringe, denn fast jeder Theologe, Philosoph oder Astronom
werde seine besondere Ansicht darüber haben und damit herauskommen
wollen.

Zu diesen gehörte auch der friesische Prediger und Astronom
David Fabricius221. Er hat über den neuen Stern drei Abhandlungen
veröffentlicht. Nach seiner Schilderung ist der Stern am
30. September 1604 bald nach Sonnenuntergang gegen Südwesten
von verschiedenen Astronomen in Deutschland, Böhmen und Italien
zuerst gesehen worden. Fabricius sah ihn, da um jene Zeit in
Friesland der Himmel bewölkt war, erst am 3. Oktober. Er konnte
bis zum Oktober 1605, also ein ganzes Jahr beobachtet werden.
Der neue Stern übertraf nach dem Zeugnis des Fabricius alle
Fixsterne, ja sogar den Jupiter und auch die Nova von 1572
an Größe und flimmerte »wie ein großes Licht, das vom Winde
bewegt wird«.

Seine Größe nahm von Monat zu Monat allmählich ab, so
daß er »im Anfang des Jahres 1605 mit der Spica in der Jungfrau
von gleicher Größe gewesen ist. Im März war er 3. und
im Juli 4. Größe« usw. Darüber, daß sich der Stern jenseits
der Sphäre der Planeten befand, zweifelte auch Fabricius
nicht. Schon das starke Flimmern beweist ihm, daß man es
hier mit einem Fixstern zu tun habe. Deshalb sei auch
die »Meinung zahlreicher Gelehrter, daß die Erscheinung von
irdischen Dünsten herrühre, als falsch und ungereimt zu verwerfen«.

Fest steht dagegen für Fabricius, daß »je und allerwege
neue Sterne und Kometen Vorboten von zukünftigem Unglück
und Veränderung gewesen sind«. Ganz besonders deute
»der jetzige Wunderstern auf große wichtige Sachen«, weil er alle
Vorgänger an Größe übertreffe, und weil bald nach seinem Erscheinen
und zwar fast am Orte seines Erscheinens die große Konjunktion
von Saturn und Jupiter eingetreten sei. Fabricius
sucht dann nachzuweisen, daß diese alle achthundert Jahre wiederkehrende
Konjunktion von großer Bedeutung für die Geschicke
der Menschheit gewesen. In die Zeit der Konjunktion vom
Jahre 800 falle das Auftreten Karls des Großen und die große
Konjunktion zu Beginn unserer Zeitrechnung falle mit dem Anfange
des Christentums und »großen Veränderungen in vielen
Königreichen und Ländern zusammen«. Auch die jetzige große
Konjunktion (Fabricius nennt sie den achthundertjährigen Reichstag
der beiden obersten himmlischen Kurfürsten) deute auf bevorstehende
große Veränderungen hin. Die Bedeutung dieser Konjunktion
werde durch das gleichzeitige Erscheinen eines neuen
Sternes besonders hervorgehoben. Zum Schlüsse gibt Fabricius
der Hoffnung Ausdruck, daß die in Aussicht stehenden Veränderungen
dem deutschen Volke ein Zeitalter des Friedens und der
Gerechtigkeit bringen möchten. Deshalb nennt er seine Schrift
auch den Glücksboten.

Nachdem das koppernikanische System durch Kepler eine
festere Gestalt gewonnen, bedurfte es einer zusammenhängenden
neuen Darstellung des gesamten astronomischen Lehrgebäudes.
Dieser Aufgabe unterzog sich Kepler durch die Veröffentlichung
seiner »Epitome astronomiae Copernicanae«222. Damit erschien
das erste astronomische Lehrbuch, welches das koppernikanische
System zugrunde legte, fast hundert Jahre nach der Aufstellung
des letzteren.

Nach Keplers Tode gab sein Sohn im Jahre 1634 ein zweites,
für Lehrzwecke bestimmtes Werk des großen Astronomen heraus,
in dem letzterer es unternimmt, mit dichterischer Phantasie die
astronomischen Erscheinungen so darzustellen, wie sie einem
Beobachter auf dem Monde erscheinen würden. Das Buch ist
betitelt »Keplers Traum oder nachgelassenes Werk über die
Astronomie des Mondes« und verdient als »eine der merkwürdigsten
Schriften aus der Reformationszeit der Sternkunde« mehr als bisher
beachtet zu werden223. Kepler schildert darin in phantasievoller
Weise eine Reise nach dem Monde, ein Gedanke, der vor und
nach ihm häufiger näher ausgeführt wurde. Als Brücke dient den
Dämonen, die den Reisenden begleiten, der bei Finsternissen den
Mond und die Erde verbindende Schattenkegel. Vom Monde aus
werden darauf die Himmelserscheinungen beobachtet, und es zeigt
sich, daß mit der Veränderung des Standpunktes sich eine, von
der irdischen völlig abweichende, neue Astronomie ergibt. An
die Astronomie des Mondes schließen sich Mitteilungen über die
Oberflächengestalt und die Natur dieses Weltkörpers, den Kepler
mit den Wesen seiner Phantasie bevölkert.

Erhöht wird der Wert dieser, ein Vierteljahrhundert vor ihrer
Herausgabe entstandenen Schrift, durch Anmerkungen, die Kepler
ihr nach und nach beifügte. In diesen Anmerkungen findet sich
nämlich vieles, das auf den damaligen Stand der Astronomie und
der übrigen Zweige der Naturwissenschaft ein helles Licht wirft224.

Der Herausgeber nennt »Keplers Traum« eine in die schönste
Form gekleidete astronomische Offenbarung, ja das hohe Lied der
koppernikanischen Lehre. In den Anmerkungen, die Kepler
in den Jahren 1620 bis 1630 niedergeschrieben hat, begegnet uns
zum ersten Male die Behauptung225, daß die vom Monde reflektierten
Strahlen neben der Licht- auch eine Wärmewirkung ausüben.
Kepler glaubte sogar die Wärme der Mondstrahlen im Brennpunkte
eines parabolischen Hohlspiegels als warmen Hauch fühlen
zu können. Neuere Messungen haben jedoch gezeigt, daß die
vom Monde ausgestrahlte Wärme nicht größer ist als diejenige,
die eine Kerze auf 21 Fuß Entfernung ausstrahlt. Bei Kepler
begegnet uns ferner schon die Ansicht, daß das Leben keineswegs
auf die Erde beschränkt sei. Wie sich die Menschen und die
Tiere der Beschaffenheit ihres Landes und ihrer Provinz anpaßten,
so werde es sich auch mit den lebenden Wesen auf dem Monde
verhalten226.

Das Jahr 1619, in dem Kepler durch die Entdeckung des
dritten Gesetzes der Planetenbewegung sein Lebenswerk krönte,
war für die spätere Gestaltung seiner äußeren Lage kein günstiges.
In diesem Jahre kam nämlich der fanatische Ferdinand II. auf
den Kaiserthron. Die Verfolgungen der Protestanten mehrten sich.
Im Jahre 1626 wurde Kepler gedrängt, seine dürftig besoldete
Stelle aufzugeben. Von diesem Zeitpunkte an führte der
schon alternde Mann ein sorgenvolles unstetes Leben. Er hatte
an rückständigem Gehalt nicht weniger als 12000 Gulden zu
fordern. Man entledigte sich des unbequemen Mahners, indem
man diese Schuld dem zum Herzog von Mecklenburg ernannten
Wallenstein übertrug. Letzterer suchte Kepler wieder mit
einer Professur in Rostock abzuspeisen.



Nach dem Sturze Wallensteins begab sich Kepler nach
Regensburg, um dort auf dem Reichstage seine Forderungen geltend
zu machen. Den ausgestandenen Entbehrungen und Aufregungen
war sein geschwächter Körper jedoch nicht mehr gewachsen. Er
erlag ihnen bald nach seiner Ankunft in Regensburg, am 15. November
1630. Die letzte Ruhestätte hat man ihm vor den Toren
dieser Stadt bereitet. Zwei Jahre später tobte dort die Furie des
dreißigjährigen Krieges, wodurch jede Spur von Keplers Grab
verwischt wurde. Während der nächsten zwei Jahrhunderte die
auf ihn folgten, hat Deutschland, von Leibniz abgesehen, keinen
Mathematiker und Astronomen gehabt, der sich auch nur annähernd
hätte mit Kepler messen können. Auch die hervorragenden ausländischen
Forscher, die im 18. Jahrhundert der Berliner Akademie
angehörten, (Euler, d'Alembert u. a.) blieben ohne Einfluß auf
die Wiederbelebung der mathematischen Wissenschaften in Deutschland227.
Eine Änderung, die uns später noch beschäftigen soll,
trat fast unvermittelt mit Gauß ein, dem sich zahlreiche hervorragende
Mathematiker auf deutschem Boden hinzugesellten.

Wie der literarische Nachlaß Galileis, so erfuhr auch derjenige
Keplers ein besonderes Schicksal. Keplers Sohn kam
nur dazu, das Somnium herauszugeben. Keplers Enkel verkaufte
alles an den Astronomen Hevel. Hevels Sternwarte wurde
durch einen Brand vernichtet, doch wurden Keplers Manuskripte
zum Glück gerettet. Sie wechselten noch mehrfach den Besitzer,
bis sie, auf Veranlassung Eulers, Katharina II. für 2000 Rubel
kaufte und der Petersburger Akademie überwies. Hier und später
in der Sternwarte zu Pulkowa ruhten die Manuskripte unbenutzt,
bis endlich ein Landsmann Keplers, Chr. Frisch in Stuttgart,
die so lange vernachlässigten Schätze zu heben verstand. Als Frucht
einer dreißigjährigen Arbeit gab er von 1858 bis 1871 das gesamte,
ihm zugängliche, gedruckte und ungedruckte Material mit
Einleitungen und Erläuterungen versehen als Opera omnia Joannis
Kepleri in acht Bänden heraus.

Keplers Verdienste um die Optik.

Nach dieser Darstellung des Lebensganges und der astronomischen
Leistungen Keplers wollen wir seine Verdienste um
die Optik, als eine der wichtigsten Hilfswissenschaften der Astronomie,
ins Auge fassen. Von besonderem Interesse mußte für
den Astronomen das Problem der Brechung sein, an dem sich
schon das Altertum mit einigem Erfolg versucht hatte. Beruhte
doch auf dieser Erscheinung die astronomische Refraktion, deren
genauere Bestimmung für die beobachtende Astronomie sehr wichtig
war, sowie die Konstruktion des Fernrohrs, um dessen Verbesserung
Kepler sich gleichfalls verdient gemacht hat.

Die Ergebnisse seiner optischen Untersuchungen hat er in
zwei Werken niedergelegt, von denen das eine unter dem Titel
»Supplemente zum Vitellio«228 die gesamte Lehre vom Lichte betrifft,
während sich das zweite, die »Dioptrik«229, vorzugsweise
mit der Brechung beschäftigt. Was Euklid im Altertum und
was in späterer Zeit Alhazen auf dem Gebiete der Optik
geleistet haben, wird bei weitem übertroffen durch die grundlegenden,
in den genannten Werken enthaltenen Untersuchungen
Keplers. Daß dieser mit dem Gesetz der Lichtintensität bereits
vertraut war, haben wir bei der Erörterung seiner astronomischen
Ansichten230 bereits erfahren. Kepler hat dieses wichtige Gesetz
zuerst in voller Klarheit ausgesprochen231, und zwar geschieht
dies in seiner ersten, dem Kaiser Rudolph gewidmeten optischen
Schrift, den »Supplementen zum Vitellio«232, mit deren Inhalt wir
uns zunächst beschäftigen wollen.

Das erste Kapitel handelt von der Natur des Lichtes. Bemerkenswert
sind die Aussprüche, daß das Licht imstande sei, sich
ins Unbegrenzte fortzupflanzen (Prop. III); daß ferner das Licht
keine Zeit beanspruche, sondern sich momentan ausbreite (Prop. V)233.



Den Hauptsatz der Photometrie finden wir (in Prop. IX) in
folgenden Worten ausgesprochen234: »In dem Maße, wie die Kugelfläche,
von deren Mittelpunkt das Licht ausgeht, größer oder
kleiner ist, verhält sich die Stärke oder Dichte der Lichtstrahlen,
die auf die kleinere, zur Stärke derjenigen Strahlen, die auf die
größere Kugelfläche fallen.«

Die Farben vermochte Kepler noch nicht zu erklären; er
nahm an, daß sie aus den verschiedenen Graden der Durchsichtigkeit
und Dichte entständen, auch huldigte er der irrtümlichen
Ansicht, die Brechung werde dadurch veranlaßt, daß dem dichteren
Mittel ein größerer Widerstand und demgemäß ein größeres
Brechungsvermögen zukomme. Indessen wurde Kepler schon
bald nach dem Erscheinen seiner Schrift darauf aufmerksam gemacht,
daß das weniger dichte Öl das Licht weit stärker bricht
als das Wasser235.

Wie Maurolykus befaßte sich auch Kepler mit der Frage,
weshalb hinter verschieden gestalteten Öffnungen stets ein rundes
Sonnenbild entsteht. Auf die richtige Erklärung kam er durch
folgende geometrische Konstruktion236: »Ich nahm ein Buch, das
mir die Stelle des leuchtenden Körpers vertreten sollte, und legte
es hin. Zwischen diesem Buch und einer Wand stellte ich eine
Tafel mit einer winkligen Öffnung auf. Nun befestigte ich an
der einen Ecke des Buches einen Faden, zog ihn durch die Öffnung
hindurch und beschrieb, indem der Faden längs den Grenzen
dieser Öffnung bewegt wurde, mit Kreide, die an dem Ende des
Fadens angebracht war, eine Figur auf der Wand. Diese Figur war
der Öffnung ähnlich. Dies wiederholte ich, indem ich den Faden
an sämtlichen Ecken und mehreren anderen Stellen des Buches
befestigte. Aus sämtlichen Figuren, die ich erhielt, entstand
schließlich eine einzige, welche die Gestalt des Buches hatte.«

Das dritte Kapitel enthält außer den Grundlagen der Katoptrik
eine Erörterung der Umstände, von denen unser Urteil über die
Entfernung eines Gegenstandes abhängt. Ohne uns dessen bewußt
zu werden, nehmen wir, wie Kepler ausführt, die Entfernung
der beiden Augen zu Hilfe und ermitteln den Ort des
Gegenstandes durch ein Dreieck, dessen Grundlinien jener Abstand
der Augen, und dessen Seiten die von jedem Auge nach dem
Gegenstande gezogenen Gesichtslinien sind237.

In den beiden letzten Abschnitten seiner Optik vom Jahre
1604 behandelt Kepler die Brechung, insbesondere die astronomische
Strahlenbrechung, für die er eine Tabelle entwirft, und
die Theorie des Sehens. Da diese Gegenstände der Optik indessen
in Keplers Dioptrik vom Jahre 1611 wieder behandelt werden,
wollen wir uns auf diese spätere Darstellung beschränken.

Einen Anlaß, sich von neuem mit der Optik zu beschäftigen,
bot Kepler die im Jahre 1609 in Holland gemachte Erfindung
des Fernrohrs. Das Ergebnis seiner, nur durch geringfügige experimentelle
Hilfsmittel unterstützten Erwägungen war seine »Dioptrik«.
Durch sie insbesondere ist Kepler zum Begründer der
neueren Optik geworden. Er ist auf diesem Gebiete das gewesen,
was Galilei für die Mechanik und Gilbert für die Elektrizitätslehre
war. Leider wurde dies Verdienst Keplers im Vergleich
zu den Leistungen anderer Forscher viel zu wenig gewürdigt.
Während Galilei z. B. durch seine Beschäftigung mit der Optik
Ruhm und Gewinn erntete, ohne diese Wissenschaft wesentlich
zu bereichern, trugen Keplers höchst wertvolle Arbeiten, die
der Wissenschaft einen neuen Ansporn gaben, nichts dazu bei, das
traurige Los des großen deutschen Forschers zu bessern238.

Keplers Dioptrik239 ist vor kurzem durch eine Übersetzung240
zugänglich gemacht. Wir wollen sie der im nachfolgenden gegebenen
Darstellung der wichtigsten Errungenschaften zugrunde
legen, die wir Kepler auf den Gebieten der Brechung, der optischen
Instrumente und der Theorie des Sehens verdanken.

Will man sich das Verdienst Keplers nur diese Dinge vergegenwärtigen,
so muß man bedenken, daß man zu jener Zeit mit
dem Problem der Brechung noch so wenig bekannt war, daß man
das Verhältnis zwischen dem Einfalls- und dem Brechungswinkel
als konstant annahm. Ferner war die herrschende Theorie vom
Sehen durchaus unrichtig, und bezüglich der optischen Instrumente
war eine Theorie überhaupt noch nicht vorhanden.

In seiner Vorrede zur Dioptrik erklärt Kepler, die Erfindung
des Fernrohrs habe in ihm den Wunsch entstehen lassen, die
Grundlagen dieser Erfindung auf geometrische Gesetze zurückzuführen
und so für die Dioptrik das zu leisten, was Euklid für
die Katoptrik geschaffen habe.

Als Erfahrungsgrundsatz stellte Kepler folgende Regel an
die Spitze: Strahlen, die in ein dichteres Medium eintreten,
nähern sich nach der Brechung innerhalb des Körpers der Senkrechten,
die auf der Grundfläche im Einfallspunkte errichtet
wird. Diese Brechung
bleibt dieselbe, ob nun
die Strahlen ein- oder
austreten.


[image: Abb. 46]
Abb. 46. Keplers Verfahren, den Brechungswinkel
zu bestimmen241.



Beim Messen der
Brechung verfuhr Kepler
folgendermaßen: Er bestimmte
die Schattenlänge
von BE (siehe EH in
Abb. 46) und schob dann
einen Würfel der zu
untersuchenden Substanz
gegen die senkrechte Platte BDE. Infolge der Brechung des
Lichtes trat dann eine Verkürzung des Schattens um das Stück GH
ein, aus deren Größe er das Verhältnis zwischen dem Einfalls-
und dem Brechungswinkel berechnete. Dabei machte Kepler
die Entdeckung, daß ein durch Glas gehender Lichtstrahl,
dessen Einfallswinkel an der Grenze zwischen Glas und Luft
größer ist als 42°, nicht in die Luft tritt, sondern an der Grenze
beider Medien nach dem Gesetz der Reflexion total zurückgeworfen
wird242.

Trotz zahlreicher Messungen der Einfalls- und der zugehörigen
Brechungswinkel vermochte Kepler indessen keine gesetzmäßige
Beziehung zwischen beiden Größen zu finden. Zunächst ermittelte
er, daß das Brechungsvermögen von Bergkristall und Glas ungefähr
übereinstimmt. Betrug der Einfallswinkel 0°-30°, so war nach
seinen Messungen das Verhältnis von Einfallswinkel und Brechungswinkel
ungefähr konstant. Die bisher auch für größere Winkel angenommene
Proportionalität fand Kepler jedoch nicht bestätigt.
»Bei einer Neigung von 30°«, heißt es nämlich243 »beträgt die Refraktion
10°. Nach demselben Maße müßte zu einer Neigung von 90°
eine Refraktion von 30° gehören; das Experiment ergibt aber 48°«244.
Zwar suchte schon Kepler das Brechungsverhältnis zu einer trigonometrischen
Funktion in Beziehung zu bringen, doch gelang dies
erst einige Jahrzehnte später den Bemühungen von Snellius und
Descartes. Snellius entdeckte nämlich (Abb. 47), daß der
Weg (CA) eines Lichtstrahls, der aus Luft in Wasser tritt und
auf eine senkrechte Wand BA fällt, sich zu dem Wege (CB), den
derselbe Strahl ohne Ablenkung von seiner Eintrittsstelle bis zu
jener Wand zurückgelegt haben würde, stets wie 3 : 2 verhält.
Mit dem heute gebräuchlichen Ausdruck für dieses Gesetz, nach
dem der Sinus des Einfallswinkels (DCE) zum Sinus des Brechungswinkels
(ACF) in einem bestimmten Verhältnis (für Luft und
Wasser 3 : 2) steht, war Snellius noch nicht vertraut245. In diese
Form wurde das Brechungsgesetz erst durch den französischen
Philosophen und Mathematiker Descartes246 gebracht.


[image: Abb. 47]
Abb. 47. Snellius entdeckt das
Brechungsgesetz.
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Abb. 48. Ableitung des Brechungsgesetzes.



Obgleich Kepler weder im Besitze des strengen Brechungsgesetzes
noch des Gesetzes der konjugierten Brennweiten war, das,
wie wir sehen werden, erst Halley ableitete, war er doch imstande,
eine im großen und ganzen zutreffende Lehre von der
Wirkung der Linsen und der Linsensysteme zu geben. Er läßt
zunächst parallele Strahlen auf eine plankonvexe Glaslinse fallen
und findet, indem er das Brechungsverhältnis 3 : 2 zugrunde legt,
daß sie sich in einer Entfernung von ungefähr dem dreifachen
Krümmungshalbmesser schneiden. Für die beiderseits gleiche
bikonvexe Glaslinse fällt der Brennpunkt nach einem späteren
Satze der Dioptrik247 etwa mit dem Krümmungsmittelpunkt zusammen.
Auch in diesem Falle nahm Kepler mit einer für geringe
Öffnungen der Linse hinreichenden Genauigkeit an, daß sich
beim Glase der Einfallswinkel zum Brechungswinkel wie 3 : 2 verhält,
während dies Verhältnis ja tatsächlich nicht für die Winkel
selbst, sondern für ihre Sinuswerte zutrifft. Es entging Kepler
nicht, daß die vom Rande der Linse kommenden Strahlen mit
den aus der Mitte kommenden nicht genau zusammentreffen248, eine
Erscheinung, die unter dem Namen der sphärischen Abweichung
bekannt ist. Sie tritt auch an den sphärischen Hohlspiegeln auf
und wurde bezüglich dieser schon von Roger Bacon erwähnt. Daß
sie infolge der Brechung an einer Glaskugel auftritt, hatte übrigens
schon Maurolykus dargetan, so daß Keplers Verdienst in dieser
Hinsicht nicht groß ist. Von ihm rührt indessen der Gedanke
her, den Linsen statt der sphärischen eine hyperbolische Form zu
geben, um dadurch die sphärische Abweichung aufzuheben. Er
nahm nämlich mit den Anatomen seiner Zeit an, daß die Linse
unseres Auges auf der hinteren Seite eine hyperbolische Gestalt
habe und infolgedessen scharfe Bilder gebe, während durch die
sphärische Abweichung das Bild an Schärfe verliert.

Bei seinen Ableitungen der für die Linse und für Linsenkombinationen
geltenden Regeln verwendet Kepler meist zwei
Strahlenkegel, deren gemeinschaftliche Basis die Linse ist, während
die Spitzen mit einem Punkte des Gegenstandes und dem entsprechenden
Bildpunkte zusammenfallen. Die nebenstehende Abbildung
enthält drei solcher Strahlenbündel, wie Kepler jedes
Kegelpaar bezeichnet. Da dem Punkte E des Gegenstandes im
Bilde der Punkt F, dem Punkte C dagegen
der Punkt D entspricht, so ist der Satz, daß
eine Linse umgekehrte Bilder liefert, ohne weiteres
ersichtlich. Dieses von Kepler verfolgte
Konstruktionsverfahren war eine von ihm herrührende
Neuerung. Seine Vorgänger auf dem
Gebiete der Optik hatten stets einzelne Strahlen
verfolgt, während uns bei Kepler zum ersten
Male das aus unzähligen Strahlen bestehende
Strahlenbündel als Konstruktionsmittel begegnet.
Mit dessen Hilfe war er imstande,
die Lage und die Größe der Bilder weit richtiger
zu ermitteln, als es vor ihm geschah.
Kepler entdeckte beispielsweise die Eigenschaft
der bikonvexen Linsen, von einem Gegenstande,
der sich in der doppelten Brennweite
befindet, ein gleich großes Bild in der gleichen
Entfernung auf der entgegengesetzten Seite zu
erzeugen.
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Abb. 49.
Kepler beweist, daß
eine Linse umgekehrte
Bilder liefert.



Besondere Verdienste hat sich Kepler
auch um die Theorie des Sehens erworben.
Er erklärte die Netzhaut für denjenigen Teil
des Auges, der das von der Linse erzeugte Bild auffängt, und
vertrat die Ansicht, es müsse, nach Fortnahme der undurchsichtigen
äußeren Häute des Auges, auf der Netzhaut ein umgekehrtes,
verkleinertes Bild des Gegenstandes zu sehen sein.
Diese Annahme Keplers hat später Scheiner249 durch den Versuch
bestätigt. Da Kepler, nachdem zahlreiche Versuche anderer
vorhergegangen, als der erste eine richtige Theorie des Sehens
entwickelte, so wollen wir bei seiner sowohl in der ersten Schrift250
als in der Dioptrik251 gegebenen Darstellung dieses Vorganges noch
etwas verweilen.

Keplers Vorläufer auf diesem Gebiete waren Maurolykus
und Porta. Beide nahmen an, daß von jedem Punkte des leuchtenden
Gegenstandes ein Strahl durch die Pupille ins Auge gelange.
Das erzeugte Bild sollte nach Porta auf die Kristallinse,
nach Maurolykus hinter diese fallen. Nach Keplers zutreffender
Annahme gehen dagegen von jedem Punkte des Gegenstandes
Strahlenkegel aus, deren gemeinschaftliche Grundfläche
die Pupille ist. Sämtliche Strahlenkegel werden, ähnlich wie es
Abbildung 49 zeigt, durch die Kristallinse des Auges so gebrochen,
daß sie hinter dieser Linse gleichfalls Kegel bilden, deren
Spitzen auf der Netzhaut liegen. Letztere befindet sich an der
Stelle des Schirmes der Camera obscura und ist »in einem hohlen
Bogen von allen Seiten her um die Kristallinse ausgespannt«.

Sehr zutreffend und an die neuesten Theorien anklingend ist
das, was Kepler über die Tätigkeit der Netzhaut sagt. Wir
wollen hier mit einigen Abkürzungen seine eigenen Worte bringen:
»Das Sehen«, sagt er, »ist eine Gefühlstätigkeit der gereizten
und mit Sehgeist erfüllten Netzhaut; oder auch: Sehen heißt die
Reizung der Netzhaut fühlen. Die Netzhaut wird mit den farbigen
Strahlen der sichtbaren Welt bemalt«. Die Veränderung der
Netzhaut ist jedoch nach Keplers Annahme keine nur oberflächliche,
sondern eine stoffliche. In der Netzhaut befinde sich
nämlich ein außerordentlich feiner Stoff, »der Sehgeist«. Auf
diesen wirke das durch die Linse gesammelte Licht zersetzend in
der nämlichen Weise, wie etwa brennbare Stoffe durch die Brenngläser
verändert würden. Das so entstandene Bild sei auch von
einiger Dauer. Als Beweis dafür führt Kepler die Nachbilder an,
die sich zeigen, wenn man »sich von einem angeschauten Lichtglanz
abwendet«. Eine Bestätigung hat diese Anschauung später
durch die Entdeckung des chemisch veränderlichen Sehpurpurs
gefunden252.



Vollkommen richtig bemerkt Kepler, daß die Abbildung
des Gegenstandes auf der Netzhaut noch nicht den ganzen Sehakt
ausmache, sondern, daß das Bild »durch einen geistigen Strom«
in das Gehirn übergehen und dort an den Sitz des Sehvermögens
abgeliefert werden müsse.

Daß nur ein einziges Bild zur Wahrnehmung gelangt, hat
seinen Grund nach Kepler253 darin, daß beide Netzhäute in gleicher
Weise gereizt werden. Dementsprechend würden auch, wenn sie
in ungleicher Weise gereizt würden, zwei Bilder wahrgenommen.
Auch mit der Frage, weshalb wir trotz der umgekehrten Netzhautbilder
die Gegenstände aufrecht sehen, hat sich Kepler beschäftigt.
Doch vermochte er hierauf keine befriedigende Antwort zu geben.
»Das Oben und Unten der Gegenstände,« meinte er, »lernen wir
schon aus der Bewegung der Augen unterscheiden, da wir sie
in die Höhe richten, wenn wir einen hoch befindlichen Gegenstand
und nach unten, wenn wir einen tief gelegenen sehen
wollen254.«

Ferner erklärte Kepler die Kurzsichtigkeit und die Übersichtigkeit.
Die Ärzte des Altertums handeln zwar auch schon
von der Kurzsichtigkeit. Sie führten indessen diesen Zustand,
gegen den sie kein Mittel besaßen, auf eine Schwäche der vom
Auge ausgehenden Ausströmung zurück255. Wie die Ursache der
Kurzsichtigkeit, so blieb den Alten auch das Wesen des Sehvorgangs
verborgen. Bei einem kurzsichtigen Auge schneiden sich,
wie Kepler richtig ausführt, die von jedem Punkte eines Gegenstandes
ausgehenden Strahlen schon innerhalb des zwischen der
Linse und der Netzhaut befindlichen Glaskörpers. Sie breiten sich
hinter ihrem Durchschnittspunkte wieder aus und geben daher auf
der Netzhaut Lichtkreise an Stelle von Lichtpunkten. Ähnlich
verhält sich das übersichtige Auge. Es bricht die Strahlen nicht
stark genug, so daß die Spitzen der Strahlenkegel hinter der
Netzhaut liegen256. Da mit der Entfernung des Gegenstandes von
der Linse sich auch die Bildweite ändert, so blieb noch zu erklären,
durch welchen Vorgang ein normales Auge imstande ist,
die Bilder entfernter und naher Gegenstände mit gleicher Schärfe
wahrzunehmen. Kepler meinte, daß dieser, als Akkommodation
bezeichnete, Vorgang durch eine Verschiebung der Linse oder der
Netzhaut geschehe257, während Descartes der später als richtig
erkannten Ansicht zuneigte, daß die Linse infolge eines auf sie
ausgeübten, wechselnden Druckes bald mehr, bald weniger gekrümmt
sei258. »Da die Netzhaut«, führt Kepler aus, »in ein
und derselben Lage nicht zugleich von nahen und fernen Gegenständen
scharfe Bilder erhalten kann und doch bei den Menschen,
die nah und fern deutlich sehen, gleich scharfe Bilder erhält, so
muß die Netzhaut inbezug auf die in der kristallenen Feuchtigkeit
liegende Linse eine Ortsveränderung erleiden.« Es sei wahrscheinlich,
meint Kepler, daß ein kräftiges, jugendliches Auge,
wie es eine deutliche Bewegung in der Pupille zeige, so auch
hinter der Linse die Fähigkeit habe, den Augapfel dergestalt zu
verändern, daß der Augengrund sich der Linse nähere oder von
ihr zurückweiche, je nach der Entfernung der Gegenstände, auf
die das Auge eingestellt werde. Vielleicht befinde sich der Sitz
dieser Bewegung aber auch in jener Haut, welche die Linse in der
kristallenen Feuchtigkeit festhalte und jene eigentümlichen, als
Ziliarfortsätze bezeichneten, schwarzen Strahlen aussende. Kepler
nahm auch an, daß das Innere des Auges flüssig sei, damit die
von ihm geforderten Formveränderungen vor sich gehen könnten.
Er erzählt, daß er sich mit der Erklärung des Sehens mehrere
Jahre fast ausschließlich beschäftigt habe. Dafür gebührt ihm
aber auch der Ruhm, der Begründer der physiologischen Optik
zu sein. – Keplers Verdienste um die Theorie der optischen Instrumente
haben wir an der Hand seiner »Dioptrik« schon in einem
früheren Abschnitt259 gewürdigt.

Descartes und Kepler waren der Meinung, daß das Licht
zu seiner Fortpflanzung keine Zeit beanspruche. Ersterer stützte
sich dabei nicht ausschließlich auf die Wahrnehmung irdischer
Vorgänge, sondern zog auch astronomische Erscheinungen in Betracht.
Da er jedoch nur die Verfinsterungen des Mondes ins
Auge faßte, so konnte sich bei der verhältnismäßig geringen Entfernung
dieses Weltkörpers, die das Licht in einer Sekunde durcheilt,
nur ein negatives Resultat ergeben260.



Keplers Nachfolger auf dem Gebiete der Astronomie.

Unter den Männern, welche die astronomische Wissenschaft
als Nachfolger Keplers mit Erfolg gepflegt haben, ist vor allem
Hevel zu nennen. Johann Hevel261 wurde 1611 in Danzig geboren.
Sein Lebensgang erinnert in mancher Hinsicht an denjenigen
Guerickes. Hevel stammte gleichfalls aus einer alten,
vermögenden Familie seiner Vaterstadt. Er studierte in Leyden
Rechtswissenschaft, machte ausgedehnte Reisen, auf denen er Beziehungen
zu hervorragenden Ausländern anknüpfte und bekleidete,
nach Danzig zurückgekehrt, das Amt eines Ratsherrn. Die Anregung
zu astronomischen Arbeiten, denen sich Hevel neben seinen
Berufsgeschäften aus Liebhaberei widmete, empfing er von einem
seiner Danziger Lehrer. Hevel mußte ihm auf dem Totenbette
das Versprechen geben, den gemeinsam gepflegten Studien treu zu
bleiben. Er baute 1641 eine Sternwarte und verfertigte nicht nur
alle Instrumente, deren er sich bediente – sogar die Linsen schliff
er selbst – sondern besorgte auch die Herstellung der Kupferplatten
für seine Abbildungen und deren Druck.

Zum Messen benutzte Hevel noch nicht das Fernrohr, obgleich
die übrigen Astronomen ihre Meßapparate schon mit dem
neuen Instrument versehen hatten, sondern er bediente sich mit
einem gewissen Eigensinn ausschließlich der für das unbewaffnete
Auge eingerichteten Diopter. Trotzdem erreichte er eine große
Genauigkeit. Ja, Halley, der Hevel im Auftrage der Royal
Society besuchte, mußte sogar zugeben, daß seine mit dem Fernrohr
erhaltenen Messungen mit denjenigen Hevels bis auf die
Bogenminute übereinstimmten und oft nur um wenige Sekunden
davon abwichen.

Das größte Verdienst Hevels bestand darin, daß er die ersten
genauen Karten vom Monde zeichnete und damit einen neuen
Zweig der astronomischen Wissenschaft, die Selenographie, begründete.
Hevels Werk262 über den Mond erschien als das Ergebnis
einer sich über viele Jahre erstreckenden, mühevollen Arbeit
im Jahre 1647. Es ist mit Recht als eines der ehrwürdigsten Denkmäler
ausdauernder wissenschaftlicher Tätigkeit bezeichnet worden263.
Leider sind die von Hevel für dieses Werk gestochenen Kupferplatten
infolge der Pietätlosigkeit seiner Erben verloren gegangen.
Die dunklen Flecken des Mondes (Abb. 50) hielt Hevel noch für
Wasseransammlungen; er benannte sie deshalb Mare frigoris (Eismeer),
Oceanus procellarum (stürmischer Ozean) usw. Um die
Berge und Gebirge des Mondes zu bezeichnen, bediente er sich
geographischer Namen. Es begegnen uns daher auf dem Monde
der Vesuv, die Apenninen, die Karpathen usw. Zum großen Schaden
für die Wissenschaft wurde Hevels Sternwarte 1679 durch eine
Feuersbrunst zerstört, der auch viele Bücher und Aufzeichnungen
zum Opfer fielen.


[image: Abb. 50]
Abb. 50. Hevels Abbildung des Mondes.



Hevel war auch ein fleißiger Kometenforscher. Es war ihm
vergönnt von 1652–1683 neun größere Kometen zu beobachten.
Die hierdurch und durch andere gewonnenen Aufzeichnungen über
400 Kometen hat er in seiner Cometographie vom Jahre 1668
veröffentlicht.

Hevel starb im Jahre 1687. Er hatte einen ausgedehnten
Briefwechsel mit den bedeutendsten Gelehrten seiner Zeit unterhalten.
Die von Hevel gesammelten Briefe umfaßten viele
Folianten, sind aber von seinen Erben für einen Spottpreis verkauft
worden264. In einer Geschichte der Wissenschaften verdient
dies Verhalten verurteilt zu werden, zur Warnung für spätere
Geschlechter und zur Mahnung an die Pflichten, welche der Staat
hat, wenn dem einzelnen das Verständnis abgeht.

Die unmittelbar auf Kepler folgende Generation schuf auch
die mit der Physik und mit der Astronomie in engem Zusammenhange
stehende allgemeine Geographie. Ihr Begründer ist Bernhard
Varenius und das Werk, durch das er dies vollbrachte,
seine »Geographia generalis« (1650)265. Der große Fortschritt, den
wir bei Varenius finden, besteht vor allein darin, daß er nicht
lediglich schildert und beschreibt, sondern in erster Linie vergleicht.
Sein Werk wird daher mit Recht dem zweihundert Jahre später
erschienenen Kosmos A. v. Humboldts zur Seite gestellt.




6. Die Förderung der Naturwissenschaften
durch die Fortschritte der Mathematik.

Die Entdeckungen der großen Erneuerer der Naturwissenschaften
sind zum großen Teil der Anwendung der Mathematik
auf physikalische und astronomische Probleme zu verdanken. Der
Fortschritt in der von Galilei und Kepler eingeschlagenen Richtung
war daher nicht nur an die Ausbildung und Ausbreitung des
induktiven Verfahrens, sondern auch an die Weiterentwicklung der
Mathematik geknüpft. Letztere nahm denn auch in diesem Zeitalter
unter der Mitwirkung der bedeutendsten Naturforscher einen
kräftigen Aufschwung, der in der nachfolgenden Periode durch
Newton, Leibniz, Descartes und Huygens eine Fortsetzung
erfuhr.

Fortschritte der Rechenkunst.

In dem Maße, wie die Genauigkeit der Beobachtungen zunahm,
war auch die Berechnung der Ergebnisse zeitraubender und
mühseliger geworden, so daß man das Bedürfnis fühlte, an die
Stelle des Multiplizierens und Dividierens großer Zahlen eine Vereinfachung
treten zu lassen. Diesem wurde durch die Erfindung
der Logarithmen genügt, durch die jene Operationen auf das viel
schneller zu bewerkstelligende Addieren und Subtrahieren zurückgeführt
wurden. Zur Berechnung astronomischer Tafeln wandte
Kepler zum erstenmal im Jahre 1620 die Logarithmen an, die nach
einem Ausspruch von Laplace das Leben des Astronomen verlängern,
indem sie die Arbeit von Monaten auf Stunden abkürzen.

Ein großes Verdienst um die für die Allgemeinheit wie für
die Wissenschaft gleichwichtige Fortbildung der Rechenkunst erwarb
sich auch der Holländer Simon Stevin266, dessen Lebensgang
und physikalische Forschungen wir an späterer Stelle kennen
lernen werden. Stevin ist die erste systematische Darstellung
des Rechnens mit Dezimalbrüchen zu verdanken. Dabei verfehlte
er nicht, auf den Wert der dezimalen Schreib- und Rechnungsweise
hinzuweisen und im Zusammenhange damit von den Regierungen
die Einführung dezimaler Münz-, Maß- und Gewichtssysteme
zu fordern, ein Wunsch, der erst zweihundert Jahre
später durch die Männer der französischen Revolution verwirklicht
wurde.

Stevins Schreibweise für die Dezimalbrüche ist noch eine
umständliche. Er fügte nämlich jeder Ziffer die Stelle, die sie
einnimmt, als Index bei. Der Dezimalbruch 0,3469 z. B. nimmt
bei ihm folgende Form an: 3① 4② 6③ 9④. Fast zur selben
Zeit entstand aber nach Vietas Vorschlag die heutige Schreibweise
unter Anwendung des Kommas.

Mit Zinsberechnungen war man schon im Altertum bekannt.
Bei den Indern und den italienischen Kaufleuten des Mittelalters
begegnen uns auch Zinseszinsberechnungen. Stevin gebührt das
Verdienst, zuerst267 Tafeln für die Berechnung von Zinsen und
Zinseszinsen veröffentlicht zu haben.

Von größtem Einfluß auf die weitere Entwicklung der Mathematik,
wie auf die mathematische Behandlung der Naturwissenschaften
war auch die Fortbildung der algebraischen Zeichensprache
und des wichtigsten Gebietes der Algebra, der Lehre von
den Gleichungen.

Wir haben in früheren Abschnitten erfahren, daß in der
ältesten Periode die Mathematik der Zeichen entbehrte und alle
Rechnungen und Beziehungen in Worten zum Ausdruck brachte.
Bald traten jedoch Fachausdrücke und Abkürzungen und endlich
besondere Zeichen auf. So stellten sich gegen den Ausgang des
15. Jahrhunderts, als man in Italien noch für Plus und Minus die
Abkürzungen p und m brauchte, die Zeichen + und - ein268.

Das Zeichen = für die Gleichsetzung ist noch jüngeren Datums.
Es begegnet uns ein halbes Jahrhundert später und wird
von dem Erfinder269 damit begründet, daß nichts gleicher sei als ein
Paar paralleler Strichelchen. Klammern, Wurzel- und Unendlichkeitszeichen
sind noch später entstanden.

Der bedeutendste Fortschritt in der Ausbildung der Algebra
zu einer auf internationaler Kurzschrift beruhenden Sprache geschah
durch den Franzosen Vieta mit seiner Einführung allgemeiner
Buchstabengrößen270. Bei ihm begegnen uns auch die ersten
Anfänge einer Verknüpfung der Algebra mit der Geometrie, indem
er die Wurzeln gegebener Gleichungen geometrisch darstellen
lehrte. Auch das Verfahren, die Zahl π durch eine unendliche
Reihe zu ermitteln, rührt von Vieta her. Er hat auf diesem
Wege π bis auf 10 Dezimalen berechnet.

Franziskus Vieta wurde 1540 im Poitou geboren und starb
1603 in Paris. Er wirkte unter Heinrich IV. als Parlamentsrat
und später als Mitglied des Königlichen Geheimen Rates. Vieta
gilt als der hervorragendste französische Mathematiker des 16. Jahrhunderts.

Mit allgemeinen Sätzen war man in der Arithmetik schon
lange vor Vieta bekannt geworden. Wollte man aber eine für
das ganze Bereich der konkreten Zahlen gültige Regel ausdrücken,
so mußte dies in Worten geschehen. Ein Beispiel diene zur
Erläuterung. Ausdrücke von der Form 3 (4 + 2) = 3 · 6 =
3 · 4 + 3 · 2 = 12 + 6 = 18 lassen sich für beliebig viele konkrete
Fälle bilden. Man hatte auch daraus den allgemeinen Satz
entnommen, daß eine Summe mit einer Zahl multipliziert wird,
indem man entweder zuerst summiert und die erhaltene Zahl mit
der gegebenen Zahl multipliziert, oder auch, indem man die
Summanden einzeln mit der gegebenen Zahl multipliziert und die
erhaltenen Produkte dann addiert. Diese umständliche Regel ließ
sich in der mit Buchstabengrößen arbeitenden Algebra, zumal bald
nach Vieta der Gebrauch von Klammern aufkam, auf folgenden,
ohne weiteres verständlichen, sämtliche möglichen konkreten Fälle
umfassenden Ausdruck bringen:

a (b + c) = a · b + a · c.

Vieta unternahm es auch, die Trigonometrie mit der Algebra
zu verknüpfen, indem er lehrte, wie sich nach algebraischem
Verfahren die trigonometrischen Funktionen umformen und in
mannigfache Beziehungen bringen lassen. Auf diese Weise entstand
durch ihn derjenige Teil der Trigonometrie, den man auch
wohl als Goniometrie bezeichnet. So leitete er die Formeln für
sin n α und cos n α ab und zeigte z. B., daß sin 3 α = sin α · cos 2 α
+ cos α · sin 2 α ist271.

Die Lehre von den Gleichungen.

Der zweite große Fortschritt auf dem Gebiete der Algebra
betraf die Lehre von den Gleichungen. Vieta war noch der
Meinung, daß nur die positiven Wurzelwerte einer Gleichung
eine Lösung darstellen. Daß auch die negativen Wurzeln reell
sind und überhaupt jede Gleichung so viel Wurzeln hat, als
ihr Grad anzeigt, erkannten erst die Mathematiker des 17. Jahrhunderts.

Daß jede Gleichung n. Grades n Wurzeln besitzt, folgerte der
Niederländer Girard 1629 in seinem Werke »Neue Entdeckungen
auf dem Gebiete der Algebra« aus dem von ihm erkannten Zusammenhange
zwischen den Wurzeln einer Gleichung mit ihren
Koeffizienten272. Dieser Zusammenhang ergab sich daraus, daß die
Entstehung einer Gleichung n. Grades durch die Multiplikation von
n Faktoren ersten Grades nachgewiesen wurde, eine Erkenntnis,
deren mathematischer Ausdruck Xn = (x - α1)(x - α2)(x - α3) ...
(x - αn) lautet, wenn wir mit Xn das Polynom der Gleichung und
mit α1, α2, α3, αn die Wurzeln bezeichnen.

Nachdem Girard das Bildungsgesetz der Gleichungen erkannt
hatte, erhielten auch die imaginären Wurzeln, mit denen man
früher nichts anzufangen wußte, gleichsam ihre Daseinsberechtigung.
Wenn Girard z. B. findet, daß eine bestimmte Gleichung
vierten Grades neben zwei reellen noch zwei imaginäre Wurzeln
liefert, so läßt er sich durch das Auftreten der letzteren nicht
beirren, sondern erläutert es dahin, daß diese Wurzeln es eben
sind, welche dem Bildungsgesetz Genüge leisten.

In der ersten Hälfte des 17. Jahrhunderts begann man mit
den negativen Zahlen und mit der Null zu rechnen. Auch hierin
hat Girard neben dem gleich zu nennenden Descartes Bahnbrechendes
geleistet. Girard bemerkt, die negative Lösung werde
geometrisch durch Rückwärtsschreiten dargestellt273. Dieser Gedanke
findet sich bei Descartes für eine Reihe von Aufgaben
verwertet. Er sowie Girard erklären die negativen Wurzeln geometrisch
als Strecken, deren Richtung derjenigen entgegengesetzt
ist, welche die den positiven Wurzeln entsprechenden Strecken
angeben274.

Auf Gleichungen dritten Grades kamen schon die Alten durch
das Problem der Würfelverdopplung (Bd. I. S. 85). Auch Archimedes
wurde auf eine kubische Aufgabe geführt, als er eine Kugel
durch eine Ebene so zu zerlegen suchte, daß die beiden Teile der
Kugel in einem bestimmten Verhältnis stehen. Die Folge war, daß
sich auch die Araber mit Gleichungen dritten Grades beschäftigten,
ohne indessen andere als geometrische Lösungen zu finden. Die
algebraische Auflösung dieser Gleichungen war daher eins der
wichtigsten Probleme der neueren Mathematik. Seine Bewältigung
gelang zu Beginn des 16. Jahrhunderts275, indem man eine Regel
fand, um die Gleichung x3 + ax = b zu lösen. Bekannt gegeben
wurde diese Lösung durch Cardano (Cardanische Formel). Er
hatte sie indes nicht selbst gefunden, sondern verdankte sie Tartaglia.
Es ergibt sich, daß eine Gleichung dritten Grades drei
Wurzeln hat und daß die Summe dieser Wurzeln gleich dem
Koeffizienten von x2 ist. Bei diesen Untersuchungen war man
gezwungen, auch Wurzeln aus negativen Zahlen zu berücksichtigen
und mit solchen »imaginären« Werten wie mit algebraischen
Zahlen zu rechnen.

Mit einer Gleichung vierten Grades haben sich zuerst arabische
Mathematiker beschäftigt. Die Lösung gelang durch Konstruktion276.
Die algebraische Lösung dagegen blieb einem Schüler
Cardanos277 vorbehalten. Er führte die biquadratische Gleichung
auf eine kubische zurück.

Diese Erfolge des 16. Jahrhunderts bewirkten, daß man im
17. und 18. sich eifrig um die Lösung von Gleichungen fünften
und höheren Grades mühte. Alle Anstrengungen waren jedoch
vergeblich. Sie führten schließlich zu dem negativen Ergebnis,
daß es unmöglich sei, solche Gleichungen algebraisch aufzulösen278.

Die Begründung der analytischen Geometrie.

Eine ganz ungeahnte Wichtigkeit erhielt die Lehre von den
Gleichungen, als Descartes diesen Teil der Algebra mit der Geometrie
in die engste Beziehung setzte und dadurch die Grundlagen
der analytischen Geometrie der Ebene schuf. Descartes zeigte,
daß jede gesetzmäßig entstandene Kurve auf eine Gleichung
zurückgeführt werden kann, aus der sämtliche Eigenschaften der
Kurve sich durch Rechnung ableiten lassen. Gesetzmäßig entsteht
eine Kurve, wenn sie als der geometrische Ort aller Punkte zu
betrachten ist, die einer bestimmten Bedingung genügen. Jene
Bedingung drückt Descartes durch eine unbestimmte Gleichung
zwischen zwei voneinander abhängigen Größen x und y aus, die
er durch Linien darstellt. Den Grundgedanken des auf diesen
Voraussetzungen beruhenden Verfahrens279 spricht er in folgenden
Worten aus: »Indem man der Linie y der Reihe nach unendlich
viele verschiedene Größen beilegt, erhält man auch unendlich viele
Werte für die Linie x.« Auf diese Weise sind aber, wie Descartes
hinzufügt, unendlich viele Punkte bestimmt, welche der
gegebenen Gleichung genügen. Verbindet man diese Punkte, so
erhält man eine Kurve als das geometrische Bild jener Gleichung.

Die Möglichkeit einer analytischen Geometrie des Raumes
wurde von Descartes nur angedeutet. Er bemerkt nämlich, eine
dreidimensionale Kurve sei völlig bestimmt, wenn man von jedem
ihrer Punkte zwei Lote auf zwei zueinander senkrechte Ebenen
fälle. Auf diesen entständen dadurch ebene Kurven, die uns einen
vollkommenen Begriff von dem Verlauf der Raumkurve gäben.

Descartes knüpfte zwar unmittelbar an Vieta an, den wir
als den Schöpfer der algebraischen Geometrie kennen gelernt
haben. Auf den Grundgedanken seines Verfahrens wurde er aber
durch das Studium der Alten geführt. In der Einleitung zu seiner
»Geometrie« erzählt Descartes, er habe sich mit einer Aufgabe
des Pappus beschäftigt, deren vollständige Lösung den Alten
nicht gelungen sei. Den Grund dafür habe er darin gefunden,
daß die Aufgabe eine unbestimmte, d. h. die Zahl der Gleichungen
kleiner als die der Unbekannten war. Eine Lösung ließ sich, wie
Descartes erkannte, nur dadurch ermöglichen, daß man für die
überzählige Unbekannte oder die überzähligen Unbekannten bestimmte
Werte annahm, wodurch dann jedesmal auch die andere
oder die anderen Unbekannten bestimmt waren. Allerdings ergaben
sich dann soviel Lösungen, so oft man diese Operation vornahm,
und statt eines bestimmten Punktes erhielt man eine Reihe
von Punkten oder eine Linie, deren Punkte der gestellten Aufgabe
genügten. Der große Fortschritt der Descartes'schen Methode
bestand darin, daß fortan geometrische Gebilde der Rechnung
unterworfen und alle geometrischen Aufgaben allgemein
gelöst werden konnten, während das Altertum nur geometrische
Einzelfälle betrachtete.

Auch neue, für die Weiterentwicklung der Mathematik in
ihrer Anwendung auf die Naturwissenschaften höchst wichtige
Probleme wurden durch das analytische Verfahren zugänglich.
Eins der ersten, mit dem sich schon Descartes befaßte und an
dem sich vorzugsweise die Infinitesimalrechnung entwickelt hat,
war die Tangentenaufgabe. Descartes stellte sie zunächst in der
Fassung, daß er für einen gegebenen Punkt einer Kurve die zur
Tangente senkrechte Linie, die Normale, suchte. Ein Jahr nach
dem Erscheinen seiner »Geometrie« sehen wir ihn jedoch schon
mit der Konstruktion der Tangente an die Zykloide beschäftigt,
jener Kurve, auf die zuerst Galilei aufmerksam geworden war280.
Descartes' Verfahren, unbestimmte Gleichungen geometrisch zu
deuten, lehrte alsbald eine Fülle neuer Kurven kennen. Erwähnt
seien nur die von ihm entdeckte logarithmische Spirale und das
gleichfalls von ihm gefundene und nach ihm benannte Cartesische
Blatt, dessen Gleichung x3 + y3 = a · x · y lautet.

Die Geometrie der Ebene wurde insbesondere durch Fermat,
diejenige des Raumes erst ein Jahrhundert später durch Clairaut
(1713–1765) weiter ausgebaut.

Fermats Verdienste um die Fortbildung der Mathematik zur
wichtigsten Hilfsdisziplin der Naturwissenschaften sind so hervorragend,
daß wir bei diesem Manne und seinen Leistungen etwas
verweilen müssen.

Pierre Fermat wurde 1601 in der Nähe von Toulouse geboren.
Er starb dort im Jahre 1665. Wir wollen versuchen Fermat,
dem man den Ruhm zuerkannt hat, der bedeutendste französische
Mathematiker281 zu sein, als Mitbegründer der analytischen
Geometrie zu würdigen, mit deren Problemen er sich bereits
10 Jahre vor dem Erscheinen des Descartes'schen Werkes beschäftigte.
Auch Fermat knüpfte wie Descartes an die alte
Mathematik an. Fermat bemühte sich nämlich, eine verloren
gegangene und nur in Bruchstücken durch Pappus bekannt gewordene
Schrift des Euklid, die sogenannten Porismen282, wieder
herzustellen.

Fermats für die analytische Geometrie grundlegende Arbeit
zeichnet sich der »Geometrie« des Descartes gegenüber durch
größere Klarheit und erschöpfende Behandlung aus. Nirgends
findet sich bei Descartes eine solch klare Darstellung des Grundgedankens,
wie Fermat sie gleich zu Beginn seiner Arbeit gibt.
Die Gleichungen, sagt er, können in bequemer Weise dargestellt
werden, wenn wir zwei Strecken unter einem gegebenen Winkel, als
den man am passendsten den rechten nimmt, aneinandersetzen und
einen Anfangspunkt wählen. Diesen Nullpunkt bezeichnet Fermat
mit N. Die Strecke, die er von dort abträgt, wird mit A (unser x),
die dazu senkrechte mit E (unser y) bezeichnet. Die konstanten
Werte (a, b, c usw.) werden bei ihm durch B, D, G ausgedrückt.
Die Gleichung einer Geraden, welche durch den Nullpunkt geht,
begegnet uns bei Fermat zum ersten Male. Sie lautet D · A = B · E.
(unser ax = by). Die Parabelgleichung schreibt er A2 = D · E
(unser x2 = ay), die Kreisgleichung B2 - A2 = E2 (heute r2 - x2
= y2) usw.283.

Maxima- und Minimaaufgaben.

Fermat war einer der ersten, der eine allgemeine Methode
fand, die Maxima- und Minimaaufgaben zu lösen. Zum ersten
Male begegnet uns ein hierher gehöriges Problem, und zwar in
geometrischer Fassung, bei Euklid284. Es läuft, modern ausgedrückt,
darauf hinaus, für x · (a - x) den größten Wert zu finden.
Die Lösung ergibt, daß dies Produkt ein Maximum ist, wenn
x = a/2 gesetzt wird. Daß der Kreis bei gegebenem Umfang unter
allen ebenen Figuren die größte Fläche, und die Kugel bei gegebener
Oberfläche unter allen Körpern den größten Rauminhalt
besitzt, war den Alten gleichfalls bekannt.

Unter den neueren Mathematikern haben sich, von vereinzelten
Fällen abgesehen285, zuerst Kepler, Cavalieri und Fermat mit
den in ihrer Anwendung auf das physikalische Gebiet so außerordentlich
wichtigen Maxima- und Minimabestimmungen beschäftigt.
Mit Keplers und mit Cavalieris Verdienst um die Begründung
der neueren Mathematik werden wir uns später
befassen.

Fermats Methode ist diejenige, die auch heute wohl noch
für eine elementare Behandlung von Maxima- und Minimaaufgaben
Anwendung findet286. Er setzt nämlich an Stelle einer Unbekannten
x einen neuen Wert x - Δ, in welchem Δ (Fermat
braucht dafür die Bezeichnung E) als eine von Null nur wenig
abweichende Größe betrachtet wird.

Nachdem er den Ausdruck umgeformt, wird der Übergang
von Δ zur Null vollzogen und der für x gesuchte Wert ermittelt.

Ein Beispiel Fermats, bei dem wir jedoch von seiner Ausdrucksweise
absehen, möge sein Verfahren erläutern. Für x2 (a - x)
wird nach dem Wert von x gefragt, für den dieses Produkt den
größten Wert annimmt. Für x wird x + Δ gesetzt und wir erhalten:


x2 (a - x) = (x + Δ)2 (a - x - Δ).


Die Ausrechnung und Umformung ergibt:


2ax - 3x2 + Δ (a - 3x - Δ) = 0.


Wird darin Δ = 0 gesetzt, so erhalten wir:


2ax - 3x2 = 0


und daraus:


x = 2/3 a.


Der von Fermat gelehrten Methode fehlte noch ein bestimmtes
Kennzeichen dafür, ob der erhaltene Wert ein Maximum
oder ein Minimum ist. Dies allgemein zu entscheiden, vermochte
man erst mit Hilfe des von Leibniz herrührenden Verfahrens der
Differentialrechnung.

In dem Bestreben, die von ihm gefundene Methode auf die
Naturlehre anzuwenden, wurde Fermat zu seinem Prinzip von
der geringsten Wirkung287 geführt. Fermats Satz läuft darauf
hinaus, daß die Natur, »die große Arbeiterin, die unserer Instrumente
und Maschinen nicht bedarf«, alle Geschehnisse mit einem
Minimum von Aufwand ablaufen lasse. Dieser Gedanke war auch
den Alten nicht fremd. So erklärten sie die Form der Bienenzellen
aus dem Streben der Natur, möglichst an Material zu sparen288.
Der alexandrinische Physiker Heron äußerte einen ähnlichen
Gedanken in bezug auf
das Reflexionsgesetz.
Er wies nämlich darauf
hin, daß die Reflexion
des Lichtes von A
nach B auf dem kürzesten
Wege erfolgt,
wenn der Reflexionspunkt
C die Lage hat,
daß der Einfallswinkel
ACD gleich dem Austrittswinkel
BCD ist,
da jede andere Verbindung
der Punkte A und B mit der spiegelnden Fläche, z. B. die
Verbindung AC1B (Abb. 51), länger ist.


[image: Abb. 51]
Abb. 51. Das Reflexionsgesetz, erklärt aus dem
Prinzip der kleinsten Wirkung, d. i. in diesem
Falle des kürzesten Lichtweges.



Diese Betrachtungsweise übertrug Fermat zunächst auf das
damals im Mittelpunkte der Erörterung stehende Brechungsgesetz.
Fermats Gedankengang war etwa folgender: Daß der Lichtstrahl
beim Übergang von dem dünneren zum dichteren Medium gebrochen
wird, rührt daher, daß das Licht in letzterem einen
größeren Widerstand findet und sich infolgedessen langsamer bewegt.
Je größer nämlich der Widerstand ist, um so länger wird
die für seine Überwindung beanspruchte Zeit sein. Die im Sinne
des Prinzips der kleinsten Aktion gestellte Frage lautete also:
Welchen Weg muß der Lichtstrahl nehmen, um mit dem geringsten
Gesamtwiderstande, der sich aus den Widerständen in den beiden
Medien summiert, oder was auf dasselbe hinausläuft, da ja dem
kleineren Widerstande eine kürzere Zeit entspricht, um innerhalb
der kürzesten Zeit von A nach B zu gelangen (Abb. 52)? Fermat
findet mit Hilfe seines Verfahrens, daß dieses Minimum stattfindet,
wenn sich der Sinus des Einfallswinkels zum Sinus des
Brechungswinkels wie die Geschwindigkeiten in den zugehörigen
Medien verhalten (sin α : sin β = v1 : v2 = n).

Fermat schloß auch umgekehrt
aus dem Gesetz als
einer feststehenden Tatsache
auf die Zulässigkeit seines,
immerhin einen gewissen metaphysischen
Zug aufweisenden
Prinzips. Denn metaphysisch
war das Prinzip, so
lange es darauf hinauslief, an
die Stelle des ursächlichen
Wirkens der Natur gewissermaßen
ein überlegtes, aus Vernunftgründen
entspringendes
Handeln zu setzen.


[image: Abb. 52]
Abb. 52. Fermat erklärt das Brechungsgesetz
aus dem Prinzip der kleinsten
Wirkung.



Das Prinzip der kleinsten
Wirkung ist für die weitere
Folge von nicht geringem
Einfluß gewesen, obgleich es
das »unbestimmteste von allen
Prinzipien«289 ist, aus dem man das Wirken der Natur zu erklären
sucht. Auch Huygens benutzte den Fermatschen Satz.
Bei der nahen Beziehung, in der Huygens zu Leibniz stand,
hat man wohl vermutet, daß der letztere seine Lehre von der
prästabilierten Harmonie in Anlehnung an die Gedanken Fermats
geschaffen hat. Die Mathematiker und die Physikotheologen des
18. Jahrhunderts hielten gleichfalls an diesem Prinzip fest und
suchten seine Allgemeingültigkeit dadurch nachzuweisen, daß sie
zahlreiche Einzelfälle daraus ableiteten. Auf solche Weise äußerte
das Prinzip eine sehr anregende und fruchtbare Wirkung. Viele
Untersuchungen über größte und kleinste Werte, die man im
18. Jahrhundert unternahm, waren von dem Bestreben geleitet,
die Naturvorgänge aus dem Prinzip der kleinsten Wirkung zu erklären.
Hand in Hand damit erwuchs in der Variationsrechnung
ein besonderer Zweig der Mathematik, der sich mit Maxima- und
Minima-Aufgaben befaßte und allgemeingültige Regeln für ihre
Lösung erkennen ließ. Einen vorläufigen Abschluß fanden diese
Untersuchungen, an denen sich auch Johann und Jacob Bernoulli
beteiligten, in Eulers Schrift vom Jahre 1744290. Welchen
Standpunkt Euler dem Fermatschen Prinzip gegenüber einnahm,
ersehen wir aus folgenden, jenem Hauptwerk entnommenen Worten:
»Da die Einrichtung der Welt die vorzüglichste ist, wird nichts
in ihr angetroffen, woraus nicht irgend eine Maximum- oder Minimumeigenschaft
hervorleuchtet. Deshalb kann kein Zweifel bestehen,
daß alle Wirkungen in der Welt durch die Methode der
Maxima und Minima aus den Zwecken wie aus den wirkenden
Ursachen selbst abgeleitet werden können«.

Inzwischen mehrten sich die Beobachtungen, daß auch für die
organische Welt Fermats Satz als Stütze dienen könne. Der
Bau der Knochen, der Federn und der Halme: alles schien darauf
hinzudeuten, daß die Natur von ihren Mitteln den zweckmäßigsten
und sparsamsten Gebrauch macht und insbesondere bei dem Aufbau
der organischen Körper gewissermaßen nach einem Sparsamkeitsgesetz
verfährt, das sich als ein besonderer Fall des in der
Optik und in der Mechanik beobachteten Prinzips der kleinsten
Wirkung darstellt. Letzteres wurde dann auch um die Mitte des
18. Jahrhunderts von Maupertuis zur Grundlage der gesamten
Naturlehre gemacht und in folgende Worte gekleidet: »Wenn in
der Natur eine Veränderung vor sich geht, so ist der für diese
Veränderung erforderliche Aufwand der möglichst kleinste«291.

Wie wir später sehen werden, wurde diese, in ihren Anfängen
bis ins Altertum zurückreichende Vorstellung, die Fermat klarer
formulierte und das 18. Jahrhundert weiter entwickelte, erst durch
schärfere mechanische Prinzipien verdrängt, als Lagrange die
Neubegründung der Mechanik unternahm.

Wir kehren noch einmal zu Fermat zurück, um seine Verdienste
um die Begründung der Zahlentheorie, der Kombinationslehre
und der Wahrscheinlichkeitsrechnung wenigstens kurz zu erwähnen.
Schienen auch diese Gebiete zuerst rein mathematisch
zu sein, so sind sie im Laufe ihrer Entwicklung doch in den
Dienst der Naturwissenschaften getreten. Ganz besonders gilt
dies von der Wahrscheinlichkeitsrechnung. Ihre ersten Anfänge
begegnen uns im 15. und 16. Jahrhundert. Sie knüpfen an die
Glücksspiele an.

Die Begründer der Wahrscheinlichkeitsrechnung als einer
mathematischen Disziplin sind Fermat und sein Zeitgenosse
Pascal (1623–1662). Pascal wurde die Frage vorgelegt, bei
wieviel Würfen man Aussicht habe, mit zwei Würfeln den Sechserpasch
zu werfen. Als das wichtigste Mittel zur Bewältigung der
Probleme der Wahrscheinlichkeitsrechnung schufen Pascal und
Fermat die Kombinatorik, deren Anfänge uns schon bei den
Indern begegnen.

Was Fermats Verdienst um die Theorie der Zahlen anbelangt,
so sei daran erinnert, daß auch auf diesem Gebiete ein
Satz, und zwar ein fundamentaler, seinen Namen führt.

Um die Fortentwicklung der Kombinationslehre haben sich
im 18. Jahrhundert Jacob Bernoulli und im 19. Laplace und
Gauß die hervorragendsten Verdienste erworben.

Zur selben Zeit, als Descartes neben die alte Euklidische
die analytische Geometrie setzte, begegnen uns die Anfänge
einer dritten geometrischen Betrachtungsweise, derjenigen der
Zentralprojektion. Aus ihr hat sich im 19. Jahrhundert auf
Grund der Untersuchungen Poncelets und Steiners die projektivische
Geometrie entwickelt292, deren Sätze sich durch einen
hohen Grad von Allgemeingültigkeit vor denjenigen der Euklidischen
und der analytischen Geometrie auszeichnen.

Die Anfänge der Infinitesimalrechnung.

In den Anfang des 17. Jahrhunderts fallen auch die ersten
Schritte zur Begründung einer mathematischen Methode, deren
Ausgestaltung zu einem der mächtigsten Hilfsmittel der Naturforschung
Newton und Leibniz vorbehalten blieb. Dies ist die
Infinitesimalrechnung. Unter den Männern, die hier als Vorläufer
zu nennen sind, nimmt Kepler neben dem Italiener Cavalieri,
einem Schüler Galileis, die erste Stelle ein. Schon die Alten,
insbesondere Archimedes, hatten bemerkt, daß manche geometrische
Aufgaben mit Hilfe der Elementarmathematik nicht gelöst
werden können. Dies hatte auf die Anwendung eines unter dem
Namen der Exhaustionsmethode bekannten Verfahrens geführt,
vermittelst dessen z. B. Archimedes293 die Quadratur der Parabel
gelang. Auch die von Archimedes und früheren angestellte
Berechnung des Kreisumfanges mit Hilfe der ein- und umgeschriebenen
Vielecke zeigt uns, wie man schon im Altertum, wenn
auch in umständlicher Weise, die Rektifikation einer Kurve vorzunehmen
wußte294. Nach neueren Entdeckungen (s. Bd. I S. 164)
besaß Archimedes sogar schon ein Verfahren, das der Integration,
wie man sie heute ausübt, in seinem Wesen schon entsprach.

Der Fortschritt der Astronomie und der Physik war an die
Entwicklung eines Verfahrens geknüpft, das eine allgemein gültige
Lösung für die Ausmessung von Kurven, der von Kurven eingeschlossenen
Flächen, sowie der durch Bewegung solcher Flächen
entstandenen Körper ermöglichte. Wie wichtig mußte es z. B.
für Kepler sein, den Umfang der Ellipse aus der großen (a) und
der kleinen (b) Achse berechnen zu können295. Er hat sich auch
hieran versucht und gibt den Wert für diesen Umfang als nahezu
gleich π (a + b) an. Daß es sich hier um eine Annäherung handelt,
hebt Kepler ausdrücklich hervor. Auch wird ihm zweifelsohne
bekannt gewesen sein, daß der Ausdruck nur gebraucht
werden darf, wenn a und b wenig voneinander verschieden sind296.

Mit der Bestimmung des Rauminhaltes von Rotationskörpern
befaßt sich Kepler in seiner Doliometrie297 oder Faßberechnung.
Lagrange hat später von diesem Buche gerühmt, daß es ähnlich
wie die Sandesrechnung des Archimedes an einem gewöhnlichen
Gegenstande die erhabensten Gedanken entwickele. Ein besonderer
Umstand veranlaßte Kepler, seine Betrachtungen gerade
an die Raumbestimmung von Fässern anzuknüpfen. Er hatte
nämlich beim Einkauf von Wein beobachtet, daß die Händler den
Inhalt der Fässer bestimmten, indem sie einen Meßstab durch
den Spund bis zu den gegenüber befindlichen Dauben führten,
ohne auf die Krümmung der letzteren Rücksicht zu nehmen. Ein
dem Fasse an Inhalt gleicher Körper entsteht, wenn der Längsschnitt
um die Achse rotiert. Keplers Grundgedanke bestand
nun darin, derartige Rotationskörper in eine unendliche Zahl von
Elementarteilen zu zerlegen und diese zu summieren, eine Untersuchung,
die er in der »Doliometrie« auf etwa 90 Fälle ausdehnte.

Bei der Quadratur von Flächen hatten sich Archimedes
und Euklid der »Exhaustionsmethode« bedient, deren Wesen
wir an früherer Stelle kennen lernten. Kepler dagegen bediente
sich bei seinen Quadraturen und Kubaturen unendlich kleiner
Größen und ging dabei von Vorstellungen aus, welche die alten
Mathematiker im allgemeinen vermieden hatten. So gelten für
ihn unendlich kleine Bogen als gerade Linien, unendlich schmale
Ebenen als Linien und unendlich dünne Ebenen als Körper, eine
Vorstellung, die später auch Cavalieri seinen Integrationen zugrunde
legte.

Als Beispiel diene die Quadratur des Kreises, an der wir bei
Archimedes das Exhaustionsverfahren kennen gelernt haben.
Der Kreisumfang, sagt Kepler, hat unendlich viele Teile. Jedes
dieser Teilchen ist als Basis eines gleichschenkligen Dreiecks anzusehen.
Wir erhalten so unendlich viele Dreiecke, die sämtlich
mit ihren Spitzen im Mittelpunkte des Kreises liegen. Werden
nun die sämtlichen Grundlinien, deren Summe gleich der Peripherie
ist, auf einer Geraden aneinander gefügt und mit dem Mittelpunkte
des Kreises verbunden, so erhalten wir ein aus unendlich
vielen Dreieckchen bestehendes größeres Dreieck, dessen Inhalt
gleich dem des Kreises ist.

Auf die gleiche Weise wird der Inhalt der Kugel berechnet.
»Sie enthält«, sagt Kepler, »der Möglichkeit nach gleichsam unendlich
viele Kegel, deren Grundflächen sozusagen Punkte sind,
während die Spitzen im Mittelpunkte der Kugel zusammenstoßen.«

Eins der lehrreichsten Beispiele für Keplers Verfahren ist
seine Kubatur des Ringes (s. Abb. 53). Dieser wird zunächst
durch Ebenen, welche durch die Achse A gehen, in unendlich
viele Scheibchen zerlegt. Diese Scheibchen sind aber nicht überall
gleich dick, sondern sie sind, von ihrer eigenen Mitte aus gerechnet,
nach der Achse A zu dünner und nach der entgegengesetzten
Richtung dicker. Diese Unterschiede gleichen sich aber aus, und
infolgedessen ist der Rauminhalt des
Ringes gleich dem Inhalt eines Zylinders,
dessen Grundfläche mit einer
Schnittfläche des Ringes zusammenfällt,
während seine Höhe gleich
dem Kreise ist, den der Mittelpunkt
F dieser Schnittfläche bei
ihrer Rotation um die Achse A
beschreibt.


[image: Abb. 53]
Abb. 53.
Keplers Kubatur des Ringes298.



Zu den wenigen, von den Alten betrachteten Rotationskörpern
fügte Kepler eine Fülle von neuen, so daß die Gesamtzahl der
von ihm betrachteten Körper sich auf 92 beläuft. Diese Mannigfaltigkeit
ergab sich, indem er geradlinige Figuren und die vier
Kegelschnitte um Durchmesser, Sehnen, Tangenten oder außerhalb
dieser Kurven gelegene Achsen rotieren ließ (s. Abb. 54). Die
entstandenen Körper benannte
Kepler oft nach Früchten. So
entstand sein »Apfel«, wenn ein
Kreisabschnitt, der größer als der
Halbkreis ist, um seine Sehne
rotiert299. War der rotierende
Kreisabschnitt dagegen kleiner
als der Halbkreis, so nannte er den
entstandenen Körper »Zitrone«.

Die mathematische Strenge
eines Euklid und Archimedes
vermochte Kepler bei seinen
Ableitungen nicht zu erreichen.
Dazu bedurfte es der weiteren Entwicklung der Infinitesimalmethode,
die er erst begründete. In manchen Fällen mußte er
sich mit Wahrscheinlichkeitsschlüssen begnügen, oder er verfehlte
gar die richtige Lösung des vorliegenden Einzelfalles.


[image: Abb. 54]
Abb. 54. Keplers Rotationskörper,
den er »Apfel« nannte.



Kepler hatte sich in seiner »Doliometrie« nicht nur die Aufgabe
gestellt, den Inhalt von Fässern und anderen Rotationskörpern
zu berechnen, sondern er wollte zugleich untersuchen, welche Form
des Fasses die zweckmäßigste sei, d. h. beim geringsten Verbrauch
an Material möglichst viel fassen könne. Ein Problem von der
Art des zuletzt erwähnten hat man als ein isoperimetrisches bezeichnet,
und wir werden erfahren, daß auch in späteren Perioden
derartige Probleme für die Entwicklung der höheren Analysis von
der allergrößten Wichtigkeit gewesen sind. Als Beispiel unter
Keplers hierher gehörigen Betrachtungen sei der Satz erwähnt,
daß der Würfel das größte Parallelepipedon ist, das in eine Kugel
einbeschrieben werden kann300.

Kepler bemerkte auch schon, daß die Maximalwerte dadurch
gekennzeichnet sind, daß in ihrer Nähe die Veränderungen einer
Funktion gleich Null werden. Ist z. B. MP (Abb. 55) die größte
Ordinate der Kurve AMB, so
ist die Zu- und Abnahme von
MP bei unendlich kleiner paralleler
Verschiebung gleich Null.
Kepler zeigte durch diesen
für die Theorie der Maxima
und Minima grundlegenden
Satz, wenn er ihn auch noch
nicht zu beweisen vermochte,
wie tief er auch nach dieser
Seite in die Infinitesimalbetrachtungen
eingedrungen war.
In Keplers Worten lautet der Satz: »An solchen Stellen, wo
der Übergang von einem kleineren zum größten und wieder zum
kleineren stattfindet, ist der Unterschied immer bis zu einem gewissen
Grade unmerklich.«


[image: Abb. 55]
Abb. 55. Keplers Untersuchung der
größten und kleinsten Werte.



Wenig später als Kepler nahm der Italiener Cavalieri301
das Problem der Quadratur und Kubatur gleichfalls nach einer
von der Mathematik der Alten abweichenden Methode in Angriff.
Dies geschah 1635 in seiner »Geometrie der Indivisibilien«302.
Eine klare Definition des Wortes »Indivisibilien«, d. h. die »Unteilbaren«,
hat Cavalieri nicht gegeben. Sein Verfahren, die
Flächen auf Linien und die Körper auf Flächen zurückzuführen,
hat auch wohl das Mißverständnis hervorgerufen, als ob Cavalieri
die Flächen als die Summen unendlich vieler Parallelen und die
Körper als die Summen von Flächen auffassen wollte, und infolgedessen
Widerspruch erregt. Cavalieri weiß aber sehr wohl, daß
die Summe aller parallelen Sehnen einer geschlossenen Fläche
unendlich und daß das Verhältnis zwischen zwei solchen Summen
unbestimmt ist. Besitzen dagegen die zahlreichen parallelen Sehnen,
welche durch zwei Flächen gelegt werden, die von zwei Parallelen
eingeschlossen sind, gleichen Abstand, so erhält das Verhältnis der
Sehnensummen einen Wert, der sich mit der Vermehrung der
Sehnen einer bestimmten Grenze nähert. Und zwar entspricht dies
Verhältnis dem der beiden Flächen, welche durch die Sehnen zerteilt
werden. Ein einfaches Beispiel möge das Gesagte erläutern.
Man errichte über der Grundlinie eines Dreiecks ein Rechteck
von gleicher Höhe und ziehe dann in beiden Figuren eine
Anzahl Linien parallel zur Grundlinie in gleichen Abständen.
Dann wird die Summe der Strecken im Dreieck halb so groß
sein wie die Summe der Strecken im Rechteck. Daraus schließt
Cavalieri, daß auch die Flächen im Verhältnis von 1 : 2
stehen.

Nach demselben Verfahren ergibt sich, daß eine Ellipse und
ein Kreis, dessen Durchmesser mit einer Achse der Ellipse zusammenfällt,
sich der Fläche nach verhalten wie die andere Achse
der Ellipse zum Kreisdurchmesser.

Wird Cavalieris Methode auf körperliche Gebilde übertragen,
so sind statt der Linien parallele Ebenen in gleichen Abständen
zu wählen. Schneiden diese Ebenen die Körper in Flächen,
die in einem gegebenen Verhältnis stehen, so gilt für die Volumina
der Körper das gleiche Verhältnis. Noch heute trägt dieser Satz
bekanntlich den Namen Cavalieris. Eingeschränkt auf inhaltsgleiche
Gebilde lautet er: Gebilde der Ebene sowie des Raumes
sind inhaltsgleich, wenn die in gleicher Höhe geführten Schnitte
gleiche Strecken bzw. Flächen ergeben.

Gegenüber der Methode Keplers, der sich bestimmte Aufgaben
stellte, besaß die Methode Cavalieris den Vorzug größerer
Allgemeingültigkeit und abstrakterer Behandlung. Trotz des Widerspruches,
den beide Männer fanden, war die von ihnen eingeführte
Infinitesimalbetrachtung die wertvollste Idee, die jemals die Mathematik
bereichert hat. Erweisen sollte sich ihre Fruchtbarkeit zwar
erst nach der Erfindung der analytischen Geometrie, aus deren
Verknüpfung mit der neuen Betrachtungsweise die Differential-
und Integralrechnung als das wichtigste mathematische Hilfsmittel
der neueren Naturforschung hervorging.



Unter den wissenschaftlichen Gegnern Keplers und Cavalieris
ist besonders Guldin zu nennen. Er befaßte sich in einem umfangreichen
Werke mit der Bestimmung der Schwerpunkte von
Kurven, Flächen und Körpern und zwar eingehender, als es bisher
geschehen war303. Fußend auf einem Satz, der sich bei Pappus
findet, ging Guldin gleichfalls zu Inhaltsbestimmungen über. Der
Pappus-Guldinsche Satz, der heute noch als die Guldinsche
Regel bezeichnet wird, besagt, daß der Rauminhalt eines Rotationskörpers
gleich dem Produkt aus der erzeugenden Fläche und dem
Wege ihres Schwerpunktes ist.

Einen einwandfreien Beweis dieses Satzes vermochte Guldin
nicht zu geben. Seine Richtigkeit folgerte er vielmehr aus dem
Umstande, daß man mit Hilfe dieser Regel zu den gleichen Ergebnissen
gelangt, die sich auch auf anderen Wegen finden lassen.
Seine Beispiele sind oft dieselben, die Kepler behandelt hat.
Während aber Keplers, von Guldin als unwissenschaftlich bekämpfte
Methode den Keim der höheren Mathematik enthielt, ist
Guldins Verfahren ohne Einfluß auf die Weiterentwicklung dieser
Wissenschaft geblieben, zumal die Quadratur der gegebenen Figur
und die Bestimmung ihres Schwerpunktes häufig weit schwieriger
sind, als die direkte Kubatur des betreffenden Rotationskörpers304.

Einen weiteren Schritt auf dem Gebiete der Infinitesimalbetrachtungen
bedeutet die »Arithmetik des Unendlichen« des
Engländers Wallis305 (1655). Wallis wurde durch die Untersuchungen
Cavalieris angeregt, sich mit Quadraturen und Kubaturen
zu beschäftigen. Sie bilden den wesentlichen Inhalt seiner
»Arithmetik des Unendlichen«. Aus dem Titel des Werkes ist
schon ersichtlich, daß Wallis im Gegensatz zu Cavalieri, der
seine Ableitungen geometrisch zu gestalten suchte, vorzugsweise
rechnerisch verfuhr. Dies gelang ihm, indem er die analytische
Methode des Descartes auf die infinitesimale Betrachtungsweise
Keplers und Cavalieris übertrug. Ob Wallis mit der Doliometrie
Keplers bekannt war, ist allerdings zweifelhaft306.



Wallis zerlegt z. B. eine Fläche, um deren Quadratur es sich
handelt, durch unendlich viele parallele Ordinaten in eine unendlich
große Zahl von unendlich schmalen Parallelogrammen und sucht
deren Summe zu ermitteln. Dabei bedient er sich der noch heute
üblichen Form des Grenzüberganges.

Die Erweiterung dieser von Kepler, Cavalieri und anderen
geschaffenen Grundlagen einer neuen, höheren Mathematik zu einem
allgemeinen, für die Fortentwicklung der Naturwissenschaft sowohl
wie der Technik unentbehrlichen Hilfsmittel ist insbesondere das
Werk von Newton und von Leibniz.

Durch seine Untersuchungen über unendliche Reihen war
Newton zu einer allgemeineren Lösung der Tangentenaufgabe
gelangt, mit der sich schon Fermat und Descartes beschäftigt
hatten. Newton veröffentlichte sein Verfahren zunächst nicht,
sondern setzte seit 1669 mehrere Personen, mit denen er in wissenschaftlichem
Verkehr stand, davon in Kenntnis. Durch einen Brief
des Sekretärs der Royal-Society307 erfuhr auch Leibniz davon.
Diesen Brief empfing Leibniz jedoch erst 1677. Er antwortete
noch in demselben Jahre unter Darlegung einer Methode, die zum
gleichen Ziele führe und machte sie im Jahre 1684 und 1686 bekannt.
In der Schrift vom Jahre 1684308 entwickelte er die Prinzipien
der Differentialrechnung. Er bezeichnete es als ihre Aufgabe,
den unendlich kleinen Zuwachs zu bestimmen, den eine
Funktion f(x) erfährt, wenn sich die Variable x unendlich wenig
ändert. Jenen unendlich kleinen Zuwachs nannte Leibniz das
Differential der Funktion. Er bezeichnete ihn mit d.

In der zweiten Schrift309 entwickelte Leibniz die Prinzipien
der Integralrechnung. Er stellte sich darin die Aufgabe, umgekehrt
aus dem unendlich kleinen Zuwachs die Funktion zu finden,
ein Verfahren, das man als Integration bezeichnet. Leibniz führte
für die gesuchte Funktion das Zeichen ∫ (Integral) ein. Auch erkannte
er schon den Zusammenhang, in dem das Integrationsverfahren
mit der Quadratur und mit der Kubatur steht.

Bald nach diesen Veröffentlichungen erschienen die »Prinzipien«
(1687), in denen Newton sich der geometrischen Einkleidung
seiner Beweise bediente. So kam es, daß sich die von
Leibniz erfundene Methode rasch ausbreitete, während diejenige
Newtons fast unbekannt blieb und vollständig erst nach seinem
Tode310 veröffentlicht wurde. Er nannte sie Methode der Fluxionen.
Die unendlich kleinen Größen, mit denen Leibniz operiert, ersetzt
Newton durch seine verschwindenden Größen. Das Neue ist bei
Newton vor allem der Begriff der Grenze. Er versteht darunter
den Wert, dem sich die gleichsam fließenden (daher der Ausdruck
Fluxionen) Größen immer mehr nähern.

Erwähnt sei noch, daß im Jahre 1699 ein heftiger Prioritätsstreit
entbrannte. Er wurde entfacht durch die Bemerkung eines
Mathematikers311, daß Leibniz sein Verfahren wahrscheinlich
Newton entlehnt habe. Leibniz war daraufhin so unvorsichtig,
in einer anonymen Schrift Newton des Plagiats zu beschuldigen.
Eine Aussöhnung fand nicht statt. Leibniz hat bis zu seinem
Tode (1716) sehr unter diesem Streit gelitten. Newton hat in
seinen »Prinzipien« anerkannt, daß Leibniz auf die gleiche
Methode wie er gekommen sei. Erst in der nach Newtons Tode
erschienenen Auflage ist die Bemerkung fortgelassen.

Daran, daß Newton die Priorität gebührt, ist nicht zu
zweifeln, wie auch Leibniz wohl die Anregung zu seiner Entdeckung
durch Newton empfangen hat. Vor allem hat Leibniz
das Verdienst, die neue Methode zuerst bekanntgegeben und
durch den von ihm geschaffenen Algorithmus ganz besonders zu
ihrer Ausbreitung beigetragen zu haben.

Die tiefere Begründung der Infinitesimalmethode erfolgte erst
durch Carnot312, den großen Carnot der französischen Revolution,
dessen Neffe grundlegende Untersuchungen auf dem Gebiete der
Wärmelehre anstellte (s. Bd. III ds. Werkes). Um die mathematische
Strenge des Verfahrens hat sich Cauchy das größte
Verdienst erworben. Er entschied sich für die von Newton begründete
Methode der Grenzwerte, die an Klarheit und Schärfe
von keiner anderen erreicht wird.




7. Die Beziehungen der Naturwissenschaft
zur neueren Philosophie.

Wie die Mathematik, so ist auch die Philosophie auf die Entwicklung
der Naturwissenschaften von großem Einfluß gewesen.
Alle drei entspringen ja der gleichen Quelle, nämlich dem uns
innewohnenden Triebe, uns gegen die geistige Umwelt einzustellen.
Bei der Philosophie erweitert sich dieser Trieb dahin, auch das
Verhältnis der Umwelt zum denkenden und forschenden Subjekt
zu ergründen. Wie sich die Mathematik, die Philosophie und die
Naturwissenschaften seit dem Altertum gegenseitig bedingt haben,
wurde in früheren Abschnitten gezeigt. Im Anfange war die Berührung
eine so innige, daß gewöhnlich ein und derselbe Mann
Philosoph, Mathematiker und Naturforscher war. Man braucht
nur an Thales, Platon und Aristoteles zu erinnern. Später
setzte die Spezialisierung ein. Männer wie Archimedes und
Heron haben sich schwerlich eingehender mit philosophischen
Fragen beschäftigt, wenigstens erkennen wir es nicht aus ihren
Werken. Auch die Mathematik wurde vielen ein Sondergebiet,
das sich von den übrigen loslöste und als reine Mathematik seine
eigenen Wege ging. Dagegen ist die Vereinigung des naturwissenschaftlichen
Forschens mit mathematischem Denken durch alle
Zeiten erhalten geblieben. Die Astronomie war seit den ersten
Anfängen angewandte Mathematik, die Physik war es, sobald sie
sich mechanischen Problemen zuwandte, und die übrigen Zweige
der Naturwissenschaft erhoben sich erst in dem Maße auf eine
Stufe, die als wissenschaftlich bezeichnet werden kann, in dem sie
der Mathematik und der auf ihr beruhenden Mechanik ihre Tore
öffneten.

Trotz der engen Beziehungen, die zwischen den Naturwissenschaften,
der Mathematik und der Philosophie herrschen und jederzeit
vorhanden waren, haben sich diese drei Wissenschaften keineswegs
stets gegenseitig gefördert. Selbst die Mathematik konnte
die Entwicklung der Naturwissenschaften hemmen, indem sie letztere
mit geometrischen und Zahlenspekulationen überwucherte, anstatt
ihnen lediglich bei der Ausbildung des messenden Verfahrens behilflich
zu sein. Geradezu unheilvoll ist mitunter der Einfluß der
Philosophie auf die Naturwissenschaft gewesen. Letztere hatte
am meisten, erstere am wenigsten festen Boden unter den Füßen.
Die Philosophie konnte daher besonders leicht auf Abwege geraten.
Das ist bis in die neueste Zeit geschehen, wie uns die Betrachtungen
über den Einfluß der während der ersten Hälfte des
19. Jahrhunderts herrschenden Naturphilosophie zeigen werden. In
Deutschland konnten die Naturwissenschaften damals erst wieder
aufblühen, nachdem sie sich von der zeitgenössischen Philosophie
losgelöst hatten. Eine ähnliche Befreiung aus den Fesseln der
Philosophie mußte auch dem Aufblühen der Naturwissenschaften
zu Beginn des 17. Jahrhunderts vorhergehen. Bis dahin reicht
für die Philosophie das Zeitalter der Scholastik. Sie erblickte
ihre Aufgabe in der Vermittlung zwischen Wissen und Glauben.
Anfangs galt ihr das Dogma als unerschütterliche Wahrheit und
Aristoteles als die Hauptquelle alles Wissens. Zwischen beiden
zu vermitteln, erforderte einen großen Aufwand an Spitzfindigkeit.
Eine solche war auch der Grundsatz, daß etwas vom Standpunkt
des Dogmas aus wahr, mit der Vernunft aber unvereinbar sein
könne. Dieser Grundsatz wurde von der Kirche sehr befehdet,
da er schon ein Streben der Philosophie bekundete, sich von den
Fesseln der Kirche zu befreien. Dieses Streben führte schließlich
dahin, daß die Philosophie selbständig wurde, und daß
der durch das scholastische Verfahren rege gewordene Geist
des Prüfens und des Zweifelns endlich mit allen Voraussetzungen
brach. Diese Erneuerung begegnet uns bei Bacon und bei
Descartes.

Von Bacon und seiner Stellung einerseits zur Scholastik,
andererseits zu der in seinem Zeitalter auch ohne sein Zutun
sich entwickelnden experimentellen Naturforschung war schon
die Rede. Wir wenden uns jetzt Descartes als dem eigentlichen
Begründer der neueren Philosophie zu. Seine großen Verdienste
um die Mathematik und um die Lösung manches naturwissenschaftlichen
Problems haben uns bereits beschäftigt, auch
werden wir ihnen noch an anderen Stellen begegnen313.



Es wird hier, sowie in den folgenden Abschnitten dieses
Kapitels von einem Hineinbeziehen der Philosophie in ihrem
ganzen Umfange abgesehen. Der Ausgangspunkt der Cartesianischen
Philosophie ist nämlich das Verhältnis des Menschen zu
einem vernünftigen Urheber der Welt. Sie ist also ihrem Wesen
nach dualistisch und überschreitet insofern die Grenzen der naturwissenschaftlichen
Forschung. Für letztere kommt die Philosophie
nur insoweit in Betracht, als sie Naturphilosophie ist. Mit ihren
Prinzipien hat Descartes sich gleichfalls eingehend beschäftigt.
Sie betreffen das Wesen der Materie und der Kraft, sowie ihr
Verhältnis zur Beseelung. Die philosophische Erörterung dieser
Begriffe ist von einer tieferen Erfassung der naturwissenschaftlichen
Probleme untrennbar. In dieser Erörterung wollen wir
den Naturphilosophen folgen, die, zu Beginn der Neuzeit, häufig
auch Naturforscher waren. Dies gilt besonders von Descartes.

In seinen »Prinzipien der Philosophie« sucht er, sämtliche
Naturerscheinungen aus den Begriffen Materie und Bewegung
abzuleiten. Als das Wesen der Materie betrachtet er die Ausdehnung.
»Ich gestehe«, sagt er, »daß ich keine andere Materie
anerkenne als jene, welche die Mathematiker Quantität nennen.
An dieser betrachtete ich nichts anderes als Teilung, Gestalt und
Bewegung. Ferner lasse ich nichts gelten, was nicht aus allgemeinen
Begriffen, über deren Wahrheit kein Zweifel besteht, so
sicher gefolgert werden kann, daß es als mathematisch bewiesen
anzusehen ist. Da sich auf diese Weise alle Naturerscheinungen
erklären lassen, so halte ich andere Prinzipien weder für zulässig,
noch für wünschenswert.«

Nach Descartes ist jeder Raum von Materie erfüllt. Trotzdem
nimmt er kleine Teilchen an, aus deren Gestalt, Größe und
Bewegung die Naturerscheinungen zu erklären seien. Auch
Demokrit hatte solche Teilchen angenommen, die er für unteilbar
und für schwer hielt. Demokrit hatte ferner ein Leeres
vorausgesetzt. Nach Descartes dagegen ist ein Vakuum unmöglich.
Ferner sind die Teilchen, aus denen der Stoff besteht, nach
Descartes weiter teilbar, auch besitzen sie keine anziehende
Kraft, keine Schwere.

»Wenn ich«, sagt Descartes, »den Körperteilchen eine
bestimmte Gestalt, Größe und Bewegung beilege, obgleich ich
zugeben muß, daß diese Teilchen nicht wahrnehmbar sind, so
wird man vielleicht fragen, woher ich denn jene Eigenschaften
kenne.« Seine Antwort lautet, zunächst entsprächen sie den einfachsten
Prinzipien, die er bei seinen Überlegungen in Betracht
gezogen habe. Ferner genügten seine Ableitungen dem tatsächlichen
Verhalten der Körper, was wiederum für die Richtigkeit
seiner Voraussetzungen bürge.

Die Erklärung der Erscheinungen aus den Bewegungen
kleinster Teilchen ist somit das Ziel, das Descartes für die
Naturwissenschaften aufgestellt hat. Dieses Ziel sucht er durch
Deduktionen aus wenigen Prinzipien nach dem Muster der Mathematik
zu erreichen. Descartes' Auffassung des Naturganzen
als eines Mechanismus, aus dem er sowohl die anorganische
wie die organische Welt erklären wollte, steht im schroffsten
Gegensatze zu der vor ihm herrschenden, aristotelisch-scholastischen
Weltanschauung, zumal Descartes den in dieser herrschenden
Zweckbegriff vollständig aus seinem System verbannte. In diesem
Punkte berührt er sich mit Gassendi314. Nur daß letzterer auf
die Atomistik des Altertums, insbesondere die Lehren Epikurs,
zurückgreift, während Descartes die Unteilbarkeit der materiellen
Teilchen und das Vorhandensein des leeren Raums nicht anerkennt.
Auch darin stimmen Descartes und Gassendi überein,
daß sie jede Wirkung der Körper aufeinander auf den Stoß bewegter
Materie zurückführen und alle Sinnesqualitäten auf die
Größe, die Gestalt und die Bewegung der materiellen Teilchen (der
Korpuskeln bei Descartes und der Atome bei Gassendi).

Lag auch ein berechtigtes Streben in dem Versuche, zu
wenigen umfassenden Prinzipien zu gelangen, so bestand doch
darin wieder eine Gefahr, daß diese Prinzipien nicht induktiv gewonnen,
sondern a priori aufgestellt waren. Dadurch erschien
die experimentelle Forschung bedroht. Zwar verwirft Descartes
das Experiment nicht, doch steht es ihm, verglichen mit dem
Denken, an zweiter Stelle. Mit dieser Einschätzung des Experimentes
steht die Haltung in Einklang, die Descartes Galilei
gegenüber einnahm. In einem Briefe an Mersenne schreibt er,
er sehe in Galileis Schriften nichts, um das er ihn beneide
und fast nichts, das er als das Seinige betrachtet wissen möchte.
In diesem ablehnenden Verhalten gegen die Ergebnisse der zeitgenössischen
exakten Naturforschung berührt sich Descartes in
gewissem Grade mit Bacon.

Die Verbindung der Naturwissenschaft mit der Philosophie,
wie sie sich zur Zeit der Erneuerung beider Wissenschaften bei
Descartes und Bacon vollzog, erwies sich somit für die exakte
Wissenschaft als wenig förderlich. Weder der vage Empirismus
Bacons vermochten die Methode der Forschung zu begründen,
noch vermochten es die Spekulationen eines Descartes. Nicht
die Philosophie hat den Naturwissenschaften ihre Methode vorgezeichnet.
Die Methode der letzteren ist vielmehr unabhängig
von den herrschenden Lehren der Philosophie entstanden, um sich
langsam aber sicheren Schrittes dem Ziele zu nähern, das die
Spekulation in kühnem Fluge vergeblich zu erreichen suchte. In
ihren Keimen tritt uns die Methode der neueren Naturwissenschaft
schon im Verlauf des 16. Jahrhunderts entgegen. Ihr Aufbau
erfolgte vor allem durch Galilei, dem Descartes vorwarf, er
habe, ohne die ersten Ursachen der Natur zu betrachten, nur
die Gründe einiger besonderen Wirkungen gesucht und ohne
Fundament gebaut. Die exakte Forschung sah sich also gleich
in ihrem Anfange von einer Philosophie bedroht, die vor keinem
Problem zurückschreckte, so daß Huygens sagen konnte: »Es
scheint, daß Descartes über alle Gegenstände der Physik entscheiden
will, unbekümmert darum, ob er wahr spricht oder
nicht«315.

Die Betrachtungen, denen Descartes sich überließ, mußten
in einer Zeit, in der die Scheidung zwischen dem Erreichbaren
und dem, was stets Problem bleibt, noch nicht zum Bewußtsein
gekommen war, von bestrickendem Reiz sein. Fragen über das
Wesen der Materie, die Aggregatzustände, die Ursache der Schwere
standen im Vordergrunde. Atomistik und Korpuskulartheorie
sollten über sie entscheiden. An Gassendi schloß sich Huygens
an, der gleichfalls einer strengen Atomistik huldigte, während
Boyle, Hooke, Borelli sich mehr den physikalischen Theorien
des Descartes zuneigten. So bedeutend der Unterschied der
Lehren von Gassendi und Descartes auch ist, so stimmen sie
doch darin überein, daß sie alle Erscheinungen aus den Bewegungen
der Materie und dem Stoß ihrer Teilchen zu erklären und
dadurch ein anschauliches Bild der Naturvorgänge zu geben suchen.
Druck, Stoß und Zug vermöge hakenförmiger Verbindungen bilden
die Begriffe, mit denen man arbeitete. Der Begriff des Atoms,
wie er von Gassendi aus dem Altertum übernommen worden
war, schließt innere Kräfte vollständig aus. Die Atome Gassendis,
sowie die Korpuskeln Descartes' sind von Anfang an mit Bewegung
begabt. Alle Wirkung ist letzten Endes eine Übertragung der
Bewegung in Berührungsnähe. Wie es bei den Alten besondere
Atome für die einzelnen Empfindungen gab (Bd. I, S. 72), so
gibt es bei Gassendi besondere Wärmeatome. Sie sind zwar
nicht an sich warm, sondern sie erregen durch ihre Gestalt, durch
ihre Größe und ihre Bewegung die Wärme. Die Cartesianer
nahmen auch hier zur materia subtilis die Zuflucht. Auch Huygens
nahm eine solche zur Erklärung der Wärme an.

Abweichend von diesen Ansichten gewann indessen auch schon
frühzeitig die Annahme Verbreitung, daß die Wärme eine bloße
Bewegung der kleinsten Teilchen sei, die sich mechanisch in den
Körpern erzeugen lasse. Besonders Hooke und Locke traten
für diese Ansicht ein. Durch den Mechanismus, den Gassendi
und Descartes einführten, wurden die verborgenen Qualitäten
der Scholastiker und alle Sympathien und Antipathien aus der
Naturwissenschaft verbannt und die Bewegung der Himmelskörper
wie der Fall auf der Erde auf die Stoßwirkung kleinster Teilchen
zurückgeführt. Der Satz, daß ein Körper nur dort wirken könne,
wo er sei, galt als Axiom. Nur vereinzelt tauchten Ansichten
auf, welche der Materie eine anziehende Kraft beilegten, so bei
Kepler und bei Gilbert. Bacon äußert sich darüber folgendermaßen:
»Bei den Lichtstrahlen, den Tönen, der Wärme und
einigen anderen in die Ferne wirkenden Dingen ist es wahrscheinlich,
daß die zwischen befindliche Materie disponiert und alteriert
wird und daß für die Übertragung der Wirkung ein geeignetes
Medium erforderlich ist316.« Die magnetische Kraft läßt sich indes
nach Bacon durch eine Mitwirkung des Mediums nicht erklären
und Mersenne berichtet bereits317, daß viele die Schwere nicht
wie Descartes auf einen Druck, sondern auf eine anziehende
Kraft der Erde zurückführen wollten. Bei Roberval findet sich
dann die bestimmte Vorstellung318, daß jedem einzelnen Teilchen
der Materie eine anziehende Kraft als wesentliche Eigenschaft
beizulegen sei. Und mehr als vierzig Jahre später schreibt Borelli319,
daß man sehr häufig der Annahme einer anziehenden Kraft
begegne. Borelli wendet sich lebhaft dagegen, freilich nur um
durch einen motus spontaneus, der dem Eisen und dem Magneten,
sowie den schweren Körpern innewohne, den Magnetismus und
die Gravitation zu erklären. So wurde allmählich der Begriff
einer Anziehung in die Ferne eine den Physikern geläufige Vorstellung.

Aus den Spekulationen über die Materie erwuchsen solche
über den Kraftbegriff. Descartes hatte das Wesen der Materie
in die Ausdehnung gesetzt. Daneben schreibt er nach dem
Vorgange Keplers320 der Materie Trägheit zu, vermöge deren
sie einer Veränderung des Zustandes der Ruhe oder der Bewegung
widerstehe321. Dazu fügten Boyle322 und Huygens323 die
Undurchdringlichkeit als eine weitere wesentliche Eigenschaft,
während Hooke324 die Undurchdringlichkeit auf eine vibrierende
Bewegung der kleinsten Teilchen zurückführte. Auch Huygens
bemerkt, er sei nicht der Ansicht des Descartes, der das Wesen
der Materie in die Ausdehnung setze. Man müsse vielmehr noch
»la dureté parfaite, qui rend le corps impénétrable« hinzufügen.
Locke schlug später statt des negativen Ausdrucks der Undurchdringlichkeit
die positive Bezeichnung solidity vor325. Hooke macht
übrigens eine Bemerkung über das Verhältnis von Materie und
Kraft, die, wie so manches, sich der Beachtung entzogen hat.
»Ich setze voraus«, sagt er, »daß alle Dinge, welche zu Objekten
unserer Sinne werden, aus Materie und Kraft zusammengesetzt
sind. Wir nehmen diese gegenwärtig als distinkte Wesenheiten
an, obschon sich später vielleicht finden wird, daß sie nur verschiedene
Auffassungen ein und desselben Wesens sind.«

Durch die Bewegung ließ Descartes die ursprünglich einheitliche
Materie sich in drei Elemente teilen, die sich durch
den verschiedenen Grad der Feinheit unterscheiden sollten. Aus
den gröbsten sollten nach ihm die Erde, die Planeten und
die Kometen gebildet sein, aus feineren die Fixsterne und die
Sonne, und aus den allerfeinsten der den Weltraum ausfüllende
Stoff, auf dessen Wirbelbewegung der Kreislauf der Planeten
beruhe. Dieser subtile Stoff erfüllt nach Descartes' Vorstellung
auch die Zwischenräume zwischen den groben Teilchen, welche
die irdische Materie zusammensetzen. Er vermittelt ferner, da
er sozusagen allgegenwärtig ist, die Fortpflanzung des Lichtes.
Diese Vorstellung ist in die neuere Physik übergegangen. Die
Unterscheidung nach dem Grad der Feinheit, die den Keim
zu der späteren Trennung in wägbare und unwägbare Materie
bildete, lieferte der cartesianischen Physik das Mittel, nicht
nur die Gravitation und die Schwere, sondern auch Kohäsion,
Adhäsion, Wärme, Licht, Elektrizität, die Aggregatzustände usw.,
mechanisch durch die Wirbelbewegung oder den Stoß einer
materia subtilis zu erklären. Hierbei wurde später, namentlich
durch Huygens, Hooke, Daniel Bernoulli und Euler für
jedes der aufgezählten Phänomene eine besondere materia subtilis
angenommen, woraus dann die Lehre von den Imponderabilien
entstanden ist. Den festen Aggregatzustand führte Descartes
auf die Ruhe der Teilchen zurück. Anders Hooke,
der die mechanische Theorie der Wärme vorwegnahm, indem er
bemerkte: »Daß die Teilchen aller Körper, so fest sie auch sein
mögen, doch vibrieren, dazu braucht es meines Erachtens keinen
anderen Beweis als den, daß alle Körper einen gewissen Grad
Wärme in sich haben und daß noch niemals ein absolut kalter
Körper gefunden ist«326.

Hooke, der für die feine Materie den Namen Äther einführte327,
läßt den ganzen Weltraum von dieser Substanz erfüllt
sein. In ihr sind die übrigen Körper gleichsam aufgelöst. Statt
der Wirbelbewegungen des Descartes schreibt Hooke dem
Äther eine vibrierende Bewegung zu. Ausführlich erklärt er
aus ihr die Erscheinungen der Gravitation und des Lichtes. Die
weitere Ausbildung der Ätherhypothese erfolgte besonders durch
Huygens.

Die von Descartes und seinen Nachfolgern geschaffene Lehre
vom Weltmechanismus erhielt dadurch einen gewissen Abschluß,
daß sich die Quantität der Materie und die Quantität der Bewegung
unveränderlich erhalten sollten328. Der Keim zu dieser Anschauung
findet sich schon bei Epikur. Er weist darauf hin, daß es keinen
Ort außerhalb des Universums gebe, wohin ein Teilchen der Materie
zu entfliehen, und von wo eine neue Kraft in das Universum einzudringen
vermöge329. Auch diesen Satz übernahm Gassendi mit
dem System Epikurs und drückt ihn in folgenden Worten
aus: »Wenn die Körper in den Zustand der Ruhe übergehen,
so geht die eingeborene Kraft der Atome nicht verloren, sondern
sie wird nur gehemmt. Auch wird die Kraft nicht erzeugt, wenn
die Körper anfangen sich zu bewegen. Sie erlangt vielmehr nur
ihre Freiheit wieder. Es bleibt nämlich soviel Trieb (impetus)
beständig in den Körpern, wie von Anfang an vorhanden gewesen
ist330.«

Diesen Ausführungen entspricht Descartes' Behauptung, daß
sich das Bewegungsquantum erhalte. Sie bildet den Ausgangspunkt
jener Forschungen, die schließlich die volle Gültigkeit des
Prinzips der Erhaltung der Energie gezeitigt haben.

Wir haben bisher die Cartesianische Philosophie nur insoweit
betrachtet, als sie auf die Erklärung des Weltgeschehens hinauslief.
Neben der körperlichen Welt, die Descartes aus rein
mechanischen Prinzipien erklären zu können glaubte, erkannte er
indessen als gleich wirklich eine geistige Welt an. Beide Welten
haben indessen nach Descartes nichts miteinander gemein.

Wie dieser völlige Dualismus überwunden wurde, kann hier
nur angedeutet werden. Den ersten Schritt tat Hobbes331, indem
er auch die seelischen Vorgänge aus den Bewegungsgesetzen der
Mechanik zu erklären suchte und damit die materialistische Richtung
der Naturphilosophie begründete. Die wichtigste Konsequenz
der Auffassung von Hobbes bestand darin, daß es nach ihr
keinen freien Willen gibt.

Über den einseitigen Dualismus und den nicht weniger einseitigen
Materialismus hinaus hat dann Spinoza332 das Denken
geführt. Nach ihm gibt es nur eine wirkliche Substanz. Spinoza
braucht für sie den herkömmlichen Namen Gott. Diese absolute
und unendliche Substanz ist Ursache ihrer selbst und aller Dinge.
Gott und Natur sind somit identisch. Das Geistige und das
Körperliche sind nur Modi, d. h. nur verschiedene Erscheinungsformen
der nämlichen Substanz. Sie hängen in der Weise zusammen,
daß jedem physischen ein seelischer Vorgang entspricht, die Natur
also geistig-körperlich ist. Wie sich auf diesen philosophischen
Grundvorstellungen die moderne, nach naturwissenschaftlicher
Methode arbeitende Psychophysik entwickelt hat, kann erst gegen
den Schluß des vorliegenden Werkes dargelegt werden.

Trotz der zahlreichen Anregungen, welche die neuere Naturwissenschaft
durch die ihr parallel verlaufende Entwicklung der
Philosophie empfing, verhielten sich die großen Naturforscher ihr
gegenüber im allgemeinen ablehnend, weil sie ihre Aufgabe in
ihnen näher liegenden Dingen erblickten.

Newtons Wort »Hypotheses non fingo« (Hypothesen erdichte
ich nicht) war eine entschiedene Absage gegenüber den Spekulationen
der Cartesianischen Physik. »Alles, was nicht aus den
Erscheinungen folgt,« sagt Newton, »ist eine Hypothese. Solche
dürfen nicht in die Experimentalphysik aufgenommen werden. In
dieser leitet man die Sätze aus den Erscheinungen ab und verallgemeinert
sie durch Induktion333«. Es galt dem Überwuchern
der Hypothesen Einhalt zu gebieten und anstatt an dem luftigen
Gebäude der Cartesianischen Naturphilosophie weiter zu bauen,
die wahren Gesetze der Natur zu entdecken. Nachdem man die
scholastische Lehre von den substantiellen Formen und den verborgenen
Eigenschaften aufgegeben hatte, waren, wie Newton
forderte, die Erscheinungen der Natur auf mathemathische Prinzipien
zurückzuführen. Darin erblickte er seine Hauptaufgabe.
Sie lautet: Mechanische Erklärung aller Naturerscheinungen unter
Zurückgehen auf die Kräfte.

An dem Begriff der Kraft, wie er von Newton verwendet wird,
zeigt sich am deutlichsten der fundamentale Unterschied der alten
und der neueren Physik. In diesem Begriff liegt ferner der Hauptanlaß
zu der Opposition, die Newtons System fand, sowie der
Grund zu den Verirrungen, denen viele Nachfolger Newtons anheimfielen.
Auf Druck und Stoß als die unserer sinnlichen Anschauung
geläufigen Vorstellungen reduzierte sich die Mechanik der
Korpuskularphilosophie. Newton dagegen führte den Begriff der
Kraft als »causa mathematica« ein. Die »causa physica« bleibt dabei
unbestimmt. »Die physischen Ursachen und den Sitz der Kräfte
ziehe ich nicht in Betracht«, sagt Newton. Nur unter dem mathematischen
Bilde der Abhängigkeit wird der Kausalzusammenhang
der Naturerscheinungen dargelegt. Newton kommt es lediglich
darauf an, die Gesetze der Bewegungen zu ermitteln. Wiederholt
erklärt er, daß er nur in diesem Sinne von Kräften rede. »Die Benennungen
Anziehung, Stoß, Hinneigung gegen den Mittelpunkt«,
heißt es in den Prinzipien334, »nehme ich an, indem ich diese Kräfte
nicht im physischen, sondern nur im mathematischen Sinne betrachte.
Man möge daraus nicht etwa schließen, daß ich die
physische Ursache erklären will oder daß ich den Mittelpunkten
wirkliche Kräfte beilege, indem ich sage, die Mittelpunkte zögen
an«335. Wenn Newton die Zentripetalkräfte als Anziehungen bezeichnet,
so bemerkt er sogleich, daß sie, rein physikalisch betrachtet,
vielleicht richtiger Anstöße genannt werden müßten336.
Dieser Auffassung entsprechend hat Newton sich wiederholt
gegen eine Wirkung in die Ferne, sowie gegen die Annahme erklärt,
daß die Schwere eine wesentliche Eigenschaft der Materie
sei. So schreibt er: »Es ist unbegreiflich, daß Materie ohne die
Vermittlung von irgend etwas, was nicht materiell ist, andere
Materie beeinflussen könnte, wie es der Fall sein müßte, wenn
die Schwere eine wesentliche, inhärierende Eigenschaft der Materie
wäre. Daß ein Körper auf einen anderen aus der Entfernung
durch den leeren Raum wirken könnte ohne die Vermittlung von
etwas anderem, halte ich für eine große Ungereimtheit. Die Schwere
muß durch ein beständig nach bestimmten Gesetzen wirkendes
Agens verursacht werden«337. Ob aber dieses Agens materiell oder
immateriell ist, darüber will Newton keine Entscheidung treffen.
In einem Briefe Newtons an Boyle338 wird die Ursache der
Schwere auf den Äther zurückgeführt. Doch bemerkt Newton
am Schlusse: »Ich habe so wenig Geschmack an solchen Dingen,
daß ich schwerlich die Feder dazu ansetzen würde, wenn mich nicht
Ihre Aufforderung dazu bewogen hätte«. Entgegen der von Newton
gegebenen Definition der Kraft als »causa mathematica« und
trotz seiner Warnung, die Schwere als eine wesentliche Eigenschaft
der Materie zu betrachten, wurde für die Nachfolger Newtons
die unvermittelte Fernwirkung (actio in distans) Tatsache.

Diese Auffassung wurde durch Roger Cotes, der 1713 die
Vorrede zur zweiten Ausgabe der »Prinzipien« verfaßte, und
durch Roberval vertreten. Letzterer erklärte die Attraktion als
eine allgemeine Eigenschaft des Stoffes und schrieb diese Kraft
ausdrücklich jedem einzelnen Teilchen zu. Allmählich wurde dann
diese Vorstellung zu einer nicht nur den Philosophen, sondern
auch den Physikern geläufigen. Anfangs zwar machte sich von
mehreren Seiten Widerspruch geltend. Hatte man in der Cartesianischen
Physik die Bewegungen der Gestirne sowie den Fall
der Körper auf der Erde durch die Wirbelbewegung einer materia
subtilis auf rein mechanische Ursachen zurückzuführen gesucht,
so erblickte man in der Attraktion der Newtonianer eine Rückkehr
zu der scholastischen Lehre von den okkulten Qualitäten.
Diese Stellung nahmen unter anderen Johann Bernoulli339 und
Huygens340 ein. Obgleich Huygens die Vorzüge des Newtonschen
Systems vor dem Cartesianischen anerkannte, erklärte er,
daß »eine Attraktion nicht aus den Prinzipien der Mechanik erklärt
werden könne.« Auch Leibniz wandte sich gegen die
Anziehung in die Ferne, während Daniel Bernoulli zu den
Newtonianern hinüberschwenkte und auch Euler mit sich zu
ziehen suchte. Er schreibt an diesen: »Konnte Gott eine Seele
erschaffen, deren Natur uns unbegreiflich ist, so konnte er auch
der Materie eine allgemeine Anziehung verleihen«341. Euler lehnte
indessen die Attraktionshypothese ab; er ließ sie zwar als Arbeitshypothese
gelten, wenngleich sie »mit der Physik gänzlich unvereinbar«342
sei.

Der Kampf zwischen den Cartesianern und den Newtonianern
bietet, abgesehen von seiner geschichtlichen Bedeutung,
ein besonderes Interesse, indem sich hier an der Schwelle
der neueren Zeit an einem glänzenden Beispiele dartun läßt, wie
hinderlich für den ersprießlichen Fortschritt der Wissenschaft,
sich jedes Übermaß an Spekulation erweist. Die Aufgabe, die
Descartes der Physik gestellt hatte, nämlich eine mechanische
Erklärung der Naturerscheinungen zu geben, wurde von Newton
dadurch ihrer Lösung näher gebracht, daß er auf dem dornenvollen
Wege der Forschung die Gesetze der Natur enthüllte,
während die Cartesianer den mühelosen Weg der Spekulation
verfolgten, ohne zu Ergebnissen von Wert zu gelangen. Unter
Lossagung von allen spekulativen Elementen, die so weit ging,
daß er der Hypothese nur geringen Wert beilegte, erblickte Newton
den obersten Grundsatz der Naturforschung darin, die Naturgesetze
in den Tatsachen zu suchen und da abzubrechen, wo sich
unlösbare Probleme zeigen. Auf diese Weise gelangte durch
Newton, entgegen der spekulativen Richtung der Cartesianischen
Physik, die empirisch-mathematische Methode zur vollen Geltung.
Ihr verdankt die Wissenschaft den raschen Aufschwung, den sie
unter den Nachfolgern Newtons nahm.

Sein entschlossenes Eintreten für die richtige Methode in
einer Zeit, in welcher die Naturphilosophie die besten Köpfe gefangen
nahm, bildet einen Wendepunkt in der Entwicklung der
Naturwissenschaften. Nicht minder bezeichnen die Ergebnisse,
zu denen Newton durch eben diese Methode gelangte, den Anfang
einer neuen Aera.



Auch der Begriff der Materie erfuhr eine Umwandlung und
zwar durch Leibniz. Dieser bestritt die Ansicht des Descartes,
daß das Wesen der Materie allein in der Ausdehnung beruhe. Es
genüge auch nicht, daß man später der Materie die Eigenschaft der
Undurchdringlichkeit beigelegt habe. Das seien lediglich passive
Eigenschaften343. Zu der Ausdehnung und der Undurchdringlichkeit
müsse man zur Kennzeichnung des Wesens der Materie die
Kraft hinzufügen. Dieses aktive Prinzip besitzt nach Leibniz
auch die Fähigkeit des Perzipierens. Aus dieser Auffassung entsprang
die von ihm herrührende Lehre von den Monaden. So
sehr auch bei Leibniz metaphysische Spekulationen, denen wir hier
nicht folgen können, in den Vordergrund treten, so unumwunden
spricht er sich doch dahin aus, daß für alle Vorgänge der materiellen
Welt nur eine rein mechanische Erklärung zulässig sei.

Außer der Attraktion nahmen die Newtonianer auch eine
abstoßende Kraft an. Und zwar galten ihnen beide als physikalische
Kräfte, während sie für Newton nur »causae mathematicae«
waren. Newton hatte in den »Prinzipien« zur Erklärung der
Konstitution eines elastischen Fluidums die Hypothese von der
Repulsivkraft der Teilchen aufgestellt. Daraus entsprang bei den
späteren Physikern die Ansicht, daß die Repulsivkraft der Gasmolekeln
eine von Newton bewiesene physikalische Wahrheit sei.

Auch die Frage nach der Konstanz der Materie wurde von
neuem erörtert. Während der Satz von der Unzerstörbarkeit des
Stoffes trotz allen Wechsels, den der Begriff der Materie erfuhr, nicht
ernstlich angezweifelt wurde und das Fundament der in diesem Zeitalter
entstehenden wissenschaftlichen Chemie bildete, ist der Grundpfeiler
der neueren Physik, der Satz von der Erhaltung der Energie
erst von Leibniz scharf formuliert, aber erst viel später in seiner
vollen Bedeutung anerkannt worden. Descartes hatte ja den
Satz aufgestellt, daß die Quantität der Bewegung im Universum
konstant bleibe. Huygens wies dagegen in einem Zusatze zu
den Stoßgesetzen elastischer Körper darauf hin344, daß die Bewegungsgröße
zweier Körper beim Zusammenstoß sich vermehren
oder vermindern könne. Nur die algebraische Summe der Bewegungsgrößen
bleibe vor und nach dem Stoße gleich. Huygens
zeigte ferner, daß die Summen der beiden Produkte aus den
Massen in die Quadrate ihrer Geschwindigkeiten vor
und nach dem Stoße gleich groß sind. Damit war zum ersten
Male das Prinzip der Erhaltung der lebendigen Kräfte klar ausgesprochen.
Descartes hatte das Produkt mv als Kräftemaß betrachtet.
Hooke suchte bereits 1669 zu zeigen, daß die Kraft
eines bewegten Körpers dem Quadrate von v proportional ist345.
Zehn Jahre später gelangt er zu folgendem Ausdruck: »Wird ein
Körper mit einem gewissen Geschwindigkeitsgrade durch ein bestimmtes
Kraftquantum bewegt, so erfordert dieser Körper vier
mal so viel Kraft, um zweimal, und neunmal so viel Kraft, um
dreimal so schnell bewegt zu werden usw. Dies gilt nicht nur
für die Bewegung von Kugeln und Pfeilen, die abgeschossen
werden, sondern auch für vibrierende Körper, für Sprungfedern,
für senkrecht oder schräg fallende Körper, kurz für sämtliche Bewegungen,
wenn man nur von dem Widerstand des Mediums dabei
absieht«.

Wir sind mit diesen Betrachtungen von der bloßen Spekulation
wieder bei dem Gebiet der Tatsachen angelangt und werden in
einem späteren Abschnitt die hier nur angedeuteten Keime der
theoretischen Physik in ihrer Entwicklung verfolgen. Zunächst
wenden wir uns den weiteren Ergebnissen der experimentellen
Forschung zu, da nur mit ihrer Hilfe ein Eindringen in die Zusammenhänge
möglich war.




8. Der Ausbau der Physik der flüssigen und
der gasförmigen Körper.

Der erste, der sich nach dem Wiederaufleben der Wissenschaften
eingehender mit der Mechanik der Flüssigkeiten beschäftigte,
war der Niederländer Stevin.

Simon Stevin (Stevens) wurde 1548 in Brügge geboren und
bekleidete die Stelle eines Oberaufsehers der Land- und Wasserbauten
in Holland. Er starb 1620 in Leyden. Stevin und
Galilei haben ihre Untersuchungen unabhängig voneinander ausgeführt.
Fast zur selben Zeit, als Galilei die Grundlagen der
Mechanik schuf, »feierte die archimedische, rein statische Methode
ihren letzten Triumph«346 durch Stevin. Letzterer machte seine
Methoden und Entdeckungen in einer Schrift bekannt, die er
»Prinzipien des Gleichgewichts« betitelte und 1586 veröffentlichte347.
Nach seinem Tode wurde eine Sammlung seiner Schriften in französischer
Sprache herausgegeben348.

Stevin hat sich sowohl um die Statik der festen wie der
flüssigen Körper hervorragend verdient gemacht und das Prinzip
der virtuellen Verschiebungen gekannt, allerdings, ohne es wie
Galilei auf die flüssigen Körper auszudehnen. Stevin verwendet
das Prinzip bei der Untersuchung der Rollen und Rollenverbindungen
(lose Rolle, Flaschenzug, Potenzflaschenzug) und findet,
daß an ihnen Gleichgewicht herrscht, wenn die Produkte aus den
Gewichten und den entsprechenden Wegen oder, was auf dasselbe
hinausläuft, Geschwindigkeiten auf beiden Seiten gleich sind.

Durch eine originelle Betrachtung gelangt Stevin dann zu
den Gleichgewichtsbedingungen, die für die schiefe Ebene gelten,
und zum Satz vom Parallelogramm der Kräfte. Seine Betrachtung,
die weniger einen Beweis als eine intuitive Art des Erkennens
bedeutet, läuft auf folgendes hinaus: Stevin denkt sich um das
Dreieck ABC, dessen Grundlinie wagerecht verläuft, eine Kette
geschlungen, die aus gleichschweren Gliedern besteht (Abb. 56) und
ohne jede Reibung um das Dreieck bewegt werden kann. Eine solche
Kette muß im Gleichgewicht sein, da sie sich sonst ja unaufhörlich
bewegen würde. Das Gleichgewicht
kann auch keine Störung
erleiden, wenn man die beiden
gleichschweren, symmetrischen
Teile SL und VK, die sich
unter der Basis des Dreiecks
befinden, ganz fort läßt. Somit
vermag das kürzere Kettenstück
über BC dem längeren über AB
das Gleichgewicht zu halten. Die
Gewichte der Kettenstücke verhalten
sich aber, da ihre Glieder
gleiche Abstände besitzen und
gleich schwer sind, wie die Seiten
AB und BC. Es folgt also
aus dieser Betrachtung der Satz,
daß zwei Gewichte auf den schiefen Ebenen AB und BC im Gleichgewichte
stehen, wenn sie sich wie die Längen dieser Ebenen verhalten.


[image: Abb. 56]
Abb. 56.
Stevins Ableitung der Gleichgewichtsbedingung
für die schiefe Ebene.



Steht BC senkrecht zu AB, so haben wir das einfachere Gesetz
für die schiefe Ebene, daß sich die Kraft zur Last wie die
Höhe zur Länge verhält.

Indem Stevin das Gewicht auf der schiefen Ebene in einen
zur schiefen Ebene parallelen und einen dazu senkrechten Teil
zerlegte, gelangte er zu dem Satz vom Parallelogramm der Kräfte,
allerdings in seiner Beschränkung auf statische Verhältnisse. Er
selbst war von dem Ergebnis seines Nachdenkens und seiner Versuche
so überrascht, daß er in den Ruf ausbrach: »Hier ist ein
Wunder und doch kein Wunder«349!

Die Begründung der Hydrostatik.

Das größte Verdienst hat sich Stevin dadurch erworben, daß
er die wichtigsten Sätze der Hydrostatik auffand. So rührt von
ihm der Nachweis des hydrostatischen Paradoxons her350, d. h. des
Satzes, daß der Bodendruck einzig von der Größe der gedrückten
Fläche und der Höhe der Flüssigkeitssäule und nicht von der
Gestalt des Gefäßes abhängt. Stevin führte diesen Nachweis
durch einen Versuch (Abb. 57), den er mit folgenden Worten
schildert: ABCD ist ein mit Wasser gefülltes Gefäß, in dessen
Boden sich eine runde Öffnung EF befindet, die mit einer hölzernen
Scheibe GH bedeckt ist. IRL ist ein zweites Gefäß von
derselben Höhe wie das vorige und mit einer gleichgroßen Öffnung
im Boden. Diese Öffnung sei gleichfalls durch eine Holzscheibe OP
von demselben Gewicht wie die vorige geschlossen. Man findet
dann durch den Versuch, daß die Scheiben nicht emporsteigen,
sondern gegen die Öffnungen gepreßt werden; und zwar werden
sie denselben Druck empfangen. Dies läßt sich nachweisen, indem
man die gleichen Gewichte T und S anbringt, die ebenso schwer
sind wie die über der Scheibe GH
befindliche Wassersäule ERQF351.


[image: Abb. 57]
Abb. 57. Stevins Nachweis des
hydrostatischen Paradoxons.




[image: Abb. 58]
Abb. 58. Stevins Nachweis des aufwärts
gerichteten Druckes.



Auf diese Weise, bemerkt Stevin, könne 1 Pfund Wasser in
einer engen Röhre gegen einen Verschluß in einem weiten Gefäß
wohl einen Druck von 100000 Pfund ausüben. Damit war
ein Gedanke ausgesprochen, auf den die spätere Erfindung der
hydraulischen Presse zurückzuführen ist.

Den aufwärts gerichteten Druck in Flüssigkeiten wies Stevin
nach, indem er eine Metallplatte G (siehe Abbildung 58) gegen
die beiderseits offene Röhre EF legte und das von der Platte
verschlossene Ende in das Wasser hinabsenkte. Es zeigte sich,
daß die Platte nicht abfällt, sondern durch den aufwärts gerichteten
Druck der Flüssigkeit gegen die Röhre gepreßt wird352.



Handelt es sich bei Stevin um die Bestimmung des Druckes,
den ein Stück der Seitenwand eines mit Wasser gefüllten Gefäßes
auszuhalten hat353, so zerlegt Stevin dieses Stück durch horizontal
verlaufende Linien in eine Summe von kleinen Rechtecken. Das
oberste Stück (Abb. 59) empfängt einen Druck, der größer ist als
der Druck eines Wasserprismas von
der Grundfläche g und der Höhe h,
indes geringer als der Druck eines
Prismas von der gleichen Grundfläche
und der Höhe h1. Dieselbe Betrachtung
ergibt sich für alle übrigen
Rechtecke. Stevin erhält dann durch
Summierung einen Gesamtdruck, der
zu groß, und durch eine zweite
Summierung einen Gesamtdruck, der
zu klein ist. Beide Summen nähern
sich, wenn man die Streifen immer
schmäler nimmt, dem gleichen Grenzwert.


[image: Abb. 59]
Abb. 59. Stevins Ableitung
des Seitendruckes.



Endlich untersuchte Stevin noch die Gleichgewichtsbedingungen
schwimmender Körper. Er fand, daß bei solchen ihr
Schwerpunkt und der Schwerpunkt der verdrängten Wassermasse
in einer Vertikalen liegen. Auch schwimmt ein Körper nach
Stevin nur dann stabil, wenn sein Schwerpunkt unter dem Schwerpunkt
der verdrängten Wassermasse liegt. Und zwar schwimme
er um so stabiler, je tiefer der Schwerpunkt des Körpers sich
unter dem Schwerpunkt der verdrängten Flüssigkeit befinde.

Die Anfänge einer Dynamik der Flüssigkeiten.

Auch Galileis Schüler dehnten ihre Untersuchungen auf die
Mechanik der Flüssigkeiten und der Gase aus. Vor allem ist hier
Galileis hervorragendster Schüler Torricelli zu nennen.

Evangelista Torricelli wurde 1608 als Sproß eines vornehmen
Geschlechtes in Faenza geboren. Im Alter von 20 Jahren
kam er nach Rom, wo er Schüler des Mathematikers Castelli
wurde. Castelli hatte vorher in Pisa gelehrt und war seitdem
Galileis eifriger Anhänger und Freund, der seine eigenen Schüler
mit dem Geiste und dem Streben des großen Begründers der
neueren Naturforschung zu erfüllen suchte. Auf besonders fruchtbaren
Boden gelangten die neuen Gedanken bei Torricelli. Nach
dem Erscheinen der »Unterredungen«, des grundlegenden Werkes
über die Mechanik354 verfaßte Torricelli eine Schrift über den
gleichen Gegenstand, in der er einige der von Galilei gefundenen
Bewegungsgesetze auf eine eigene Art zu beweisen suchte. Diese
Schrift gelangte einige Jahre später in die Hände des großen,
mittlerweile völlig erblindeten Meisters und rief in ihm den Wunsch
hervor, die junge bedeutende Kraft, die sich ihm offenbart hatte,
an sich zu fesseln. So kam denn Torricelli nach Florenz und verfaßte
dort unter der Leitung Galileis eine Fortsetzung der »Unterredungen«,
die später durch Viviani veröffentlicht wurde355. Die
gemeinsame Arbeit Galileis und Torricellis dauerte indessen
nur wenige Monate. Dann wurde ihr durch den Tod des Meisters
ein Ziel gesetzt. Torricelli wirkte in Florenz im Geiste Galileis
weiter, bekleidet mit den Ämtern und Würden des Meisters, bis
ihn im Jahre 1647 ein früher Tod ereilte.

Die wichtigste wissenschaftliche Tat Torricellis bestand darin,
daß er neben der von Galilei begründeten Dynamik der festen
Körper eine Dynamik der flüssigen Körper schuf. Dies geschah
in einer im Jahre 1644 erschienenen Abhandlung über ausströmende
Flüssigkeiten356, die für das Gebiet der Hydrodynamik grundlegend
geworden ist. Torricelli wies nach, daß ein Strahl, der aus einem
mit Flüssigkeit gefüllten Behälter seitlich heraustritt, die Form
einer Parabel annimmt. Ferner zeigte er, daß die Geschwindigkeit
der Flüssigkeit, und mithin auch die ausfließende Menge, zu
der Höhe der über der Ausflußöffnung befindlichen Säule in einem
bestimmten Verhältnis steht. Für die vierfache Höhe ergab sich
die doppelte, für die neunfache dagegen die dreifache Geschwindigkeit,
d. h. die Geschwindigkeiten verhalten sich wie die Quadratwurzeln
aus den Druckhöhen357.



Da den Geschwindigkeiten die Ausflußzeiten entsprechen, so
folgt aus dem erwähnten Gesetz, daß die Zeiten, in denen gleiche
Gefäße durch gleich große Öffnungen sich leeren, sich wie die
Quadratwurzeln aus den Höhen der über den Öffnungen befindlichen
Flüssigkeitsmengen verhalten.

Befindet sich die Ausflußöffnung in dem horizontalen Boden
des Gefäßes, so ergibt sich nach Torricelli, daß die Ausflußmengen
für gleiche Zeiten wie die ungeraden Zahlen abnehmen.
Beträgt z. B. die für das Ausfließen erforderliche Gesamtzeit
6 Sekunden, und setzt man die in der letzten Sekunde ausfließende
Menge gleich 1, so betragen die Ausflußmengen in der 5., 4.,
3.... Sekunde 3, 5, 7 ...

Auch die Dynamik der festen Körper wurde durch Torricelli
weiter ausgebaut. So hat er sich mit der Wurfbewegung
beschäftigt und gezeigt, daß die Wurfweite für den Neigungswinkel
45° + α gleich derjenigen für den Winkel 45° - α ist.

Die Erfindung des Quecksilberbarometers.

Am bekanntesten ist Torricelli durch die Erfindung des
Quecksilberbarometers geworden. Anknüpfend an die von Galilei
erwähnte Beobachtung358, daß Wasser dem Kolben einer Pumpe
nur bis zu einer gewissen Höhe (10 m) folgt, untersuchte Torricelli,
wie weit wohl Quecksilber, das etwa 14mal so schwer wie
Wasser ist, von dem vermeintlichen Horror vacui emporgehoben
wird. Der auf Torricellis Veranlassung von Viviani angestellte
Versuch zeigte, wie Torricelli vorausgesagt, daß die Steighöhe des
Quecksilbers in demselben Verhältnis geringer ist, wie sein spezifisches
Gewicht größer als dasjenige des Wassers ist. Beide Forscher
führten im Jahre 1643 den Versuch in der in Abb. 60 dargestellten
Weise aus. Sie nahmen ein Rohr von zwei Ellen Länge, füllten
es mit Quecksilber und kehrten es in einem mit Quecksilber gefüllten
Behälter um, indem sie das offene Ende des Rohres verschlossen.
Nachdem der Verschluß aufgehoben war, sank das
Quecksilber bis zu einer Höhe von 1½ Ellen herab und blieb
dort in der Schwebe. Das Vakuum, das sich hierbei über dem
Quecksilber bildet, wurde in der Folge als die Torricellische Leere
bezeichnet. Der Apparat selbst ist ein Barometer, da die Höhe
der Quecksilbersäule der Größe des Luftdruckes entspricht. Die
Schwankungen, die man an diesem Instrument beobachtet, erklärte
Torricelli aus den Änderungen des Luftdrucks. Die Lehre vom
Horror vacui war jedoch dermaßen eingewurzelt, daß erst die überzeugende
Kraft, die den Versuchen Pascals
und Guerickes innewohnte, jenes unrichtige
Prinzip aus der Physik verschwinden ließ.

Über die Versuche, welche die Accademia
del Cimento mit dem Barometer, sowie
über Vorgänge im Vakuum anstellte, wurde
schon an früherer Stelle berichtet359.

Erst dem Franzosen Pascal, einem
scharfsinnigen Kopf, der sich auch durch
seine gegen die Jesuiten gerichteten »Lettres
provinciales« einen Namen in der französischen
Literatur erworben hat, gelang es, die
Frage, ob ein Horror vacui oder der Luftdruck
die Flüssigkeiten in der Schwebe hält,
durch einen entscheidenden Versuch zu lösen.


[image: Abb. 60]
Abb. 60. Torricellis
Versuch360.



Pascal wurde 1623 in Clermont geboren.
Sein Vater zog bald darauf nach
Paris und verkehrte dort mit bedeutenden
Gelehrten wie Roberval und Mersenne.
Dadurch fand das in dem jungen Pascal
frühzeitig sich regende mathematische Talent
die erste Nahrung. Es wird erzählt, daß
Pascal, bevor er mathematischen Unterricht
genossen, den Satz von der Winkelsumme
im Dreieck fand und als Zehnjähriger eine
Abhandlung über den Klang verfaßte. Dazu
soll ihn die Beobachtung veranlaßt haben,
daß ein zum Tönen gebrachtes Trinkglas bei
der Berührung verstummt. Gewiß ist, daß Pascal mit 16 Jahren
ein Buch von wissenschaftlichem Wert über die Kegelschnitte
schrieb und dadurch die Aufmerksamkeit von Descartes auf
sich lenkte.

Pascals Verdienste sind besonders auf dem Gebiete der
Mathematik zu suchen. Allzu angestrengte Tätigkeit untergrub
seine wenig feste Gesundheit schon im jugendlichen Alter. Er
wurde schließlich religiös-schwermütig und starb 1662 im Alter
von 39 Jahren.

Die Kunde von Torricellis Versuch gelangte durch Mersennes
ausgedehnten Briefwechsel nach Frankreich361. Pascal
wiederholte den Versuch mit Quecksilber und mit Wasser, das er
in 40 Fuß lange Röhren einschloß, hielt aber zunächst an der
Lehre vom Horror vacui fest. Als jedoch Torricellis Erklärung
in Frankreich bekannt wurde, stimmte er ihr lebhaft zu, erkannte
aber, daß es noch eines entscheidenden Versuches bedürfe. Dieser
Versuch Pascals362 bestand darin, das Torricellische Vakuum
mehrere Male an einem Tage in derselben Röhre und mit demselben
Quecksilber hervorzurufen, und zwar das eine Mal am Fuße,
das andere Mal auf dem Gipfel eines Berges, um zu prüfen, ob
die Höhe des in der Röhre schwebenden Quecksilbers in beiden
Fällen dieselbe oder verschieden sei363. War nämlich die Quecksilbersäule
auf dem Gipfel kürzer als am Fuße des Berges, so
mußte daraus geschlossen werden, daß der Luftdruck es ist, der
das Quecksilber in der Schwebe hält. »Es ist leicht ersichtlich«,
sagt Pascal, »daß am Fuße des Berges eine größere Luftmenge
einen Druck ausübt als auf dem Gipfel, während kein Grund vorliegt,
daß die Natur in der unteren Region einen größeren Abscheu
vor der Leere empfinden sollte als in der oberen.«

Der Versuch, den Pascal nicht selbst anstellte, sondern durch
seinen Schwager Périer auf dem Gipfel des 4300 Pariser Fuß
hohen Puy de Dôme ausführen ließ, entsprach ganz dieser Erwartung.
Périer stellte am Fuße des Berges in Clermont in
zwei Gefäßen das Vakuum her. Es zeigte sich, daß das Quecksilber
in beiden Röhren dieselbe Höhe von 26 Zoll 3½ Linien
hatte. Darauf ließ er eine Röhre in ihrem Gefäße, ohne den Versuch
zu unterbrechen; er merkte die Höhe der Quecksilbersäule
auf dem Glase an und bat jemanden, sorgfältig und unausgesetzt
während des ganzen Tages darauf zu achten, ob eine Änderung
einträte. Mit dem zweiten Apparat begab er sich in Begleitung
mehrerer Personen auf den Gipfel des Puy-de-Dôme und stellte
dort, 500 Toisen oberhalb des ersten Ortes, in der gleichen Art
denselben Versuch an, den er vorher am Fuße gemacht hatte.
Es zeigte sich, daß die Höhe der Quecksilbersäule jetzt nur noch
23 Zoll und 2 Linien betrug, während sie in Clermont gleichzeitig
in der gleichen Röhre 26 Zoll 3½ Linien betragen hatte, so daß
der Unterschied bei diesen Versuchen sich auf 3 Zoll 1½ Linien
belief. Dies erfüllte alle mit Bewunderung und Erstaunen.

Später stellte Périer beim Abstieg denselben Versuch mit
den gleichen Apparaten an und zwar 150 Toisen oberhalb Clermonts.
Dort fand er, daß die Höhe der Quecksilbersäule 25 Zoll
betrug. »Dies verschaffte uns«, schrieb Périer, »keine geringe
Genugtuung, da wir sahen, daß die Höhe der Quecksilbersäule
sich mit der Höhe des Ortes verminderte.«

Nach Clermont zurückgekehrt, fand er dort an dem Apparat,
den er unverändert zurückgelassen, denselben Stand der Quecksilbersäule
wie bei seinem Aufbruch, nämlich 26 Zoll 3½ Linien.
Die Person, die zur Beobachtung zurückgeblieben war, berichtete,
daß während der ganzen Zeit darin keine Änderung
eingetreten sei.

Am folgenden Tage wurde Périer der Vorschlag
gemacht, denselben Versuch am Fuße und
auf der Spitze des höchsten Turmes Clermonts
zu wiederholen, um zu erproben, ob in diesem
Falle ein Unterschied bemerkbar sei. Auch dieses
Mal fand er einen Unterschied in der Höhe der
Quecksilbersäule, der sich allerdings nur auf
wenige Linien belief.


[image: Abb. 61]
Abb. 61. Pascals
Abänderung des
Torricellischen
Versuches.



Außer seinem Bergexperiment ersann Pascal
noch einen zweiten Versuch, um den Luftdruck
als die Ursache des Torricellischen Phänomens
nachzuweisen. Er verband mit der beiderseits
offenen Röhre ab die U-förmig gebogene Röhre cd.
Die Stücke ab und cd hatten jedes die Länge
der für den Torricellischen Versuch gebräuchlichen
Röhre, d.h. sie waren jedes etwa einen
Meter lang, und das Ganze stellte sich als ein Übereinander
zweier Torricellischen Röhren dar. Die verbundenen Röhren
wurden darauf ganz mit Quecksilber gefüllt und mit dem
Ende a in Quecksilber getaucht, während man a und b mit den
Fingern geschlossen hielt. Öffnete Pascal darauf a allein, so
fiel das Quecksilber in cd ganz in den unteren Teil der oberen
U-Röhre, bis es in beiden Schenkeln im gleichen Niveau stand.
Gleichzeitig sank das Quecksilber in der Röhre ab bis zum herrschenden
Barometerstande, und der Finger bei b wurde durch
den äußeren Luftdruck fest gegen die Öffnung gepreßt. Es war
also damit dasselbe erreicht, als ob man für das obere Barometer
den Druck der äußeren Luft gänzlich entfernt hätte. Öffnete man
nämlich jetzt b, so stieg das Quecksilber im oberen Barometer cd
auf den gewöhnlichen Stand, gleichzeitig aber sank es in ab ganz
herab.


[image: Abb. 62]
Abb. 62. Pascals
durch den Druck des
Wassers in Tätigkeit
gesetzter Heber.



Pascal unternahm es darauf, die Statik der gasförmig-flüssigen
und der, hinsichtlich des Druckes ähnlichen Gesetzen
folgenden tropfbar-flüssigen Körper, in einer Abhandlung darzustellen.
Sie nimmt infolge ihrer klaren Fassung und ihrer überzeugenden
Versuche einen hervorragenden Platz unter den physikalischen
Schriften des 17. Jahrhunderts ein und führt den Titel364
»Abhandlung über das Gleichgewicht der Flüssigkeiten«. Sie erläutert
zunächst, welche Fülle alltäglicher Erscheinungen als Wirkungen
des Luftdruckes aufzufassen sind. So wird das Saugen,
Schröpfen, Pumpen, Heben usw., irrtümlicherweise
aber auch die Adhäsion geschliffener
Platten auf ihn zurückgeführt. Der bedeutendste
Schritt, den Pascal tat, ist die
Erkenntnis, daß die durch den Luftdruck und
die durch den Druck einer tropfbaren Flüssigkeit
hervorgerufenen Erscheinungen einander
völlig entsprechen. Als Beispiel für die Art,
wie Pascal den experimentellen Nachweis
führte, wählen wir seinen Versuch, das Fließen
des Hebers durch den Wasserdruck hervorzurufen.
Er tauchte die gabelförmig gestaltete,
an allen drei Enden offene Röhre abc
mit den Schenkeln a und b in Quecksilbergefäße, die sich unter
Wasser befanden (Abb. 62). War das Wassergefäß, in das die
ganze Vorrichtung hinabgesenkt wurde, hinreichend tief, so stieg
das Quecksilber, bis sich die Säulen vereinigten; und von diesem
Augenblicke an floß es von dem höher gelegenen Gefäße d infolge
des vorhandenen Druckunterschiedes nach dem tieferen Gefäße e.



Für die Hydrostatik hatten zwar Galilei und ganz besonders
Stevin neue Grundlagen geschaffen, doch hat Pascal denselben
Gegenstand unabhängig von jenen mit großer Klarheit und unter
Hervorkehrung wesentlich neuer Gesichtspunkte behandelt. Pascal
gründet seine hydrostatischen Untersuchungen auf den Satz, daß
sich der Druck in Flüssigkeiten nach allen Seiten gleichmäßig
fortpflanzt. Ferner wendet er nach dem Vorgange Galileis das
Prinzip der virtuellen Geschwindigkeiten oder Verschiebungen auf
die Hydrostatik an; doch bekundet Pascals Auffassung einen
wesentlichen Fortschritt. Er betrachtet jede Flüssigkeit, die von
festen Körpern begrenzt wird, als eine Maschine, an der die
Kräfte, wie an dem Hebel und den anderen einfachen Maschinen,
nach bestimmten Verhältnissen ins Gleichgewicht gesetzt werden.
Betrachten wir z. B. mit Pascal zwei kommunizierende, durch
Kolben abgeschlossene Gefäße. Die Kolben seien durch Gewichte
belastet, die den Oberflächen proportional sind. In diesem Falle ist
Gleichgewicht vorhanden. Es sind nämlich bei jeder Verschiebung
dieses Systems die nach den entgegengesetzten Richtungen geleisteten
Arbeiten einander gleich. Oder, um die Beziehung zur
Mechanik der festen Körper hervortreten zu lassen, für die das
Prinzip der virtuellen Geschwindigkeiten zuerst entwickelt wurde:
die geschilderte hydrostatische Vorrichtung entspricht in ihrer
Wirkungsweise vollkommen einem Hebel mit zwei ungleichen
Armen. »Man muß«, sagte Pascal, »bewundern, daß sich in
dieser neuen Maschine«, nämlich in der von einem Gefäß und zwei
verschiebbaren Kolben begrenzten Flüssigkeit, »jene beständige
Ordnung wieder findet, die für den Hebel, die Rolle usw. gilt,
daß sich nämlich die Wege umgekehrt wie die Kräfte verhalten.
Dies kann man sogar als die wahre Ursache jener Wirkung betrachten.
Denn offenbar ist es dasselbe, ob man 100 Pfund
Wasser einen Zoll Weges oder ein Pfund Wasser einen Weg
von 100 Zoll zurücklegen läßt«365.

Erwähnt sei noch, daß Pascal im Anschluß an sein Bergexperiment
das Barometer als Instrument zum Messen von Höhen
in Vorschlag brachte und das Gewicht der gesamten Atmosphäre
auf 8 Trillionen Pfund berechnete.

Auch die atmosphärischen Bewegungen wurden, nachdem der
Luftdruck als die Ursache zahlreicher physikalischer Erscheinungen
erkannt war, auf Gleichgewichtsstörungen dieses Druckes zurückgeführt.
Torricelli war der erste, der aus diesem physikalischen
Prinzip die Luftströmungen zu erklären suchte366. Er nahm an,
daß zwischen Gegenden verdünnter und solchen dichterer Luft ein
Ausgleich durch eine Strömung stattfinde, die sich uns als Wind
bemerkbar mache. Als ein Beispiel hierfür galt ihm die besonders
in Italien auffallende Erscheinung, daß an warmen Frühlingstagen
ein kühler Wind aus den Pforten größerer Kirchen hervorbricht.
»Die Luft«, so lautet seine Erklärung, »ist in großen Gebäuden
um diese Zeit bedeutend kühler und schwerer, als die Luft in ihrer
Umgebung. Daher fließt sie an der Pforte heraus, wie Wasser
es tun würde, wenn man es in das Gebäude eingeschlossen hätte
und dann plötzlich eine seitliche Öffnung herstellte.«

Die Erfindung der Luftpumpe.

Die bedeutendste Förderung empfing die Physik der Gase
durch die Versuche, die Guericke mit Hilfe der von ihm erfundenen
Luftpumpe anstellte. Die neuere, das Experiment in
den Vordergrund stellende Richtung der Naturwissenschaft hatte
in Deutschland vor Guericke wenig Beachtung gefunden. Ein
Mann wie Kepler gelangte nicht einmal dazu, die Ergebnisse
seines Nachdenkens, sofern sie das Bild auf der Netzhaut und die
Konstruktion des astronomischen Fernrohrs betrafen, durch den
Versuch nachzuprüfen. In Guericke tritt uns dagegen ein
Experimentator ersten Ranges entgegen. Als solchen haben wir
ihn zu würdigen, nicht nach seiner Begabung zur Entwicklung
theoretischer und philosophischer Vorstellungen. In dieser Hinsicht
mag sogar das Urteil eines Leibniz, daß Guericke kein
Naturforscher ersten Ranges sei, berechtigt sein. Andererseits übertraf
Guericke durch folgerichtiges Denken die Mehrzahl seiner
Zeitgenossen. Indem sie an die Stelle verschwommener Vorstellungen
die scharfe Logik der neueren Naturwissenschaft setzten, haben
Guericke und geistesverwandte Männer, die in den nördlichen
Ländern Europas bald in größerer Zahl erstanden, der wahren,
auf die Ergebnisse der exakten Forschung sich gründenden
Philosophie erst die Wege geebnet. In Anbetracht dieser Bedeutung
Guerickes wird es sich rechtfertigen, wenn wir zunächst
bei seinem Leben verweilen, dessen Schilderung, wie die Biographien
Galileis und Keplers, zugleich einen Schluß auf die Zustände
des 17. Jahrhunderts gestattet.

Otto von Guericke367 wurde am 20. November 1602 in
Magdeburg als Sprößling einer Patrizierfamilie geboren368. Er
studierte zunächst Rechtsgelehrsamkeit. Später befaßte er sich
mit Mathematik, Mechanik und Befestigungslehre. An seine Studienjahre
schloß sich eine Reise nach Frankreich und England an.
Nach dieser Vorbereitung trat Guericke in das Ratskollegium
seiner Vaterstadt ein. Durch das Unglück, das der dreißigjährige
Krieg über Magdeburg brachte, wurde auch Guericke schwer
betroffen. Als die Horden Tillys im Jahre 1631 plündernd und
mordend in die Stadt eindrangen, vermochte Guericke kaum das
nackte Leben zu retten. Durch seine Kenntnisse in den Ingenieurwissenschaften
gelang es ihm, sich eine neue Existenz zu gründen.
So war er nach der Zerstörung Magdeburgs in verschiedenen
Städten Deutschlands mit der Anlage von Befestigungen betraut,
einer Tätigkeit, in der jene Zeit die wichtigste Aufgabe der Technik
erblickte. Diese Arbeit hatte das Gute im Gefolge, daß Guericke
dazu überging, die Mittel der Ingenieurmechanik auf die Lösung
wissenschaftlicher Aufgaben anzuwenden. Leider ist wenig über
die allmähliche Ausreifung und Durchführung seiner Experimentaluntersuchungen
bekannt geworden. Selbst über die Zeit der Erfindung
der Luftpumpe konnten genauere Daten nicht ermittelt
werden369. Als endgültige Form der von Guericke erfundenen
Luftpumpe ist diejenige zu betrachten, die er in seinem Werke
beschreibt und abbildet. Die Abbildung ist auf S. 205 dies. Bds.
wiedergegeben.

Später kehrte Guericke nach Magdeburg zurück, um sich
am Wiederaufbau der Stadt zu beteiligen. Unter seiner Leitung
wurden die Festungswerke und die von den Kaiserlichen zerstörte
Elbbrücke wieder hergestellt. Für Guericke folgte dann zunächst
eine ruhige Zeit, während er später nach seiner Ernennung zum
Bürgermeister mit Geschäften überhäuft war. So finden wir ihn
als Vertreter Magdeburgs auf dem Friedenskongreß in Osnabrück,
dann wieder am Hofe in Wien oder auf dem Reichstage zu Regensburg.
Dort zeigte er dem Kaiser und den versammelten Ständen
im Jahre 1654 seine Luftpumpe und den so berühmt gewordenen
Versuch mit den Magdeburger Halbkugeln.

In Anbetracht des Umstandes, daß Guerickes Versuche
jahrelange Mühen und bedeutende Kosten erforderten – sein
Sohn hat sie auf 20000 Taler beziffert – hat die Annahme etwas
für sich, daß diese Versuche in das Jahrzehnt von 1635–1645 fallen.

Die erste Veröffentlichung über die Luftpumpe und die von
Guericke angestellten Versuche rührt von dem Würzburger Professor
Kaspar Schott her. Dieser befaßte sich im Auftrage
seines Landesherrn mit der Wiederholung jener Versuche, ohne
sich jedoch von der durch Guericke mit Nachdruck bekämpften
Lehre vom Horror vacui freimachen zu können.

Kaspar Schott wurde 1608 in der Nähe von Würzburg geboren
und starb dort 1666 als Professor der Physik und Mathematik.
Er gehörte der alten, damals in Deutschland herrschenden
Schule von Physikern an, die noch in einem Wust philologischer
und philosophischer Gelehrsamkeit steckten und außerstande waren,
den von Galilei eingeschlagenen Weg der induktiven Naturforschung
zu beschreiten. Dazu kam bei Schott und seinen
Geistesverwandten eine große Abhängigkeit von religiösen Dogmen.
In jeder neuen Entdeckung witterten sie Gefahr für die herrschende
Philosophie und die Kirche. Auch Schott eifert gegen die Vertreter
der neueren Naturwissenschaft, die er spöttisch als »neotericos
philosophastros«370 bezeichnet und denen er vorwirft, sie
wollten aus dem sogenannten leeren Raum vieles schließen, was
vom Standpunkte der Philosophie töricht und in bezug auf den
orthodoxen Glauben gefährlich sei. Trotzdem hat sich Schott
ein gewisses Verdienst um die Belebung der naturwissenschaftlichen
Forschung in Deutschland, erworben, weil er, ähnlich wie
Mersenne in Frankreich, mit zahlreichen Forschern in schriftlichem
Verkehr stand und dadurch zur raschen Verbreitung neuer
Beobachtungen und Entdeckungen beitrug, Probleme aufwarf und
Streitfragen in Fluß hielt. So war er auch der erste, durch den
die Gelehrten von Guerickes Erfindungen und Entdeckungen
ausführlichere Kenntnis erhielten. Dies geschah durch Schotts
Mechanik der Flüssigkeiten und der Gase (Mechanica hydraulico-pneumatica)
vom Jahre 1657. Schott wurde zu seiner Veröffentlichung
über die Magdeburgischen Versuche durch den Kurfürsten
Johann Philipp von Mainz, der zugleich Bischof von Würzburg
war und Guerickes Versuche 1654 in Regensburg gesehen hatte,
veranlaßt. Welches Staunen die neuen, heute als etwas Alltägliches
erscheinenden Vorgänge bei den Zeitgenossen verursachten,
geht aus Schotts Vorrede zu seinen einige Jahre später erschienenen
»Technischen Merkwürdigkeiten« (Technica curiosa
1664) hervor. Schott sagt dort über die Magdeburger Wunderdinge:
»Ich trage kein Bedenken zu bekennen, daß ich auf diesem
Gebiete nichts Bewunderungswürdigeres gesehen habe. Auch meine
ich, daß die Sonne niemals Ähnliches, geschweige denn Wunderbareres
seit der Erschaffung der Welt beschien.«

Ursprünglich hatte Guericke nicht die Absicht, über seine
Erfindungen und Entdeckungen zu schreiben, doch zwang ihm der
Widerspruch, den er fand, endlich die Feder in die Hand. So
entstand das im Jahre 1663 vollendete, indes erst 1672 erschienene
umfangreiche Werk »Über den leeren Raum«371. Der weitaus
wichtigste Teil desselben ist das dritte, »Über eigene Versuche«
betitelte Buch. Es ist eine der wichtigsten und lehrreichsten
älteren Monographien über einen physikalischen Gegenstand372.

Infolge philosophischer Streitigkeiten über den leeren Raum
war in Guericke der Wunsch entstanden, die Frage, ob ein Vakuum
möglich sei, durch Versuche zu beantworten. Denn die Gewandtheit
im Disputieren gelte nichts auf dem Gebiete der Naturwissenschaften373.
Wir erfahren aus der von ihm gegebenen Darstellung
zunächst von seinen Bemühungen, ein Faß zu evakuieren374. Es
wurde mit Wasser gefüllt und wohl verpicht, so daß die Luft
nicht einzudringen vermochte. Am unteren Teile des Fasses wurde
eine Messingspritze als Pumpe angebracht, mit deren Hilfe man
das Wasser herausziehen konnte. Letzteres, schloß Guericke,
müsse vermöge seiner Schwere herabsinken und über sich einen leeren
Raum zurücklassen. An der Spritze hatte Guericke zwei Ventile
angebracht, von denen das eine den Eintritt des Wassers aus dem
Faß in die Spritze, das andere den Abfluß nach außen vermittelte.

Die Bemühungen, das so hergerichtete Faß luftleer zu machen,
scheiterten jedoch an der Porosität des Holzes. Selbst als Guericke
das Faß, um das Eindringen der Luft zu verhindern, in einen größeren,
mit Wasser gefüllten Behälter einschloß, mißlang der Versuch,
Das Wasser wurde zwar aus dem kleineren Faß herausgezogen,
trotzdem fand sich letzteres nach einiger Zeit zum Erstaunen aller
Zuschauer zum Teil mit Wasser, zum Teil mit Luft gefüllt. Diese
Stoffe waren durch die Poren des Holzes eingedrungen.

Nachdem die Porosität des Holzes als die Ursache des Mißerfolges
erkannt war, wählte Guericke für sein Vorhaben eine
kupferne Kugel. Er verband sie mit einer Spritze, wie er sie bei
den vorhergehenden Versuchen benutzt hatte. Anfangs ließ sich
der Stempel leicht bewegen; bald wurde dies aber immer schwieriger.
Als nun Guericke glaubte, es sei nahezu alle Luft herausgeschafft,
wurde die Metallkugel plötzlich mit lautem Knall und
zu aller Schrecken zerknittert. Guericke schrieb diesen Vorfall
dem Umstände zu, daß sich an der Kugel wahrscheinlich eine flache
Stelle befunden hatte, die den Druck der umgebenden Luft nicht
auszuhalten vermochte. Als der Metallarbeiter eine vollkommen
runde Kugel hergestellt hatte, gelang der Versuch. Zum Beweise,
daß die Kugel vollständig evakuiert war, diente der Umstand,
daß aus dem nach außen führenden Ventil der Spritze endlich
keine herausgezogene Luft mehr entwich.

Öffnete man dann den Hahn der Kugel, so drang die Luft
mit großer Gewalt in sie ein. Brachte man dabei das Gesicht an
den Hahn, so wurde einem der Atem benommen, ja man konnte
die Hand nicht über den Hahn halten, ohne daß sie mit Heftigkeit
angezogen wurde.

Nach diesem so glänzend gelungenen Versuch baute Guericke
eine verbesserte Luftpumpe, die folgende Einrichtung aufwies
(siehe Abb. 63)375. Ein Dreifuß wurde mit Schrauben am Boden
befestigt. Zwischen seinen Füßen wurde in passender Höhe der
Stiefel der Pumpe angebracht, deren Kolben durch den Hebel wu
bewegt wurde. Der obere, deckelförmige Teil der Luftpumpe ist
in Fig. IV abgebildet. Er trägt eine Röhre n, in welche der
Hahn des Rezipienten gesteckt wird. Unter dieser Röhre befindet
sich ein Lederventil, das sich bei der Abwärtsbewegung des Kolbens
öffnet und die Luft aus dem Rezipienten in den Stiefel treten
läßt. Durch das äußere Ventil z (Fig. IV) entweicht die Luft
beim Aufwärtsbewegen des Kolbens. Das trichterförmige Gefäß xx
wird nach der Verbindung und dem Abdichten aller Teile mit
Wasser gefüllt, um das Wiedereindringen von Luft nach Möglichkeit
zu verhindern. Aus demselben Grunde wird das untere Ende
des Stiefels in einen Wasserbehälter (Fig. VI) getaucht.


[image: Abb. 63]
Abb. 63. Guerickes Luftpumpe.


(Wiedergabe der 6. Tafel der »Magdeburgischen Versuche«.)



Guericke erkannte bald, daß die Luft nicht etwa infolge
ihrer Schwere aus dem Rezipienten in den Kolben gelangt, wie er
anfänglich voraussetzte, sondern infolge ihrer Expansivkraft. Da
letztere gegen das Ende der Evakuierung indessen nicht mehr groß
genug war, um das unter der Röhre n befindliche Ventil zu bewegen,
brachte er noch ein Röhrchen m mit einem kleinen Stempel
an, der die Bewegung des Ventils unabhängig von der Elastizität
der Luft gestattete.

Die Erfindung des Wasserbarometers.

Als Guericke eines Tages in den entleerten Rezipienten
vermittelst einer Röhre Wasser aus einem Kübel steigen ließ, der
am Boden des Zimmers stand, kam er auf den Gedanken, zu untersuchen,
wie weit wohl bei diesem Versuch der Rezipient von dem
Kübel entfernt sein könne. Er verlängerte daher die Röhre, so
daß sie aus dem zweiten Stockwerk seines Hauses durch das
Fenster bis auf den Boden des Hofes reichte. Nachdem dann
ein Gefäß mit Wasser darunter gesetzt war, öffnete er den Rezipienten.
Das Wasser stieg darauf, seiner Schwere entgegen, nichtsdestoweniger
in das entleerte Gefäß empor. Bei einer Wiederholung
des Versuches unter Anwendung einer längeren Röhre stieg
das Wasser sogar bis in das dritte Stockwerk. Erst nachdem
Guericke sich mit seinem Rezipienten in den vierten Stock begeben
hatte, nahm er wahr, daß kein Wasser mehr in das Gefäß
gelangte, sondern daß es in der Röhre in der Schwebe blieb.

Abb. 64, welche eine Wiedergabe der X. Tafel des Guerickeschen
Werkes ist, enthält auf der rechten Seite das Wasserbarometer.
mm ist der Kübel, i der Rezipient, bg die aus vier
Stücken zusammengesetzte Röhre. Jedes Stück besaß am oberen
Ende eine napfförmige Erweiterung, in die nach dem Zusammenfügen
zum besseren Abdichten Wasser gegossen wurde. Die Rohrstücke
bestanden aus Messing, so daß sich die Steighöhe nicht genau
ermitteln ließ. Es war daher nötig, an der Stelle, wo sich das
in der Schwebe befindliche Wasser vermuten ließ, eine Glasröhre
vermittelst Kitt gut schließend einzuschalten und den Versuch von
neuem anzustellen. Als jetzt der Hahn des Rezipienten geöffnet
wurde, sah Guericke das Wasser eindringen, einige Male in der
Glasröhre auf und niederschwanken, endlich aber zur Ruhe kommen.
Jetzt ließ sich die Stelle, bis zu der das Wasser gestiegen war,
genau feststellen. Guericke merkte diese Stelle an und ließ von
hier ein Lot bis zum Boden des Hofes hinab. Die Länge des Lotes
fand er gleich etwa 19 Magdeburger Ellen.


[image: Abb. 64]
Abb. 64. Guerickes Wasserbarometer.


(Wiedergabe der 10. Tafel der »Magdeburgischen Versuche«.)



Fortgesetzte Beobachtungen an diesem Apparat ließen Guericke
alsbald Schwankungen in der Höhe der Wassersäule entdecken.
Das Wasser stand nämlich mitunter um mehrere Handbreit
höher und dann wieder um soviel tiefer. Um diese Schwankungen
besser zu verfolgen, brachte Guericke eine aus Holz geschnitzte
Figur in die Röhre, die mit dem Wasser auf- und niederstieg
und dabei auf eine an der Röhre angebrachte Skala wies
(Fig. 10, IV). Aus diesen Schwankungen, von denen Pascal nachwies,
daß sie in viel beträchtlicherem Maße beim Durchschreiten
verschiedener Niveaus der Atmosphäre eintreten (s. S. 197), schlossen
beide Forscher, daß nicht der Horror vacui, sondern eine äußere
Ursache, der Luftdruck nämlich, das Steigen der Flüssigkeiten hervorruft.
»Wenn das Emporsteigen infolge des Abscheus vor dem
leeren Raum geschähe,« meint Guericke, »so müßte das Wasser
entweder bis zu einer beliebigen Höhe dem Vakuum folgen
oder immer in ein- und derselben Höhe stehen bleiben. Daß aber
die Höhe sich ändert, ist das sicherste Zeichen dafür, daß nicht
nur das Emporsteigen, sondern auch die Schwankungen des Wassers
von einer äußeren Ursache herrühren. Seine Höhe hängt also
nicht von dem Abscheu der Natur vor dem leeren Raume ab, sondern
von dem Gleichgewicht zwischen dem Druck der Wassersäule
und dem Luftdruck.«

Ferner entging es Guericke nicht, daß zwischen den von
ihm entdeckten Schwankungen der Wassersäule und den Witterungserscheinungen
ein gewisser Zusammenhang besteht. Über
eine Wettervorhersage berichtet er mit folgenden Worten: »Ich
habe mit Bestimmtheit, als im vergangenen Jahre jener ungeheure
Sturm stattfand, eine besondere, außerordentliche Veränderung der
Luft wahrgenommen. Sie war so leicht im Vergleich zu sonst
geworden, daß der Finger des Männchens bis unter den äußersten,
an der Glasröhre angebrachten Punkt herabstieg. Als ich dies
sah, teilte ich den Umstehenden mit, es sei ohne Zweifel irgendwo
ein großes Unwetter ausgebrochen. Und kaum waren zwei Stunden
verflossen, als der Orkan in unsere Gegend einbrach.«



Wägung der Luft und Versuche im Vakuum.

Das Nächstliegende war, daß Guericke eine abgeschlossene
Luftmenge wog, indem er den Gewichtsunterschied zwischen dem
mit Luft gefüllten und dem luftleeren Rezipienten feststellte376.
Von einem hervorragenden Beobachtungsvermögen zeugt es, daß
ihm die geringen, durch die Änderungen des aërostatischen Auftriebs
veranlaßten Schwankungen im Gewichte des evakuierten
Rezipienten nicht entgingen. Die 3. Abbildung seiner X. Kupfertafel377
erläutert den betreffenden Versuch. Der leergepumpte Rezipient
L wurde mit einem an Rauminhalt viel kleineren Metallkörper
ins Gleichgewicht gebracht. Als Guericke diese Vorrichtung
längere Zeit beobachtete, fand er, daß der Rezipient bald
höher, bald tiefer stand. Er bemerkt hierzu ganz richtig, daß
beim Eintauchen des ganzen Apparates in Wasser der Rezipient
in diesem dichteren Medium viel leichter erscheinen und erheblich
in die Höhe steigen müsse. Sein Apparat lieferte also den Nachweis,
daß das unter dem Namen des Auftriebs bekannte und
schon von Archimedes erforschte Verhalten auch für gasförmige
Medien gilt.

Auf Grund der von ihm gefundenen Tatsache, daß die Luft
denselben Druck ausübt wie eine 19 Magdeburger Ellen (10 m)
hohe Wassersäule, zeigt Guericke378, wie man den Druck eines
beliebigen Luftzylinders berechnen kann. In dem Fall, daß der
Durchmesser des Zylinders 2/3 Ellen beträgt, findet er für ihn einen
Druck von 2687 Pfund. Um diesen außerordentlichen Druck recht
augenfällig zu zeigen, verfuhr er folgendermaßen: Er ließ zwei
Halbkugeln aus Kupfer von etwa 2/3 Magdeburger Ellen Durchmesser
so herrichten, daß sie gut aufeinander paßten. Die eine
Halbkugel wurde mit einem Ventil versehen, mit dessen Hilfe die
im Innern der Kugel befindliche Luft herausgezogen werden konnte.
Die Schalen besaßen ferner eiserne Ringe, um Pferde daran zu
spannen. Ferner ließ Guericke einen Ring aus Leder herstellen,
der gut mit Wachs und Öl durchtränkt war, so daß er keine Luft
durchließ.

Die Schalen wurden, nachdem der Lederring zwischen sie gebracht
war, aufeinander gelegt und darauf die Luft schnell herausgepumpt.
Die beiden Schalen wurden dadurch von dem Drucke der
äußeren Luft so fest zusammengepreßt, daß sechzehn Pferde sie
nur mit Mühe voneinander reißen konnten. Ließ man jedoch
durch Öffnen des Hahnes die Luft wieder eintreten, so konnten
die Halbkugeln schon mit den Händen getrennt werden.

Fast alle Luftpumpenversuche, die im heutigen Physikunterrichte
gezeigt werden, rühren von Guericke her. So wies er
nach, daß der Schall sich im Vakuum nicht fortpflanzt, während
das Licht ungehindert hindurchgeht. Tiere starben in seinem entleerten
Rezipienten nach kurzer Zeit. Fische mit allseitig geschlossener
Schwimmblase schwollen darin infolge der Expansion
der Luft stark an, während bei solchen Fischen, deren Schwimmblase
einen Ausführungsgang nach dem Schlunde besitzt, die
eingeschlossene Luft infolge der gleichen Ursache zum Teil entwich.
Guericke zeigte ferner, daß das Feuer im Vakuum
erlischt. Er bestätigte auch die Beobachtung, daß bei der Verbrennung
Luft verzehrt wird. Eine Kerze, die in einem geschlossenen
Rezipienten brannte, erlosch nämlich, sobald ein Teil
der Luft verbraucht war379. Bei der Erörterung dieses Versuches
zeigt Guericke, wie klar er urteilt. Zunächst wirft er die Frage
auf, warum das Erlöschen eintritt, bevor die ganze Luftmenge
aufgezehrt ist. Als Grund dafür gibt er an, daß die Luft durch
die Produkte der Verbrennung verunreinigt werde. Die weitere
Frage, ob das Feuer die Luft in der Weise verzehrt, daß es letztere
vernichtet, oder ob es die Luft in einen anderen Stoff verwandelt,
entscheidet Guericke in letzterem Sinne. Doch sei der
Stoff so fein, daß man ihn nicht wahrnehmen könne.

Über die Ursache des Luftdrucks äußert sich Guericke mit
folgenden Worten: »Einige verlegen die Ursache in die von allen
Seiten kommenden Strahlen der Sterne. Wäre dies der Fall, so
müßte indessen auch die Erdkugel diesen Druck empfangen und
ihm Widerstand leisten. Wenn aber zwei Körper einander drücken,
so wird ein zwischen ihnen befindlicher Gegenstand von beiden
Seiten denselben Druck erleiden. Daraus würde notwendig
folgen, daß die oberen Teile der Luft in gleichem Maße gedrückt
werden, wie die unteren, was aber durch die Versuche
widerlegt wird.«

»Da die untere Luft stärker zusammengedrückt ist als die
obere, und man dies nicht erst auf hohen Bergen, sondern schon
auf Türmen wahrnimmt380, so folgt daraus, daß die Luft sich nicht
weit von der Oberfläche der Erde erstreckt, sondern daß ihre
Höhe, verglichen mit der großen Entfernung der Sterne, nur
gering ist.«

Um die Fortpflanzung des Schalles im Vakuum zu prüfen,
hatte Berti in Rom im Jahre 1647 einen Apparat ersonnen,
der große Ähnlichkeit mit Guerickes Wasserbarometer besaß.
Berti errichtete an seinem Hause eine Röhre von 100 Fuß Länge.
An ihrem oberen Ende verband er sie luftdicht mit einem Gefäß,
in dem sich ein Schlagwerk befand. Der ganze Apparat wurde
durch eine obere Öffnung mit Wasser gefüllt. Diese Öffnung
wurde dann luftdicht geschlossen, worauf das untere Ende der
Röhre, das in Wasser tauchte, geöffnet wurde. Das Wasser sank
und in dem Gefäß entstand ein leerer Raum. Trotzdem gab das
Schlagwerk, das vermittelst eines Magneten in Bewegung gesetzt
wurde, einen Ton. Hieraus leiteten Berti und Schott, der über
den geschilderten Versuch berichtete, einen Einwurf gegen die
Möglichkeit des Vakuums her. Guericke und nach ihm Boyle
zeigten jedoch, daß, bei Vermeidung aller Fehler, Gefäße derart
evakuiert werden können, daß der Schall sich in ihnen nicht oder
kaum noch fortpflanzt381. So hing Guericke das Schlagwerk an
einem Faden auf, um die Fortpflanzung des Schalles durch die
feste Materie des Rezipienten nach Möglichkeit zu verhindern.

Mit dem von Torricelli erfundenen Verfahren, ein Vakuum
über Quecksilber herzustellen, wurde Guericke erst 1654 auf
dem Reichstage zu Regensburg382 bekannt. – Auch um die Elektrizitäts-,
die Wärmelehre und die Mechanik hat sich Guericke
Verdienste erworben. Doch ist davon an anderer Stelle die Rede.

Die Entdeckung des Boyle-Mariotte'schen Gesetzes.

Als die Kunde von der Erfindung Guerickes nach England
gelangt war, machte sich dort Boyle an die Herstellung einer
Luftpumpe, die in mehrfacher Hinsicht diejenige Guerickes übertraf.
Im Jahre 1660 veröffentlichte Boyle seine »Neuen Versuche«383,
die sich zum Teil mit den »magdeburgischen« deckten,
zum Teil aber wirklich »neu« waren. Erwähnt sei die Beobachtung,
daß erwärmtes Wasser im Vakuum kocht, womit die Abhängigkeit
des Siedepunktes von dem auf der
Flüssigkeit lastenden Druck erwiesen war.

Boyle war auch der erste, der die einfache
Beziehung erkannte, die zwischen dem Druck und
dem Volumen eines Gases besteht. Er schloß
12 Kubikzoll Luft durch Quecksilber in dem kürzeren
Schenkel einer U-förmig gebogenen Röhre
ab (siehe Abb. 65). In dem Maße, in dem Quecksilber
in den längeren offenen Schenkel gegossen
wurde, verringerte sich das Volumen der abgesperrten
Luft. Bei einem Drucke von zwei Atmosphären
nahm sie nur noch sechs Kubikzoll, bei
drei Atmosphären vier Kubikzoll (ein Drittel des
ursprünglichen Volumens) ein, oder, wie Boyle es
aussprach, die Luft verdichtete sich im Verhältnis
der zusammendrückenden Kräfte.


[image: Abb. 65]
Abb. 65. Boyles
Versuch, eine Beziehung
zwischen
dem Druck und
dem Volumen
eines Gases zu
finden384.



Dieses Grundgesetz der Aëromechanik385 wurde
geraume Zeit später durch den Franzosen Mariotte
(1620–1684) selbständig aufgefunden und klarer
ausgesprochen als von Boyle. Eine vortreffliche
Darstellung seiner Entdeckung gab Mariotte in
der »Abhandlung über die Natur der Luft«386.
Mariotte tauchte ein Barometer in hinreichend
tiefes, klares Wasser, und bemerkte, daß eine
Wassersäule von 14 Zoll Höhe ein Steigen des
Quecksilbers um einen Zoll bewirkt. »Offenbar rührt dies«, sagt
Mariotte, »daher, daß das spezifische Gewicht des Quecksilbers
14mal größer ist als dasjenige des Wassers.« Wenn das Quecksilber
im Barometer 28 Zoll hoch stehe, so gehe daraus hervor,
daß diese Quecksilbersäule gerade so viel wiege wie eine Luftsäule
von gleicher Grundfläche, die sich von der Oberfläche des in dem
Gefäße befindlichen Quecksilbers bis zur Grenze der Atmosphäre
erstrecke.

Eine zweite Eigenschaft der Luft bestehe darin, daß sie
außerordentlich verdichtet und ausgedehnt werden könne, dabei
aber immerfort einen Druck ausübe, wodurch die Luft die
Körper, die sie einschließen, zurückstoße oder zurückzustoßen
strebe. Während die meisten anderen Spannkräfte allmählich abnehmen,
bemerke man nie, daß dies bezüglich der Spannung der
Luft der Fall sei. So komme es vor, daß lange Zeit geladene
Windbüchsen dasselbe leisteten, als ob sie soeben geladen wären.
Daß die Luft im Verhältnis zur Steigerung des Druckes, der auf
ihr lastet, verdichtet wird, zeigte Mariotte wie Boyle vermittelst
einer U-förmig gebogenen Röhre. Er wies auch darauf hin,
daß der kürzere Schenkel dieser Röhre, wenn der Beweis gelingen
soll, überall gleich weit sein müsse, während dies für den längeren
Schenkel nicht erforderlich sei.

Daß das Volumen der Luft dem Drucke auch dann umgekehrt
proportional ist, wenn wir den Druck vermindern, bewies Mariotte
auf folgende Weise. Er schloß in einem Barometerrohr Quecksilber
und Luft ab und machte den Torricellischen Versuch. Das
Quecksilber sank dann. »Indem es fällt«, sagt Mariotte, »dehnt
die im Innern der Röhre befindliche Luft sich aus. Infolgedessen
ist ihre Spannung geringer. Ein Teil des Quecksilbers bleibt in
der Röhre. Und zwar wird die Höhe der Quecksilbersäule von der
Dichte der eingeschlossenen Luft abhängen. Das Quecksilber, das
in der Röhre schweben bleibt, hebt den Rest des Luftdrucks auf,
so daß sich ein Gleichgewichtszustand bildet zwischen dem Drucke
der Atmosphäre einerseits und dem Drucke der Quecksilbersäule,
vermehrt um die Spannung der eingeschlossenen Luft andererseits.«
Wenn die Luft im Verhältnis des Druckes, der auf ihr lastet,
ihr Volumen verändert, so muß, schloß Mariotte richtig bei
einem Versuche, bei dem das Quecksilber in der Röhre 14 Zoll
hoch steht, die eingeschlossene Luft die doppelte Ausdehnung besitzen
wie vorher, vorausgesetzt, daß zur selben Zeit ein Barometer
ohne Luft eine Quecksilberhöhe von 28 Zoll anzeigt.

Um zu zeigen, daß es sich so verhält, machte Mariotte
folgende Probe. Er bediente sich einer Röhre von 40 Zoll Länge
und füllte 27½ Zoll Quecksilber hinein, so daß sich 12½ Zoll
Luft darin befanden. Nachdem die Röhre umgedreht und
1 Zoll tief in das Quecksilber des Gefäßes getaucht war, fiel das
Quecksilber beim Fortnehmen des Fingers und blieb nach einigen
Schwankungen in einer Höhe von 14 Zoll stehen. Die eingeschlossene
Luft nahm jetzt 25 Zoll387 ein, hatte also ihr Volumen
verdoppelt, da sich vor dem Versuche nur 12½ Zoll Luft in der
Röhre befanden. War also der Druck auf die Hälfte vermindert,
so hatte sich das Volumen der Luft verdoppelt.

Die Idee des Aneroidbarometers begegnet uns zuerst bei
Leibniz. Er schreibt: »Ich glaube, daß man ein Barometer
ohne Quecksilber nach Art eines wohl verschlossenen Blasebalgs
oder nach Art einer Pumpe herstellen kann«388. In einem Briefe
an Johann Bernoulli finden sich folgende Ausführungen über
diesen Gegenstand: »Ich habe zuweilen an ein tragbares Barometer
gedacht, das in einen, einer Uhr ähnlichen, kleinen Behälter
eingeschlossen werden könnte. Quecksilber soll dabei nicht zur
Verwendung kommen, sondern eine Art Blasebalg, den das Gewicht
der Luft zusammenzudrücken sucht, während er durch die
Kraft einer elastischen Feder Widerstand leistet.« Zu einer
brauchbaren Ausführung dieses Gedankens kam es erst um die
Mitte des 19. Jahrhunderts389.




9. Die weitere Entwicklung der Iatrochemie
und die Begründung der wissenschaftlichen
Chemie durch Boyle.

Von einem Zeitalter, das sich mit solcher Energie und mit
solchem Erfolge der experimentellen Forschung zuwandte, wie das
17. Jahrhundert, ließ sich erwarten, daß auch die Chemie um
manche wichtige Entdeckung bereichert würde, wenn auch diese
Wissenschaft erst weit später diejenige Stufe einnahm, auf die
ihre ältere Schwester, die Physik, durch Galilei und seine Zeitgenossen
gelangt war.

Neue Ziele der Chemie.

Wir verließen die Chemie an einem Punkte ihrer Entwicklung,
an dem eine wesentliche Änderung ihrer ganzen Richtung
eintrat. Ihr bisheriges Ziel, den Stein der Weisen und mit dessen
Hilfe Gold zu bereiten, trat nämlich im Verlauf des 16. Jahrhunderts
immer mehr gegen dasjenige zurück, Präparate zur Heilung
von Krankheiten herzustellen. Diese unter dem Namen der
Iatrochemie bekannte Richtung der Chemie erreichte ihren Höhepunkt
in van Helmont. Begründet war die Iatrochemie durch
Paracelsus, mit dessen Leben und Wirken wir schon bekannt
geworden sind390. Paracelsus pries in übertriebenem Maße die
Heilwirkung anorganischer Verbindungen, während Libavius, der
uns wie van Helmont in diesem Abschnitt beschäftigen wird, eine
vermittelnde Stellung einnahm. Alle drei standen, obgleich sie
der Chemie neue Ziele wiesen, noch mit einem Fuße im alchemistischen
Zeitalter.

Johann Baptist van Helmont entstammte einem vornehmen
niederländischen Geschlecht. Er wurde 1577 in Brüssel geboren391
und widmete sich zunächst der Theologie. Da diese ihn nicht
befriedigte, wandte er sich der Heilkunde zu. Auch hier geriet
er mit den hergebrachten, Galen entstammenden Dogmen in einen
Widerspruch, aus dem ihn erst die neue, auf chemischer Grundlage
errichtete Lehre des Paracelsus befreite. Van Helmont
verzichtete auf eine glänzende Laufbahn, die sich ihm durch äußere
Verhältnisse wohl eröffnet hätte. Er zog es vor, sich in der Stille
seines Laboratoriums ganz der Forschung zu widmen.

Als besonderes Verdienst hat man es van Helmont angerechnet,
daß er zum ersten Male die Verschiedenartigkeit der luftförmigen
Körper hervorgehoben, sowie den Begriff und die Bezeichnung
»Gas« eingeführt habe392. Vor ihm hatte man trotz ihrer großen
Unterschiede Wasserstoff, Schwefeldioxyd, Kohlendioxyd und atmosphärische
Luft für wesentlich ein und dasselbe gehalten. Am
genauesten hat van Helmont das Kohlendioxyd untersucht. Er
zeigte, daß dieses Gas sich aus Kalkstein, sowie aus Pottasche
durch Übergießen mit Säuren entwickeln läßt und daß es mit dem
Verbrennungsprodukt der Kohle identisch ist. Auch daß sich
Kohlendioxyd in Mineralwässern findet und bei der Gärung entsteht,
war ihm bekannt393.

Die Erkenntnis, daß es in der Chemie kein eigentliches Entstehen
und Vergehen gibt, regte sich gleichfalls schon bei van
Helmont. So lehrte er, daß Kupfer, das aus dem blauen Vitriol
durch Zusatz von Eisen abgeschieden wird, nicht etwa neu entstanden
sei. Auch das Silber läßt er in seinen Salzen fortbestehen.
Trotz alledem beschäftigte ihn das alchemistische Problem; ja,
dieses gewann infolge des Ansehens, das van Helmont genoß,
sogar erhöhte Beachtung.

Um den Stein der Weisen, die Materia prima, zu gewinnen,
schmolzen, kochten und mischten die Alchemisten alle Stoffe, auf
die man nur verfallen konnte. »Durchprobiert«, sagt ein hervorragender
Schilderer der alchemistischen Bestrebungen394, »wurde,
was auf der Erde vorkommt, was sie in ihren Tiefen birgt und
was auf sie herabfällt.« Man untersuchte auch Pflanzensäfte und
Tiersekrete, wie Milch und Speichel, Fäces und Harn. Auf diese
Weise wurde zwar nicht die Materia prima gefunden, aber manche
wertvolle Beobachtung gemacht, vor allem wurde die Beschäftigung
mit der Natur in den Mittelpunkt des menschlichen Tuns und
Denkens gerückt. War man doch bis dahin in mystischen und religiösen
Vorstellungen nicht selten so befangen, daß jede Beschäftigung
mit natürlichen Vorgängen als sündhaft, mindestens aber als
niedrig betrachtet wurde. Wenn es auch der experimentellen Forschungsweise
an Mitteln und den richtigen Methoden noch sehr
gebrach, so wurde doch der Boden für eine höhere, eigentlich wissenschaftliche
Tätigkeit auf solche Weise vorbereitet und manche wichtige,
wenn auch mehr zufällige Entdeckung gemacht. So führte das
von den Alchemisten geübte Kochen, Glühen und Destillieren aller
möglichen Stoffe, welche die zur Darstellung des Goldes notwendige
Materia prima geben sollten, im 17. Jahrhundert zur Entdeckung
des Phosphors durch den Hamburger Kaufmann Brand395. Dieser
ließ sich bei seinen Versuchen von dem Gedanken leiten, daß die
im Organismus tätige Lebenskraft, die so Wunderbares bewirke,
imstande sein müsse, die Metalle zu verwandeln. Er unterwarf
daher den beim Eindampfen von Harn erhaltenen Rückstand der
trockenen Destillation. Dabei wurden die phosphorhaltigen Verbindungen
des Harns durch den in der organischen Materie enthaltenen
Kohlenstoff reduziert. Das auf solche Weise396 im Jahre
1669 erhaltene Element Phosphor erregte wegen seiner überraschenden
Eigenschaften das größte Aufsehen.

Von Interesse sind auch die Beziehungen des Philosophen
Leibniz, der über die Erfindung des Phosphors ausführlich berichtete,
zu den alchemistischen Bestrebungen seiner Zeit397. Leibniz
war, als er in Altdorf studierte, Mitglied der Nürnberger
hermetischen Gesellschaft. Die Stellung, die er jedoch den Übertreibungen
der Alchemisten gegenüber einnahm, geht aus folgenden,
für das Gelehrtendeutsch jener Zeit charakteristischen Worten des
großen Philosophen hervor:

»Die Laboranten, Charlatans, Marktschreier, Alchymisten und
andere Vaganten und Grillenfänger sind gemeiniglich Leute von
großem Ingenio, bisweilen auch Experienz, nur daß die disproportio
ingenii et indicii, oder auch bisweilen die Wollust, die sie
haben, sich in ihren eitelen Hoffnungen zu unterhalten, sie ruiniert
und in Verderben und in Verachtung bringet. Gewißlich, es weiß
bisweilen ein solcher Mensch mehr aus der Erfahrung und Natur
gewonnene Realitäten, als mancher in der Welt hochangesehene
Gelehrte, der seine aus den Büchern zusammen gelesene Wissenschaft
mit Eloquenz, Adresse und anderen politischen Streichen
zu schmücken und zu Markt zu bringen weiß, dahingegen der
andere mit seiner Extravaganz sich verhaßt oder verächtlich macht.
Daran sich aber verständige Regenten in einer wohlbestellten Republique
nicht kehren, sondern sich solcher Menschen bedienen,
ihnen gewisse regulierte Employ und Arbeit geben und dadurch
sowohl ihr als ihrer Talente Verderben verhüten können.« (Klopp,
die Werke von Leibniz. Bd. I. S. 143.)

Auch König Friedrich I. von Preußen hatte seinen Goldmacher,
den Grafen Cajetan, einen Italiener, der ihm versprach, in wenigen
Wochen für sechs Millionen Taler Gold zu machen. Als
sich die Hoffnung des Königs nicht erfüllte, ließ er den »Grafen«
aufknüpfen. Vorher hatte dieser dem Kurfürsten von Bayern und
dem Kaiser große Summen durch ähnliche Versprechungen abzuschwindeln
verstanden.

Im 17. Jahrhundert begegnet uns auch die Umkehrung der
bisherigen Aufgabe der Alchemie. Anstatt Gold zu schaffen,
wollte man gegebenes Gold zerstören oder, wie man sich ausdrückte,
»aus seinem Wesen setzen«. Es erschien eine Schrift unter dem
Titel »Sol sine veste oder dreißig Experimente, dem Gold seinen
Purpur auszuziehen«398. Als eine solche Zerstörung des Goldes
wurde z. B. die eigentümliche feinste Verteilung des Goldes im
Glasfluß aufgefaßt. Selbst Kunkel glaubte, das Gold, das die
Farbe des Rubinglases bewirkt, sei aus seinem Wesen gesetzt, d. h.
nicht mehr als Gold vorhanden.

Bei den Stoffverwandlungen spielte auch die Lehre, daß das
Wasser der Hauptbestandteil aller Stoffe sei, eine Rolle. Diese
Ansicht war bei van Helmont jedoch kein bloßes Philosophem
wie bei Thales. Sie stützte sich vielmehr auf, wenn auch irrtümlich
gedeutete, Beobachtungen und Versuche. Van Helmont
hatte z. B. 200 Pfund Erde in einem irdenen Gefäße abgewogen
und in dieses eine 5 Pfund schwere Weide gepflanzt. Letztere
wurde nur mit Regenwasser begossen. Nach Verlauf von 5 Jahren
wog die Weide 170 Pfund, während das Gewicht der Erde nur
um wenige Unzen abgenommen hatte. Die Gewichtszunahme der
Weide schrieb van Helmont, da er die Rolle des atmosphärischen
Kohlenstoffs noch nicht kannte, allein dem Wasser zu.

Im Zeitalter der Iatrochemie sind sehr wahrscheinlich auch
die Schriften entstanden, die früher Basilius Valentinus (er
sollte um 1450 gelebt haben) zugeschrieben wurden. Zu Beginn
des 17. Jahrhunderts gab nämlich Thölde, Ratskämmerer zu
Frankenhausen, eine Anzahl alchemistischer Schriften heraus. Die
Titel der wichtigeren lauten: »Triumphwagen Antimonii« und
»Vom großen Stein der uralten Weisen«. Diese Schriften gaben
den alchemistischen Bestrebungen, die ihren Höhepunkt damals
schon überschritten hatten, wieder Anregung. Nach neueren Untersuchungen
beruhen sie indessen auf einer literarischen Fälschung
ganz eigener Art. Sind auch die Einzelumstände dieser Fälschung
noch nicht genügend aufgeklärt, so ist doch so viel gewiß, daß
die unter dem Namen des Basilius Valentinus gehenden Schriften
nicht von einem im 15. Jahrhundert lebenden Mönche dieses
Namens herrühren, sondern erst gegen das Ende des 16. oder zu
Beginn des 17. Jahrhunderts verfaßt wurden.

Die Aufnahme zahlreicher anorganischer Verbindungen unter
die Heilmittel rief anfangs manchen und gewiß sehr oft berechtigten
Widerstand hervor. In Heidelberg z. B. ließ die medizinische
Fakultät noch bis zur Mitte des 17. Jahrhunderts diejenigen, denen
sie die Doktorwürde verlieh, schwören, daß sie niemals von
Antimon- und Quecksilberpräparaten in ihrer ärztlichen Praxis
Gebrauch machen wollten. Ein ähnliches Verbot bestand auch
in Paris.

Zwischen den Paracelsisten und den Anhängern der älteren
Heilkunde suchte besonders Libavius zu vermitteln. Andreas
Libavius wurde in Halle geboren399. Er studierte Medizin, Geschichte
und Sprachwissenschaften und starb im Jahre 1616 als
Direktor des Gymnasiums zu Coburg. Libavius war der namhafteste
deutsche Chemiker seiner Zeit. Wir verdanken ihm das
erste Lehrbuch der Chemie, seine 1595 erschienene Alchymia, mit
dem wir uns etwas näher befassen wollen. Wie schon der Titel
sagt und wie die ersten Sätze des Buches lehren, war Libavius
ein erklärter Anhänger der Alchemie. Sie ist für ihn die Kunst,
die Magisterien, d. h. die Stoffe, die zur Metallverwandlung dienen,
zu erzeugen und die reinen Grundbestandteile aus ihren Mischungen
abzuscheiden400. Als Grundbestandteile oder Prinzipien unterscheidet
auch er Mercurius, Sal und Sulphur. Der zweite Teil der
»Alchymia« des Libavius ist das eigentliche Lehrbuch der Chemie,
da sich darin im wesentlichen eine Darstellung der zu seiner Zeit
bekannten chemischen Tatsachen und die Grundzüge einer Dokimasie
(Probierkunst) finden. Die Überschriften der einzelnen Abschnitte
lauten:


	Von der Natur der Metalle.

	Vom Golde.

	Vom Silber.

	Von den unvollkommenen Metallen.

	Vom Eisen.

	Von den Stoffen, die mit den Metallen verwandt sind.



Als solche werden aufgezählt: Quecksilber, Wismut, Antimon,
Schwefel und Arsen.

Libavius untersuchte die schon lange vor ihm bekannten
Bleisalze, Bleizucker und Bleiessig, genauer und brachte sie als
Heilmittel in Vorschlag. Er vereinfachte die Darstellung der
Schwefelsäure und wies nach, das die aus Alaun, Vitriol oder
Schwefel erzeugte Säure ein und dieselbe Substanz ist.

Wie der gleichzeitig lebende Agricola bemühte sich Libavius
auch, Mittel und Wege anzugeben, um in den Erzen und
den metallischen Präparaten den Metallgehalt nachzuweisen. Beide
begründeten die, durch hüttenmännische Erfahrungen allerdings
seit alters vorbereitete, metallurgische Probierkunst (Dokimasie).
So legte sich Libavius die Frage vor, wieviel Gold anderen Metallen,
wie dem Silber, dem Blei oder dem Quecksilber beigemengt
sei, wie man den Silbergehalt der Bleiglätte ermitteln könne usw.
Von besonderem Werte ist das Buch des Libavius noch dadurch,
daß es eine genaue Beschreibung der gegen den Ausgang des
16. Jahrhunderts üblichen chemischen Apparate und Vorrichtungen
enthält. Neben der Wärme suchte man z. B. auch das Licht als
chemisches Agens zu verwerten, wovon uns die Abbildungen des
Libavius eine Vorstellung geben.



Der Einfluß der Chemie auf die Gewerbe.

Eine große Förderung erfuhr die Chemie in Deutschland
durch das Emporblühen der Gewerbe. Als der wichtigste Vertreter
der infolgedessen als besonderer Wissenszweig aufkommenden angewandten
Chemie begegnet uns Glauber. Johann Rudolf
Glauber (1604–1668) bereicherte die anorganische Chemie um
eine Reihe von Entdeckungen, die zumeist die Chlorverbindungen
betreffen. Auf dieses Gebiet wurde Glauber dadurch geführt,
daß er die Darstellung der Salzsäure durch Einwirkung von
Schwefelsäure auf Kochsalz kennen lernte. Ganz entsprechend
stellte er auch die Salpetersäure aus Salpeter und Schwefelsäure
her. Das dabei auftretende Natriumsalz der Schwefelsäure ist
nach ihm Glaubersalz genannt worden401. Das Chlor soll Glauber
gleichfalls schon gekannt haben. Vor Glauber hatte man
die Chloride aus den Metallen hergestellt, indem man letztere
mit Sublimat (Quecksilberchlorid) erhitzte. Infolgedessen war man
zu der irrtümlichen Annahme gelangt, daß in den Chlorverbindungen
der Metalle Quecksilber enthalten sei. Glauber lehrte
dagegen, sie seien Verbindungen der Metalle mit Salzsäure. Er
traf damit zwar auch noch nicht das Richtige, da es sich nur um den
einen Bestandteil der Salzsäure, das Chlor, handelt, dessen Reindarstellung
erst Scheele gelang. Die Chloride, die Glauber untersucht
und beschrieben, zum Teil auch als erster reiner dargestellt
hat, sind Zinn- und Zinkchlorid, Eisenchlorid, Chlorblei, Arsen-
und Kupferchlorür. Auch das Chlorsilber und seine Entstehung
aus Silberlösung durch Zusatz von Salzsäure wurde damals bekannt.
Ferner gelang Glauber die Darstellung des als vulkanisches Produkt
schon lange bekannten Salmiaks durch die Einwirkung der
Salzsäure auf das unter dem Namen »flüchtiges Laugensalz« bekannte
kohlensaure Ammoniak. Letzteres hatten die Alchemisten
früherer Jahrhunderte durch Destillation von gefaultem Harn
gewonnen.

Man kann sich denken, welche Umwälzung, aber auch welchen
Mißbrauch, all diese Präparate, die in der übertriebensten Weise
und mit der größten Geheimnistuerei angepriesen wurden, auf dem
Gebiete der Heilkunde hervorriefen. Insbesondere war man bemüht,
neue Arsen-, Antimon- und Quecksilberpräparate herzustellen
und für Heilzwecke zu benutzen. So lernte man antimonsaures
Kalium und einige weinsaure Salze kennen. Die Einwirkung
von Antimonoxyd auf Weinstein lieferte den Brechweinstein, der
gleichfalls für den Arzneischatz sofort die größte Bedeutung erlangte.
Es ist begreiflich, daß das wissenschaftliche Interesse an
den beobachteten Vorgängen und Verbindungen der medizinischen
Bedeutung gegenüber immer mehr überwog, so daß das Ziel der
Chemie verschoben wurde. Aus einem bloßen Zweige der Heilkunde
erwuchs auf diese Weise, ganz ähnlich, wie es der Zoologie
und der Botanik ergangen war, die reine Wissenschaft, die ihren
Gegenstand, losgelöst von allen Nützlichkeitsbestrebungen, um
seiner selbst willen zu erforschen bemüht ist.

Ein wissenschaftliches Ergebnis der experimentellen Arbeiten
Glaubers war z. B. das klarere Hervortreten des Begriffes der
chemischen Verwandtschaft. So braucht Glauber, wenn er von
der Befreiung des Ammoniaks aus Salmiak durch die Einwirkung
von Kalk handelt402, den Ausdruck, der eine Bestandteil des Salmiaks
»liebe den Kalk mehr als der andere und werde auch von
dem Kalke mehr geliebt«. Auch die doppelte Verwandtschaft ist
ein Begriff, der in seinen Anfängen bis auf Glauber zurückgeht.
So führte er aus, daß aus Quecksilberchlorid und Schwefelantimon
durch wechselseitigen Austausch der Bestandteile Schwefelquecksilber
und Antimonchlorid hervorgehen. Um eine Probe der damals
herrschenden Ausdrucksweise zu geben, sei hier diese Umsetzung
in Glaubers Sprache unter Hinzufügung der heutigen
Formeln beschrieben: »Wenn der Mercurius sublimatus (HgCl2)
mit Antimonio (Sb2S3) vermischt die Hitze empfindet, so greifen
die Spiritus (Cl), die bei dem Mercurio sublimato sein, den Antimonium
(Sb2S3) lieber an und lassen den Mercurium (Hg) wieder
fallen, und geht also ein dick Oleum (SbCl3) über. Der Sulphur
antimonii (S) aber konjugiert sich mit dem Mercurio vivo (Hg)
und gibt einen Zinnober (HgS), der im Halse der Retorte bleibt«403.

Die ursprüngliche Vorstellung, daß ähnliche Stoffe mit einander
verwandt seien, wich der richtigen Erkenntnis, daß gerade die verschiedenartigsten
Stoffe das größte Vereinigungsbestreben haben.
Am deutlichsten sprach es Hermann Boerhaave (1668–1738)
aus, daß gerade nicht verwandte Stoffe die Kraft besitzen, die man
als chemische Verwandtschaft oder Affinität bezeichnet, ein Wort,
das uns schon bei Albertus Magnus begegnet.

Als überzeugter Anhänger der Alchemie kann Glauber nicht
mehr gelten. Er sagt von ihr: »Wer Zeit und Gelegenheit haben
mag, solche Arbeiten im großen anzustellen, dem ist es nicht gewehrt,
zu versuchen, ob Nutzen damit zu erlangen ist«. Auch
bekennt er, daß er selbst nicht den geringsten Erfolg »in Verbesserung
der Metalle« gehabt habe.


[image: Abb. 66]
Abb. 66. Glaubers Destillierofen.



Glaubers Hauptwerk führt den Titel »Novi furni philosophici«.
Es erschien zuerst im Jahre 1648 unter der deutschen
Bezeichnung »Beschreibung einer Destillierkunst«. Über Glaubers
Verfahren sei auf Grund seiner dort gegebenen Darstellung
noch einiges mitgeteilt. Das Kapitel, das von der Salzsäure
handelt, überschreibt er: »Wie man einen Spiritus salis destillieren
soll«. Die Vorschrift lautet: »Man nimmt gewöhnliches
Kochsalz und mischt Vitriol oder Alaun darunter. Diese Mischung
bringt man über glühende Kohlen. Der davon ausgehende Spiritus
wird in einem Rezipienten verdichtet (siehe Abb. 66). Nun
könnte jemand sagen, daß dieser Spiritus salis nicht rein sei,
denn der Spiritus des Vitriols oder des Alauns gehe auch mit
über. Darauf antworte ich, daß dies nicht der Fall ist. Ich habe
nämlich häufiger Vitriol oder Alaun für sich in den Ofen gebracht.
Dann ist gar kein Spiritus gekommen. Die Ursache ist die, daß
der Spiritus des Vitriols oder des Alauns nicht emporsteigt, sondern
im Ofen verbrennt.« Die Abbildung seines Ofens erläutert Glauber,
wie folgt: A ist der Ofen mit seinem eingemauerten eisernen Destilliergefäß,
daran ein Rezipient akkommodiert ist. C zeigt die
Gestalt des Destilliergefäßes, und D läßt erkennen, wie »es inwendig
anzusehen ist«.

Der nächste Abschnitt handelt von der Verwendung der Salzsäure
(De usu Spiritus salis). Glauber preist sie als »eine herrliche
Medizin für den innerlichen und den äußerlichen Gebrauch«, als
Lösungsmittel für alle Mineralien und Metalle »excepta Luna«
d. h. mit Ausnahme des Silbers. Im Haushalt soll die Salzsäure
an die Stelle von Essig treten, da Fleisch, Geflügel und anderes
mit Salzsäure zubereitet »viel lieblicher schmecke«.

Die weiteren Vorschriften Glaubers beziehen sich auf die
Darstellung von Schwefelsäure, Salpetersäure und Königswasser,
sowie deren Verwendung. Durch Destillation von Vitriol erhält
er die Schwefelsäure als »ein schweres Oleum, das man mit starkem
Feuer vertreiben und rektifizieren kann, wodurch es klar wird«.
Mit diesem »korossiven Oleum Vitrioli« könne man auch etliche
Metalle solvieren und in ihre Vitriole umwandeln, so Eisen und
Zink. Man müsse jedoch Wasser hinzufügen, da das Oleum sonst
nicht angreife.

Die Verwendung zu Heilzwecken spielt auch hier eine Rolle,
so soll die Wärme, die sich bei der Einwirkung der Säure auf
Eisen entwickelt, Krankheiten zu heilen vermögen.

Vom Spiritus Nitri (Salpetersäure) heißt es, er werde zwar
in fast allen Apotheken gefunden, aber in der Heilkunde nicht
viel gebraucht. Aqua regis (Königswasser) endlich bereitet Glauber,
indem er in gläsernen Retorten Kochsalz in Salpetersäure
auflöst.

In einem zweiten, »Teutschlands Wohlfahrt« betitelten Werke
suchte Glauber die Bedeutung der Chemie für die Volkswirtschaft
darzutun. »Dieses Werk«, sagt er in seiner Einleitung, »mit dem
ich meinem Vaterlande zu dienen mir vorgenommen, besteht in
Offenbarung der in Deutschland verborgenen großen Schätze, die
zwar bisher auch sind gewonnen worden, aber nicht, wie es
wohl hätte sein sollen und können. Z. B. läßt sich das Holz, so
doch liegt und verdirbt, zu Salpeter machen, um den Feinden
damit die Spitze zu bieten. In künftigen großen Landsterben
werden sich ferner durch Konzentrieren der Mineralien und Metalle
gute Medikamente bereiten lassen.«

Die Begründung der Chemie als Wissenschaft.

Sehr gefördert wurde die Chemie während des 17. Jahrhunderts
durch die Arbeiten Boyles. Robert Boyle wurde im
Jahre 1626 geboren. Er studierte in Oxford und in Genf und
lebte von 1668 an in London, wo er mit Newton, Hooke und
anderen hervorragenden Gelehrten die Royal Society gründete.
Der gemeinsame Grundzug dieser Männer war der, daß sie sich
bei ihren, im Geiste echter Forschung ausgeführten Arbeiten lediglich
von dem Streben nach Naturerkenntnis und von keinerlei Nebenabsichten
leiten ließen. Boyle war der erste, der die wahre Aufgabe
der Chemie in der Erkenntnis der Zusammensetzung der
Körper erblickte. »Die Chemiker« sagt er404, »haben sich bisher
durch enge Prinzipien, die der höheren Gesichtspunkte entbehrten,
leiten lassen. Sie erblickten ihre Aufgabe in der Bereitung von
Heilmitteln und in der Verwandlung der Metalle. Ich habe versucht,
die Chemie von einem ganz anderen Gesichtspunkte aus zu
behandeln, nicht als Arzt, noch als Alchemist, sondern als Naturphilosoph«.
Er habe, fährt er fort, den Plan für eine chemische
Philosophie gezeichnet, die er durch seine Versuche und Beobachtungen
zu vervollständigen hoffe. Den Menschen müsse der Fortschritt
der Wissenschaft mehr am Herzen liegen als ihre engeren
Interessen. Der Welt würde dadurch der größte Dienst geleistet,
daß man Versuche anstelle, Beobachtungen sammle und keine
Theorie aufstelle, ohne zuvor die in Betracht kommenden Erscheinungen
geprüft zu haben.

Mit der Aufstellung dieser Gesichtspunkte begann für die
Chemie ein neues Zeitalter. Indem Boyle als letzte Bestandteile,
als Elemente im Sinne der heutigen Wissenschaft, diejenigen Stoffe
ansprach, die keiner weiteren Zerlegung fähig sind, war das Schicksal
der aristotelischen Elemente (Feuer, Erde, Luft und Wasser),
sowie der Prinzipien der Alchemisten (Salz, Schwefel und Quecksilber)
besiegelt. Auch der Unterschied zwischen mechanischer
Mischung und chemischer Verbindung wurde von Boyle zum ersten
Male scharf hervorgehoben. Als charakteristisch für die Verbindungen
stellte er das Verschwinden der Eigenschaften der Bestandteile
bin.

Anknüpfend an van Helmont destillierte Boyle Regenwasser
aus Glasgefäßen. Er fand stets einen Rückstand und glaubte
damit gleichfalls bewiesen zu haben, daß sich das Wasser in erdige
Bestandteile verwandeln lasse. Erst durch Lavoisier und Scheele
wurde der wahre Sachverhalt aufgeklärt und die Ansicht, daß das
Wasser eine derartige Umwandlung erfahren könne, als unhaltbar
nachgewiesen. Ein zweiter wichtiger Versuch, an den Lavoisier
bei der Begründung der neueren Chemie anknüpfte, betrifft die
Verkalkung (Oxydation) der Metalle beim Erhitzen an der Luft.
Boyle schmolz Zinn und Blei und wies nach, daß der erhaltene
Metallkalk schwerer ist als das Metall405. Um dies zu erklären,
nahm er aber an, daß ein aus dem Feuer stammender Stoff das
Gefäß, in dem die Schmelzung vor sich geht, durchdringe und sich
mit dem Metall verbinde. Ein ähnlicher hypothetischer, von Lavoisier
später als unhaltbar erkannter Stoff, das Phlogiston, das
bei der Verbrennung entweichen sollte, erhielt bei den auf Boyle
folgenden Chemikern eine solche Bedeutung, daß das von Boyle
bis Lavoisier reichende Zeitalter der Chemie das phlogistische
genannt wird.

Durch die Forschungen Boyles, dem seine Landsleute den
Beinamen des großen Experimentators gegeben haben, wurde auch
die analytische Chemie begründet. Bisher hatte man sich bei
qualitativen Untersuchungen wesentlich auf das sogenannte trockene
Verfahren beschränkt, das heute noch bei der Vorprüfung, sowie
bei der Bestimmung von Mineralien Anwendung findet. Boyle
lehrte die in Lösung gebrachte Substanz mit Hilfe flüssiger Reagentien
untersuchen, indem er aus der Entstehung und der Beschaffenheit
von Niederschlägen auf die Zusammensetzung des zu
untersuchenden Stoffes schloß. So wies er Salzsäure mittelst
Silberlösung und Schwefelsäure durch Kalksalze nach. Er fällte
Eisen durch Galläpfeltinktur406 und bediente sich zum Nachweise der
Säuren mit Pflanzensäften gefärbter Papiere, alles Verfahrungsarten,
die auch heute noch im Gebrauch sind.

In das Zeitalter Boyles fällt auch eine Vorwegnahme der
antiphlogistischen Lehre durch den englischen Arzt John Mayow,
dessen Verhältnis zu Lavoisier etwa dasselbe ist wie auf astronomischen
Gebiete dasjenige Aristarchs zu Koppernikus.

John Mayow wurde im Jahre 1643 in London geboren. Er
widmete sich der Heilkunst, die er in dem kleinen Badeorte Bath
ausübte. Zur Beschäftigung mit der Chemie wurde er dadurch
geführt, daß er die Heilquelle von Bath untersuchte. Später wurde
Mayow Mitglied der Royal Society. Bald darauf (1679) starb er
in noch jugendlichem Alter in London. Mayow war gleich vielen
Forschern seines Zeitalters ein eifriger Anhänger der Philosophie
des Descartes, dessen Werke ihn zur mechanistischen Erklärung
der Naturvorgänge angeregt hatten. Seine wichtigsten Untersuchungen
und Betrachtungen legte Mayow in seinem »Tractatus
quinque« genannten Werke nieder. Den für die Entwicklung der
Chemie bedeutendsten Abschnitt dieser Schrift bilden die in
deutscher Übersetzung erschienenen »Untersuchungen über den
Salpeter und den salpetrigen Luftgeist, das Brennen und das
Atmen«407. Leider fanden die Arbeiten Mayows nicht die verdiente
Beachtung. Sie gerieten infolgedessen schließlich in Vergessenheit.
Es erging ihnen ähnlich wie später den botanischen
Arbeiten Sprengels, die trotz ihrer außerordentlichen Bedeutung
gleichfalls ein Jahrhundert ruhten. Erst nach der Entdeckung
des Sauerstoffs und nach der Begründung der antiphlogistischen
Theorie durch Lavoisier wurde von deutscher und englischer
Seite darauf hingewiesen, daß schon Mayow das wahre Wesen
der Verbrennung und der Atmung erkannt habe. Hätte Mayow
größere Beachtung gefunden und länger gelebt, um seine Lehre
fester zu begründen, so wäre die chemische Wissenschaft schwerlich
ein Jahrhundert in der irrigen Phlogistontheorie befangen
geblieben. Man muß nämlich erwägen, daß die Gewichtszunahme,
welche die Metalle beim Erhitzen an der Luft erfahren, im 17. Jahrhundert
schon von mehreren Seiten, wie von Hooke, Boyle und
Rey, festgestellt worden war. Rey war es auch, der diese Erscheinung
auf den Zutritt der Luft zu den Metallen zurückführte.
Und Hooke, der so oft mit seinen knappen Bemerkungen
das Richtige traf und ja auch die Gravitationstheorie
vorwegnahm, gab in seiner Mikrographie (1665) eine Verbrennungstheorie,
die gleichfalls schon den Keim der antiphlogistischen
Lehre enthielt. Hooke nahm nämlich an, daß in der Luft und
im Salpeter ein Stoff enthalten sei, der auf die brennbaren
Körper wirke.

Von der Untersuchung des Salpeters geht auch Mayow aus.
Dieser wunderbare Stoff, meinte er, sei berufen, in der Wissenschaft
ebensoviel Lärm wie im Kriege zu verursachen. Als Bestandteile
des Salpeters lehre seine Entstehung und seine Zerlegung
einen sauren Salpetergeist (wie er die Salpetersäure nannte)
und eine alkalische Substanz kennen. Gieße man nämlich die durch
Destillation aus dem Salpeter erhaltene Säure auf ein geeignetes
alkalisches Salz, so bilde sich der Salpeter mit all seinen bekannten
Eigenschaften von neuem. Auch der natürliche Salpeter entstehe
durch die Einwirkung von Salpetergeist auf alkalische Salze des
Bodens; doch dürfe man nicht annehmen, daß der Salpetergeist,
d. h. die Salpetersäure, als solcher in der Luft enthalten sei. Vielmehr
sei in der Luft nur ein Teil dieses Geistes enthalten, nämlich
die salpetrige Luftsubstanz. Letztere unterhalte die Verbrennung
und die Atmung. Sie ist also mit dem Sauerstoff der
Antiphlogistiker völlig identisch.

Es verdiene auch Erwähnung, bemerkt Mayow, daß Antimon
durch Verkalkung an Gewicht zunehme408. Es sei schwer einzusehen,
woher diese Gewichtszunahme rühre, wenn nicht von den mit dem
Metall sich verbindenden Luftteilchen. »Ich weiß sehr wohl«,
fügt er hinzu, »daß nach der gewöhnlichen Meinung die Verkalkung
des Antimons in der Entfernung seines Schwefels bestehen
soll. Trotzdem bin ich geneigt zu glauben, daß diese Ansicht
kaum die Wahrheit trifft«.

Der Hauptzweck der Atmung besteht nach Mayow darin,
gewisse, dem tierischen Leben unentbehrliche Teilchen aus der
Luft den Lungen zuzuführen und sie mit dem Blute auf das
innigste zu vermischen. Er habe, sagt Mayow, Versuche angegeben,
welche zeigten, daß die von den Lungen ausgeatmete
Luft gewisser Teilchen beraubt sei, wobei sie gleichzeitig eine
Volumverminderung erfahren habe. Letztere werde dadurch hervorgerufen,
daß der Luft die salpetrigen Luftteilchen (d. h. der
Sauerstoff) entzogen wurden.

Mayow legt sich sodann die Frage vor, welche Aufgabe der
in das Blut gelangende Sauerstoff im Organismus zu erfüllen habe
und findet auch hierauf eine im ganzen richtige Antwort. »Ich
huldige der Ansicht« bemerkt er, »daß sowohl bei den Tieren als
auch bei den Pflanzen der salpetrige Luftgeist die Hauptquelle
des Lebens und der Bewegung ist«. Auch die Körperwärme
könne man nicht etwa auf eine in den Gelenken stattfindende
Reibung zurückführen. Sie rühre vielmehr gleichfalls von der
Wirkung des Sauerstoffes auf das Blut her, in dem brennbare
Stoffe in Menge vorhanden seien. Daß das Blut bei seinem Eintritt
in die Lunge dunkelrot, und beim Verlassen hellrot ist, war
eine Mayow bekannte, durch die Erfahrung längst ermittelte Tatsache.
Daß es sich hierbei um eine chemische Einwirkung der
Luft auf das Blut handelt, geht ihm daraus hervor, daß venöses,
der Luft ausgesetztes Blut an der Oberfläche hellrot wird, während
die unteren Schichten dunkelrot bleiben.

Im Lichte der von Mayow entwickelten Theorie der Atmung
gewannen also auch verwandte Gebiete der Physiologie, wie die
Tätigkeit und das Zusammenwirken der Atmungs- und der Kreislauforgane,
an Klarheit. Auch darauf wies Mayow hin, daß beim
Fötus an die Stelle der Atmung die Versorgung mit Sauerstoff
durch das arterielle, an Sauerstoff so reiche Blut der Mutter tritt.


[image: Abb. 67]
Abb. 67.
Mayows Analyse der Luft.



Die von Mayow ausgesprochenen
Ansichten waren nicht etwa
lediglich glückliche Einfälle, sondern
das Ergebnis oft sehr sinnreich ausgedachter
Versuche. Eins der schönsten
Beispiele, und wohl eine der
ersten gasometrischen Untersuchungen,
ist folgendes: Man bringe einen
Stab in der Weise, wie es die Abbildung
67 zeigt, in einem Glasgefäße
an. An diesen Stab hänge
man einen glasierten, mit Salpetersäure
(Salpetergeist nennt sie Mayow)
gefüllten Topf. Dicht über den
Topf wird an einem Faden ein
Bündel von Eisenstückchen befestigt. Der Faden wird zunächst
über den Stab und dann unter den Rand des Gefäßes hinaus
geführt (siehe Abb. 67), so daß man das Eisenbündel in die
Säure tauchen und wieder herausziehen kann. »Nachdem«, fährt
Mayow fort, »die durch Berührung mit den Händen erwärmte
Luft sich abgekühlt hat und die Höhe des inneren Wasserspiegels
angemerkt worden ist, lasse man die Eisenstücke in die Säure
gleiten«. Es entstand eine lebhafte Einwirkung, und das innere
Niveau wurde durch die entwickelten Dämpfe zunächst herunter
gedrückt. Nachdem die Reaktion einige Zeit gedauert, zog Mayow
das Eisen wieder empor. Jetzt stieg das Wasser über den ursprünglichen
Stand hinaus, wobei »ein Viertel des von der Luft ursprünglich
erfüllten Raumes von dem Wasser eingenommen wurde«. Diese
Raumverminderung wird ganz richtig auf die Fortnahme des Sauerstoffes
oder, wie Mayow sagt, der salpetrigen Luftteilchen zurückgeführt409.
»In der Tat«, sagt er, »erfährt hier die Luft eine Verminderung
auf ganz dieselbe Weise wie bei der Verbrennung«.
Das ein Jahrhundert später erfundene Eudiometer beruht auf derselben
Wechselwirkung zwischen den aus der Salpetersäure entstehenden
Gasen und dem Sauerstoff der Luft410.




10. Der Ausbau der Botanik und der Zoologie
nach dem Wiederaufleben der
Wissenschaften.

Wir haben in einem früheren Abschnitt die ersten Ansätze
zur Neubegründung der organischen Wissenschaften kennen gelernt.
Das wichtigste Ergebnis auf dem Gebiete der Botanik waren die
Entstehung der Kräuterbücher (Bock und Brunfels), die Anlage
der ersten botanischen Gärten und Herbarien, sowie die Ausdehnung
der Florenkenntnis auf die neuentdeckten außereuropäischen
Länder. Gleichzeitig erfolgte die Neubegründung der
Zoologie durch die umfassenden Werke eines Gesner und eines
Aldrovandi. Wotton verbesserte die Systematik, während Vesal
die Grundlagen der neueren Anatomie errichtete.

Fortschritte der Botanik.

In der Pflege der Botanik zeichneten sich neben den Deutschen
besonders die Niederländer aus. War doch die Anregung, welche
diesem Volksstamm durch den Handel und die Entdeckungsreisen
auf naturhistorischem Gebiete zuteil wurde, nicht gering. Auch
standen schon damals der Gartenbau und die Blumenzucht in
den Niederlanden in hoher Blüte. Als der größte Botaniker des
16. Jahrhunderts gilt Carolus Clusius in Antwerpen (1525–1609).
Er war eine Zeitlang mit der Verwaltung der kaiserlichen Gärten
in Wien betraut und fand dadurch Gelegenheit, auch Ungarn
naturhistorisch zu durchforschen. Clusius starb als Professor
der Naturgeschichte in Leyden im Jahre 1609, nachdem er die
Botanik um eine derartige Fülle neuer Arten bereichert hatte, wie
niemand vor und nach ihm. Die Frucht seines Aufenthalts in
Österreich-Ungarn war eine Flora von Osteuropa411. Von Augsburg
hatte er mit Angehörigen des Hauses Fugger eine Reise
durch Frankreich, Spanien und Portugal unternommen. Das Ergebnis
dieser Reise war ein floristisches Werk über die pyrenäische
Halbinsel412. Außerdem hat Clusius als einer der ersten die
Pflanzen Indiens und der Levante beschrieben413. Er hat die neuen
Arten auch vortrefflich abgebildet.

Clusius konnte sein Vorhaben nur mit Unterstützung von
zahlreichen Forschern und Reisenden vollbringen. Unter seinen
Mitarbeitern ist vor allem der Niederländer Lobelius zu nennen.
Er wurde 1538 geboren und starb 1616 in England, wo er die
königlichen Gärten verwaltete.

Bei Lobelius tritt das Gefühl für die natürliche Verwandtschaft
schon sehr deutlich hervor. So bilden die Gräser, die
Liliaceen, die Orchideen, die Kreuzblüter, die Doldengewächse,
die Schmetterlings- und die Lippenblüter bei ihm schon deutlich
erkennbare Gruppen.

Während man sich im 16. Jahrhundert in Mitteleuropa vorzugsweise
der umgebenden Pflanzenwelt zuwandte, bemühten sich
die Italiener um diese Zeit in erster Linie um die Erklärung der
alten botanischen Schriften. Da sie aber merkten, daß bei Dioskurides
und Plinius nur ein geringer Bruchteil der in Italien
vorkommenden Pflanzen erwähnt wird, wandten auch sie sich zumal
in Norditalien der Erforschung der heimatlichen Flora zu. Hier
waren es besonders die südlichen Kalkalpen, die durch ihren außergewöhnlichen
Pflanzenreichtum die Aufmerksamkeit von Apothekern,
Ärzten und anderen der Botanik obliegenden Männern
auf sich zogen. So entstanden mehrere Monographien, die sich
ausschließlich mit der Flora des an Pflanzen so reichen Monte
Baldo, eines östlich vom Gardasee gelegenen Kalkgebirges, beschäftigten.

Einer der hervorragendsten unter den italienischen Botanikern
des 16. Jahrhunderts war Mattioli (1501–1577). Er wußte wie
kein anderer den Dioskurides zu kommentieren und »mit seltener
Spürkraft die Pflanzen der Alten zu erraten«414. Mattioli
war auch ein scharfer Beobachter und eifriger Sammler, der die
Wissenschaft um die Kenntnis zahlreicher neuer Arten bereicherte.

Das Bestreben, an die Stelle der anfangs üblichen alphabetischen
eine natürliche Anordnung zu setzen, fand eine Fortsetzung
bei Bauhin, in dem die erste Periode der neueren Botanik ihren
Gipfel erreichte.

Kaspar Bauhin wurde 1550 als Sohn eines Arztes in Basel
geboren. Er verbrachte einen Teil seiner Studienzeit in Padua
und durchforschte die Flora von Deutschland, Italien und Frankreich.
Ganz davon abgesehen, daß Bauhin zahlreiche neue Arten
entdeckte, besteht sein großes Verdienst in der Durchführung der
erschöpfenden Artdiagnose, der Einführung der binären Nomenklatur,
der Anordnung der Pflanzen nach ihrer Ähnlichkeit, und
endlich der Entwirrung der zahllosen Synonyme.

Wir beginnen mit dem letzten Punkte. Seit dem Wiederaufleben
der Botanik waren in allen Teilen Europas und in den
entdeckten außereuropäischen Ländern neue Pflanzen bekannt geworden,
die an Zahl die von den Alten beschriebenen Pflanzen
bei weitem übertrafen. Die Benennung dieser neuen Pflanzen war
aber ohne einheitliche Gesichtspunkte und zum Teil unter ganz
willkürlicher Verwertung der alten Pflanzennamen erfolgt. Ja,
derselben Art waren von den verschiedenen Schriftstellern häufig
auch verschiedene Namen beigelegt, und die gleichen Namen für
verschiedene Arten gebraucht worden. Die Verwirrung war also
eine schlimme und drohte jeden gesunden Fortschritt der Wissenschaft,
für die der Name keineswegs »Schall und Rauch« ist, zu
untergraben. Diesem unhaltbaren Zustande machte Bauhin
durch sein in vierzigjähriger, mühevoller Arbeit entstandenes
Werk über die Pflanzensynonyme ein Ende415. In ihm wies
er für alle ihm bekannten, etwa 6000 Arten die von den verschiedenen
Botanikern gebrauchten Namen nach und schuf damit
für die botanische Literatur das vollständigste Synonymenwerk, das
noch heute für den Systematiker wichtig ist. »Gewiß kein kleines
Lob, das einem Buche nach 250 Jahren noch gespendet werden
kann«416.

Auf solche Weise brachte Bauhin nicht nur Ordnung in
die gelehrten Arbeiten seiner Vorgänger, sondern er beugte auch
durch die vorbildliche Art, wie er selbst die Pflanzen benannte
und beschrieb, dem Einreißen einer neuen Verwirrung vor. Die
Beschreibung der Pflanzen wurde nämlich von ihm zu der
Kunst ausgebildet, in wenigen Zeilen erschöpfende, die Wiedererkennung
leicht ermöglichende Diagnosen zu geben. Jede von
ihnen berücksichtigte in aller Kürze sämtliche Teile der Pflanze.
Die Form, die Größe, die Verzweigung der Wurzel und des
Stengels, die Gestalt der Blätter, die Beschaffenheit der Blüte,
der Frucht und des Samens: alles wurde in knappen, treffenden
Worten aufgeführt, ohne den Raum von etwa 20 Zeilen
zu überschreiten. Ferner wurden Arten und Gattungen bei ihm
scharf und bewußt unterschieden. Jede Art erhielt eine meist
aus zwei Wörtern bestehende Benennung, die als Gattungs- und
als Speziesnamen gelten können. Die binäre Nomenklatur, um
deren Durchführung sich später Linné so große Verdienste erworben
hat, ist also auf Bauhin zurückzuführen.

Anfänge der natürlichen und der künstlichen
Systematik.

Endlich tritt bei Bauhin in seinem Synonymenwerk die Anordnung
nach der Ähnlichkeit in den gesamten Merkmalen, nach
natürlichen Familien würden wir heute sagen, noch mehr wie bei
Lobelius hervor, ohne daß jedoch die so erhaltenen Gruppen
benannt oder deutlich voneinander getrennt worden wären. Auch
Bauhin beginnt mit den Gräsern, die er für die einfachsten
Blütenpflanzen hielt. Es folgen die Liliengewächse, die wichtigsten
Familien der krautartigen Pflanzen und endlich die Bäume. Die
Sonderstellung der Farnkräuter vermochte Bauhin so wenig wie
Lobelius zu erkennen. Auch fehlt es nicht an Zusammenstellungen,
die uns heute als große Irrtümer erscheinen. So bringt
Bauhin z. B. die phanerogamen Wasserlinsen mit den Moosen,
und die Schwämme mit den Meeresalgen in Verbindung. Andererseits
dürfen wir ihm solche Fehler nicht zu sehr anrechnen, weil
das Verhältnis der Kryptogamen zu den Phanerogamen erst Jahrhunderte
nach Bauhin seine Aufklärung gefunden hat und die
Natur der Pflanzentiere erst im 18. Jahrhundert durch Trembley
enthüllt wurde.

Während das induktive Verfahren, dessen Ansätze uns in den
Kräuterbüchern begegnen, zu einer wenn auch noch mangelhaften
natürlichen Systematik führte, ging man in Italien bei der Neubegründung
der Botanik vielfach noch in aristotelischer Weise von vorher
getroffenen Einteilungsprinzipien aus. Hier suchte Caesalpin
den immer mehr anschwellenden Artenreichtum zu bewältigen, indem
er seiner Anordnung insbesondere die Beschaffenheit der Früchte
zugrunde legte. Diese Richtung der einseitig künstlichen Systematik
wurde in der Folge zunächst zur herrschenden, weil sie dem Bedürfnis
der Praxis besser entsprach als die noch unvollkommene
natürliche Gruppierung, die für die Wissenschaft jedoch einen
höheren Wert besitzt. Wir werden später Linné als denjenigen
kennen lernen, dem das von Caesalpin erstrebte Werk gelang.
Linné erwies diesem seinem Vorgänger auch alle Anerkennung,
indem er ihn als den ersten wahren Systematiker bezeichnete.

Das botanische Hauptwerk des Andrea Caesalpino417 erschien
1583 unter dem Titel: De plantis libri XVI. Caesalpin
liefert darin zwar auch Beschreibungen einzelner Pflanzen, er geht
aber nach zwei Richtungen über die Verfasser der Kräuterbücher
hinaus. Einmal beschränkt er sich nicht wie jene auf die Schilderung
des allgemeinen Habitus einer Pflanze, sondern er untersucht
die einzelnen Pflanzenteile genau und berücksichtigt dabei
besonders die Fruktifikationsorgane. Zweitens begegnet uns bei
Caesalpin eine denkende, philosophische Betrachtung der Pflanze
im allgemeinen und ihrer Natur. Die Grundzüge der theoretischen
Botanik, zu denen er auf diese Weise in der Einleitung zum
ersten Buche seines Werkes gelangte, sind indessen in überwiegend
aristotelischem Sinne abgefaßt. Da die Pflanze ausschließlich jene
Art von Seele besitze, durch welche die Ernährung, das Wachstum
und die Fortpflanzung erfolge, so begnüge sie sich mit viel
einfacheren Werkzeugen als das Tier, dem außerdem noch Bewegung
und Empfindung zukomme. Die Tätigkeit der Pflanzenseele
bestehe darin, durch die Ernährung das Einzelwesen und
durch die Fortpflanzung die Art zu erhalten. Daher seien der
Pflanze zwei Teile verliehen, die Wurzel, durch die sie die Nahrung
aufnehme, und der Stengel, der die Frucht erzeuge. Für
die niederen Pflanzen, wie die Pilze und die Flechten, an denen
Caesalpin noch keine Fortpflanzungsorgane wahrzunehmen vermochte,
nimmt er mit Aristoteles die Urzeugung (Generatio
spontanea) an. Sie entständen durch Fäulnis und brauchten sich
daher nur zu ernähren und zu wachsen. Sie seien Mitteldinge
zwischen der unorganischen Natur und den vollkommenen Pflanzen,
wie es ja auch Übergangsstufen zwischen den letzteren und den
Tieren gebe.

Der Einfluß, den Caesalpin auf die Entwicklung der Botanik
im 17. und 18. Jahrhundert ausgeübt hat, ist nicht zu unterschätzen.
Das von ihm begründete Lehrgebäude wurde durch
Linné vollendet und damit die Entwicklung der künstlichen
Systematik im wesentlichen zum Abschluß gebracht.

Die Begründung einer Morphologie der Pflanzen.

In das 17. Jahrhundert fallen auch die ersten Schritte zur
Begründung einer wissenschaftlichen Morphologie der Pflanzen.
Als ihr Hauptvertreter ist der Deutsche Joachim Jungius zu
nennen. Von dem Lebensgange dieses Mannes (1587–1657) und
seiner Bedeutung für die allgemeine Geisteskultur seines Zeitalters
wird an späterer Stelle noch gehandelt werden. Sein Bestreben,
Besseres an die Stelle des scholastischen Wortkrams zu setzen,
der im 17. Jahrhundert sich in Deutschland breit machte, war besonders
auf botanischem Gebiete von Erfolg begleitet. Ein gewaltiger
handschriftlicher Nachlaß418 zeugt davon, daß sich die
Reformbestrebungen des Jungius auf das gesamte Gebiet der
Naturlehre erstreckten. Mit logischer Klarheit, gestützt auf Demokrits
Atomistik und ausgestattet mit einem scharfen Beobachtungsvermögen,
hat Jungius erfolgreich an der Erneuerung
der Wissenschaften gearbeitet. Sein Einfluß hätte noch größer
sein können, wenn er sich nicht auf Vorträge, Diktate und schriftliche
Aufzeichnungen beschränkt hätte. Zum Glück erging es
ihm nicht wie ein Jahrhundert vorher Lionardo da Vinci, der
auch fast nichts von seinen wertvollen Aufzeichnungen veröffentlicht
und infolgedessen auf die Entwicklung der Wissenschaften einen
viel zu geringen Einfluß ausgeübt hat. Während die Manuskripte
Lionardos erst gegen das Ende des 18. Jahrhunderts zugänglich
gemacht wurden, kamen wichtige botanische Schriften des Jungius
bald nach seinem Tode durch Vermittlung seiner Schüler an das
Licht der Öffentlichkeit. Sie fanden nicht nur in der Heimat,
sondern auch in England durch Ray und in Schweden durch
Linné die ihnen gebührende Beachtung.

Durch sein botanisches Hauptwerk419 wirkte Jungius nach
zwei Richtungen. Zunächst schuf er eine wissenschaftliche Terminologie,
die so geeignet war, daß sie zum Teil sich bis auf den
heutigen Tag erhalten hat. So sind, um ein Beispiel zu erwähnen,
die noch heute für die verschiedenen Blütenstände gebräuchlichen
Ausdrücke wie spica, panicula, umbella, corymbus, sowie ihre genauere
Definition auf Jungius zurückzuführen. Auch Linné hat
sich hinsichtlich der Nomenklatur an Jungius angeschlossen.
Jungius war es ferner, der zuerst auf die Formwandlungen hinwies,
welche die Blätter eines Stengels mit ihrer Entfernung vom
Erdboden erfahren. Auch die einfachen und die vorher oft mit
Zweigen verwechselten zusammengesetzten Blätter wurden von ihm
deutlich unterschieden und benannt.

Sehr ausführlich hat Jungius auch die Gestalt der Blüte
behandelt, obgleich ihm das Wesen der Sexualität noch verborgen
blieb. Die Klarstellung der morphologischen Grundbegriffe bedingte
auch eine bessere Anordnung der Pflanzen. Geruch, Geschmack,
medizinische Wirkungen, Farbe und andere nebensächliche Charaktere
wurden von Jungius als wertlos für die Anordnung erachtet.
Auch die bis dahin immer noch anzutreffende Einteilung
in Bäume, Sträucher und Kräuter wurde von ihm als nichtig
zurückgewiesen.

Im einzelnen gestaltete Jungius das Pflanzensystem übersichtlicher,
indem er für zahlreiche, früher getrennt aufgeführte
Pflanzen die Zusammengehörigkeit nach ihrem gesamten Habitus
nachwies und Regeln für die Benennung der Pflanzen aufstellte.

Die von Bauhin und Jungius entwickelten Grundsätze
fanden zunächst in England fruchtbaren Boden, wo sie Morisons
und Rays Bemühungen um den Ausbau der systematischen Botanik
förderten420.

Morison unterzog das System Bauhins, wie dieser es in
seinem »Pinax« niedergelegt hatte, einer gründlichen Durchsicht
und zeigte, welche Pflanzen dort einen unrichtigen Platz einnahmen.
Ferner war er der erste Botaniker, der eine größere
Pflanzengruppe, und zwar die Umbelliferen, einer eingehenden,
monographischen Bearbeitung unterwarf421. Die Doldengewächse
wurden in dieser Arbeit nach der Beschaffenheit der Früchte in
eine Reihe von Unterabteilungen zerlegt.

In Morisons Fußstapfen trat der auch als Zoologe bekannt
gewordene John Ray422. Er stellte in einem umfangreichen Werke423
ähnlich wie Bauhin den gesamten, bis dahin geschaffenen Inhalt
der botanischen Wissenschaft zusammen. Die morphologischen
Teile behandelte er im engsten Anschluß an Jungius. In
seinem System kommen zum ersten Male die großen natürlichen
Gruppen des Pflanzenreichs zum Ausdruck. Er beginnt mit den
unvollkommenen Pflanzen (Imperfectae), den Pilzen, Moosen, Farnkräutern
und unterseeischen Pflanzen. Zu letzteren werden neben
den Tangen auch die Pflanzentiere gerechnet. Die blühenden
Pflanzen teilt Ray in die zweisamenlappigen (Dikotyledonen) und
die einsamenlappigen Gewächse (Monokotyledonen). Von letzteren
werden die Gräser mit besonderer Ausführlichkeit behandelt und
nach ihrem Gesamteindruck systematisch weiter gegliedert.

Den Monokotylen werden auch die Palmen, die Liliengewächse
und die Orchideen zugewiesen. Die natürlichen Gruppen der Labiaten
und der Schmetterlingsblüter hatte man schon früher erkannt.
Mehr oder minder deutlich treten jetzt auch die Kreuzblüter,
die Rubiaceen, die Rauhblätterigen, die Korbblüter und andere,
dem natürlichen System entsprechende Gruppen zutage. Die Einteilung
im einzelnen blieb indessen recht mangelhaft, da es noch
zu sehr an leitenden Gesichtspunkten fehlte.

Hatten Morison und nach ihm Ray in der Beschaffenheit
der Früchte ein systematisches Merkmal von hervorragender Wichtigkeit
erblickt, so legte der Deutsche Rivinus424 den größten
Wert auf die Zahl und den Zusammenhang der Kronenblätter.
Bei Rivinus begegnet uns auch schon der von Linné später durchgeführte
Grundsatz, den Gattungsnamen bei jeder Art zu wiederholen
und letztere durch ein hinzugefügtes Adjektiv auszudrücken.

In Frankreich fand in diesem, Linné vorhergehenden Stadium
der Botanik diese Wissenschaft ihren hervorragendsten Vertreter
in Tournefort425. Sein System bedeutete insofern einen Rückschritt,
als es die von Ray erkannten, großen, natürlichen Gruppen
der Kryptogamen, Monokotylen und Dikotylen nicht zum Ausdruck
brachte. Für die Einteilung der Blütenpflanzen war, wie bei
Rivinus, die Beschaffenheit der Blumenkrone maßgebend. Danach
wurden blumenblattlose (apetale) und petaloide Pflanzen unterschieden.
Letztere zerfielen in einblätterige (monopetale) und vielblätterige
(polypetale) Pflanzen. Zu den monopetalen rechneten
z. B. die Glockenblumengewächse und die Lippenblüter mit ihren
aus einem Stück bestehenden Kronen, zu den Polypetalen dagegen
Kreuzblüter, Rosengewächse, Schmetterlingsblüter usw.

Die 22 Klassen, zu denen Tournefort unter gleichzeitiger
Verwertung der so unbestimmten Begriffe Bäume, Sträucher und
Kräuter gelangte, zerfielen in Gruppen. Soweit es sich um petaloide
Pflanzen handelte, wurden diese Gruppen nach der Beschaffenheit
der Kronen gebildet. So wurden bei den Lippenblütern
solche mit gerader, helmartiger und löffelförmiger Oberlippe
unterschieden. An diese reihten sich die Lippenblüter ohne Oberlippe.
Tournefort schuf also ein künstliches System, d. h. ein
solches, das auf der Beschaffenheit eines willkürlich herausgegriffenen
Organs, und zwar der Krone, beruhte. Es blieb während
der ersten Jahrzehnte des 18. Jahrhunderts das herrschende. Dann
wurde es durch Linnés künstliches System, das sich auf die Beschaffenheit
der Staubgefäße gründete, abgelöst. Tournefort
selbst hatte den Staubgefäßen nur geringe Bedeutung beigelegt,
indem er sie als bloße Absonderungsorgane betrachtete.

Man hat Tournefort wohl das Verdienst zugeschrieben,
daß er den Begriff der Gattung festgestellt habe. Gattungs- und
Artbegriff haben sich indessen seit dem Wiederaufblühen der
Botanik durch Einzelbeschreibung und Vergleich ganz allmählich
herausgebildet. Bauhin trug diesen Begriffen ferner schon
lange vor Tournefort durch seine Art der Namengebung Rechnung.
Beide Begriffe nahmen allerdings an Bestimmtheit zu, je
mehr man die wesentlichen von den unwesentlichen Merkmalen
unterscheiden lernte und erkannte, daß die Zusammengehörigkeit
zu einer Gattung nicht durch die Übereinstimmung eines einzigen,
sondern der Mehrzahl der wesentlichsten Teile bestimmt ist. Als
solche wurden immer mehr die Fortpflanzungsorgane erkannt.

Weniger fest stand der Artbegriff, weil man bei seiner Aufstellung
mitunter allzu veränderliche Abwandlungen berücksichtigte
und Spielarten von echten Arten noch nicht zu unterscheiden wußte.
Zu dieser Frage äußerte sich auch Leibniz, indem er dem einseitig
systematischen Standpunkte einzelner Botaniker eine recht
zutreffende, im Einklang mit dem natürlichen Systeme stehende
Bemerkung entgegenhielt. Anlaß dazu gab ihm die Äußerung eines
deutschen Botanikers, die für das System verwertbaren Merkmale
seien nicht den Blüten, sondern den Wurzeln zu entnehmen.
Leibniz bemerkte dazu426, man müsse die Merkmale aller Teile
berücksichtigen. Dabei sei aber zu beachten, daß der Zweck des
Pflanzenlebens die Erhaltung des Einzelwesens und der Art sei.
Deshalb müsse man beim Aufbau des Systems denjenigen Teilen
den Vorzug geben, die zu diesen Zwecken in engster Beziehung
ständen.

Verfehlt wäre es jedoch in diesem und in anderen, ähnlichen
Fällen solchen gelegentlichen treffenden Äußerungen einen für den
Gang der Wissenschaft entscheidenden Wert beizulegen und
Leibniz z. B., wie es wohl geschehen ist, zu den Mitbegründern
der Sexualtheorie und des darauf begründeten Systems zu zählen.

Fortschritte der Zoologie.

Eine ähnliche Entwicklung, wie sie die Botanik nach dem
Wiederaufleben der Wissenschaften erfuhr, begegnet uns auf dem
Gebiete der Zoologie. Auch hier knüpfte man zunächst an die
Alten an; darauf begab man sich an die Beobachtung und die
Beschreibung der zugänglichen Tierformen, und schließlich erwuchsen
aus den Einzelbeschreibungen umfangreiche zoographische
Sammelwerke. Als Repräsentanten dieser Richtung haben wir besonders
Gesner und Aldrovandi kennen gelernt. Wie die
Pflanzenkenntnis so wurde auch die Kenntnis der Tierformen durch
die geographischen Entdeckungen außerordentlich erweitert. Um
die Mitte des 17. Jahrhunderts begegnen uns z. B. schon besondere
Werke über die Faunen Brasiliens und Ostindiens.

Auf die Periode des Sammelns folgte diejenige des Ordnens.
Auch in dieser Hinsicht läuft die Entwicklung der Zoologie derjenigen
der Botanik parallel. Ja, es sind zum Teil dieselben
Männer, die im 17. Jahrhundert sich der Systematik des Tier-
und Pflanzenreiches widmen. Dies gilt auch von dem größten
Systematiker auf dem Gebiete der Zoologie des 17. Jahrhunderts,
dem Engländer Ray.

John Ray wurde 1628 in Essex geboren. Er durchforschte
die Tier- und Pflanzenwelt Großbritanniens, Deutschlands, Frankreichs
und Italiens, war Mitglied der Royal-Society und starb im
Jahre 1705. Nach der Herausgabe mehrerer botanischer Werke427
schuf er ein für die systematische Zoologie grundlegendes Werk
in seiner Synopsis vom Jahre 1693. Ray teilt darin die Tierwelt
in Wirbeltiere und in Wirbellose ein, wie es schon Aristoteles
getan. Er bedient sich sogar der aristotelischen Bezeichnungen
»Bluttiere« und »Blutlose«. Die Wirbeltiere zerfallen nach Ray
in Lungenatmer und Kiemenatmer (Fische). Die Lungenatmer
werden in Lebendiggebärende und Eierlegende (Vögel) eingeteilt.
Auch der Bau des Gefäßsystems wird verwertet, indem die eierlegenden
Lungenatmer mit nur einem Herzventrikel zu einer besonderen
Gruppe zusammengefaßt werden. Für die Bildung von
Unterabteilungen werden der Bau des Gebisses und die Beschaffenheit
der Gliedmaßen verwertet. So begegnen uns Nagetiere (Hasenartige),
Krallentiere, die Ein-, Zwei- und Vierhufer (Nashorn und
Nilpferd). Nach ähnlichen Gesichtspunkten werden die Vögel
gruppiert, sodaß auch hier die Grundlagen der späteren Einteilung
geschaffen wurden. Die Wirbellosen zerfallen bei Ray in Weichtiere,
Krustentiere (Krebse), Schaltiere (Muscheln und Schnecken)
und Insekten. Letztere hat er am eingehendsten bearbeitet. Er
begreift darunter alle mit Einschnitten versehenen Tiere.

Was Ray auf dem Gebiete der zoologischen Systematik geschaffen,
bildete die unmittelbare Grundlage des Linnéschen Systems,
das uns an späterer Stelle beschäftigen wird. Auch in der
scharfen Erfassung des Artbegriffs war Ray ein Vorläufer Linnés.
»Formen, die der Species nach verschieden sind«, heißt es bei
Ray428, »behalten diese ihre spezifische Natur beständig, und es
entsteht die eine nicht aus dem Samen einer anderen.« Ray
huldigte indessen noch keineswegs der starren Auffassung des
Artbegriffes, der uns bei den Systematikern des 18. Jahrhunderts
begegnet. Denn er fügt seiner Erklärung429 folgende Einschränkung
hinzu: »Nun ist aber dieses Zeichen der spezifischen Übereinstimmung,
obschon ziemlich konstant, doch nicht beständig und
untrüglich«.

Das 17. Jahrhundert war indessen für die Zoologie und die
Botanik nicht etwa ein Zeitalter der bloßen Systematik. Es kam
vielmehr als zweites, besonders wichtiges Moment hinzu, daß die
beschreibenden Naturwissenschaften unter den Einfluß der seit
Galilei emporblühenden exakten physikalischen Forschung gerieten.
Dies führte zur Anwendung besonderer Hilfsmittel, z. B. des Mikroskops,
auf die Erforschung der Lebewesen. Die Blicke der Zoologen
und der Botaniker wurden dadurch mehr als bisher auf den
inneren Bau der Organismen und die kleinsten Lebewesen gelenkt.
Ja, es erschloß sich den erstaunten Blicken eine neue Welt, die
bis dahin, der Kleinheit ihrer Formen wegen, den Sinnen ganz
verborgen geblieben war. Die Berührung mit der physikalischen
Forschung führte aber nicht nur zur Benutzung technischer Hilfsmittel,
sondern es wurde auch die Methode der neueren physikalischen
Forschung, der messende Versuch, auf die Erscheinungen
der Tier- und Pflanzenwelt angewandt. Von Einfluß war in dieser
Hinsicht auch der Hauptzug der neueren, mit Descartes anhebenden
Philosophie, die alles Geschehen auf die Grundgesetze
der Mechanik zurückzuführen suchte und selbst die Organismen
nach der körperlichen Seite als bloße Maschinen betrachtete. So
entstand im 17. Jahrhundert die biomechanische Richtung, als
deren Hauptvertreter wir Borelli kennen lernen werden. Die
hier nur angedeuteten, auf den Einfluß der Physik zurückzuführenden
Fortschritte der biologischen Wissenschaften sollen in besonderen
Abschnitten behandelt werden, nachdem wir zunächst das
Emporblühen der anorganischen Wissenschaften während der auf
Galileis Zeitalter folgenden Newton-Huygens-Periode kennen
gelernt haben.




11. Die Begründung der großen wissenschaftlichen
Akademien.

Während der ersten Hälfte des 17. Jahrhunderts lag der
Schwerpunkt der wissenschaftlichen Arbeit auf dem Gebiete der
Mechanik. Erst nachdem man die Gesetze festgestellt hatte, die
das Verhalten der festen, flüssigen und gasförmigen Körper regeln,
war eine Grundlage für die weitere Erforschung alles Geschehens
geschaffen. Den Versuch einer mechanischen Erklärung aller Naturerscheinungen
unternimmt das nachfolgende Zeitalter, dessen bedeutendste
Tat die Begründung der Mechanik des Himmels durch
Newton ist.

Galilei hatte in einem an Kepler gerichteten Briefe die
Befürchtung ausgesprochen, daß auf den das 17. Jahrhundert
kennzeichnenden wissenschaftlichen Aufschwung vielleicht eine Zeit
des Stillstandes eintreten werde. War doch auf die Blüteperiode
der griechischen Wissenschaft eine Brache von vielen Jahrhunderten
gefolgt. Diese Befürchtung Galileis erwies sich als grundlos.
Die Wissenschaft war zu einem Gemeingut der zivilisierten
Menschheit geworden; sie war nicht mehr an das Schicksal eines
Volkes gebunden. Während auf dem Boden Italiens rückwärts
gerichtete Bestrebungen ihren Fortschritt hemmten, gelangte sie
zunächst vornehmlich in England, in den Niederlanden und in
Frankreich zur Entfaltung. Günstig beeinflußt wurden die Naturwissenschaften
durch den Fortschritt der Mathematik, insbesondere
durch die Begründung der analytischen Geometrie und der Infinitesimalrechnung.
Eine zu weit gehende Arbeitsteilung, wie sie
heute, nicht ohne Gefahr für die Wissenschaft, Platz gegriffen, bestand
damals noch nicht. So sehen wir die hervorragendsten Philosophen
und Mathematiker – es sei nur an Descartes430 und
Leibniz erinnert – eifrig an der Lösung naturwissenschaftlicher
Aufgaben mitarbeiten. Die neuere Philosophie zeigte sich von
dem Bestreben beseelt, mit allen hergebrachten Anschauungen zu
brechen und ihre Probleme vom Standpunkt der Voraussetzungslosigkeit
in Angriff zu nehmen. Dies Bestreben erwies sich auch
für das naturwissenschaftliche Gebiet als überaus fruchtbringend.
Von nachhaltigem Einfluß auf das letztere ist insbesondere der
englische Philosoph John Locke (1632–1704) gewesen, dessen
gründliche Untersuchungen über das Erkenntnisvermögen den modernen
Realismus ins Leben gerufen haben.

Es ist bemerkenswert, eine wie hohe Wertschätzung die
Mathematik in ihrer Anwendung auf die Naturwissenschaften erfuhr.
Mathematik und mathematische Physik waren im Verein mit
der aus den scholastischen Banden befreiten Philosophie zum Inbegriff
aller Wissenschaften, ja sozusagen zu einem neuen Evangelium
geworden. Sie wurden sogar zu einem Bestandteil der
höfischen Bildung. Vornehme Frauen umgaben sich mit Philosophen
und Mathematikern anstatt wie früher mit Dichtern und
Sängern. Wie im Zeitalter der Renaissance die Begeisterung für
die Antike, so galt während des 17. Jahrhunderts eine nicht geringere
Begeisterung für die exakten Wissenschaften und die ihr
geistesverwandte neuere Philosophie als ein Ersatz für das religiöse
Leben der vergangenen Jahrhunderte. Eine solche Strömung
zeitigte als erfreulichste Erscheinung die Gründung der großen
nordeuropäischen Akademien.

Nach dem Vorbilde der Accademia del Cimento entstanden
nämlich auch in den nördlichen Ländern Europas gelehrte Gesellschaften,
die, gefördert durch reiche Mittel sowie durch die Gunst
der Monarchen, für die weitere Entwicklung von großer Bedeutung
wurden. Den wesentlichsten Vorteil derartiger Vereinigungen hat
einmal Laplace mit folgenden Worten gekennzeichnet: »Während
der einzelne Gelehrte sich leicht dem Dogmatisieren hingibt, führt
in einer gelehrten Gesellschaft der Zusammenprall dogmatischer
Ansichten sehr bald zu ihrer Zerstörung. Der Wunsch, sich gegenseitig
zu überzeugen, ruft ferner unter den Mitgliedern die Übereinkunft
hervor, nichts anderes als die Ergebnisse der Beobachtung
und Rechnung anzunehmen«431.

In der Pflege dieses Geistes zeichneten sich vor allem die
unter Ludwig XIV. im Jahre 1666 ins Leben gerufene Pariser
Akademie, sowie die um dieselbe Zeit entstandene Royal Society432
in London aus. Und während des 18. Jahrhunderts, besonders
im Fridericianischen Zeitalter, erlangte die durch Leibniz ins
Leben gerufene Preußische Akademie der Wissenschaften eine
ähnliche Bedeutung.

Die Geschichte dieser Akademien zeigt uns mehr als der
Lebens- und Entwicklungsgang des einzelnen Forschers die Wissenschaft
in ihrer Abhängigkeit von dem gesamten Kulturzustande
und der politischen Gestaltung Europas. Wir wollen daher bei
dieser Erscheinung, die uns die neuere Geschichte der Wissenschaften
bietet, noch etwas verweilen.

In der Zeit vor der Begründung der großen Akademien erwarb
sich der Jesuit Mersenne (1588–1648) dadurch ein besonderes
Verdienst, daß er durch eine umfangreiche Korrespondenz den
Austausch an Erfahrungen und Gedanken zwischen den einzelnen
Gelehrten besorgte. Mersennes Briefwechsel, der ein reiches
Material für die Geschichte der Wissenschaften darstellt, wird in
der Nationalbibliothek zu Paris aufbewahrt433. In demselben Sinne
wie Mersenne wirkte in Deutschland ein anderer Jesuit, der
Pater Kaspar Schott. Die Rolle solcher Männer übernahmen
mit der Gründung der erwähnten Akademien die Sekretäre dieser
Gesellschaften.

Die Royal Society wurde von einer Anzahl englischer Forscher
im Jahre 1645 ins Leben gerufen, um, wie die Stifter sagten, in
der Unterhaltung über naturwissenschaftliche Gegenstände Trost
über das Elend des Landes zu suchen. Die Geschichte der Royal
Society ist ein wichtiges Stück der Geschichte der Wissenschaften
überhaupt. Der Gedanke, ein von jedem Nebenzwecke unabhängiges
wissenschaftliches Institut zu gründen und es mit allen Mitteln zu
versehen, ging in England von Francis Bacon aus. Er hat diesen
Gedanken in seiner neuen Atlantis geäußert und sein Ideal als das
Haus Salomos bezeichnet. Auch der König wurde für diesen Plan
gewonnen; er sicherte der Vereinigung, zu deren Begründern Boyle
und Wren zählten, seinen besonderen Schutz zu und verlieh ihr
Korporationsrechte, sowie den Titel einer königlichen Gesellschaft434.
Das Ziel dieser Vereinigung war zwar, das schon von Bacon gewünschte
System der Wissenschaften zu errichten. Man erkannte
aber, daß dazu zunächst eine sichere Grundlage durch die rein
empirische Erforschung der Tatsachen ohne Rücksicht auf irgend
welche Theorien geschaffen werden müsse. Man war also in den für
die Naturwissenschaften interessierten Kreisen Englands von demselben
Geiste ergriffen, der die Mitglieder der Accademia del Cimento
beseelte und durch sie schon so bedeutende Erfolge gezeitigt hatte.

Das Hauptgewicht wurde nicht auf Vorträge, sondern auf
Versuche und Demonstrationen gelegt, welche die Entdecker neuer
Gesetze und Tatsachen im Beisein von Mitgliedern der Akademie
zu wiederholen hatten. Unter diesen Mitgliedern waltete zunächst
das medizinische Element vor. Daher kam es, daß man sich in
den ersten Jahren besonders mit der Nachprüfung der Harveyschen
Lehre vom Blutkreislauf befaßte und manche neue
Stütze für diese Lehre beibrachte. Boyle stellte im Schoße der
Royal Society seine Versuche über die Atmung an. Andere
Forscher nahmen Zergliederungen von Organismen vor. Kurz,
dem unmittelbaren Zeugnis der Sinne wurde eine entscheidende
Bedeutung eingeräumt und manche irrige Meinung, ja mancher
Aberglauben dadurch beseitigt. Die Gesellschaft beschränkte sich
indessen nicht auf den Verkehr der Mitglieder unter sich, sie trat
auch mit bedeutenden auswärtigen Gelehrten in Verbindung. Den
umfangreichen schriftlichen Verkehr, der dazu nötig war, leitete
in den ersten Jahren ein Deutscher namens Oldenburg, der die
Stelle eines Sekretärs der Akademie einnahm435.

Leeuwenhoek, Malpighi und viele andere richteten die
ersten Mitteilungen über ihre Entdeckungen an die Royal Society.
Letztere unterstützte nämlich wissenschaftliche Unternehmungen,
auch wenn sie von Ausländern ausgingen, in freigebiger Weise. So
ließ sie Malpighis große Abhandlung über den Seidenschmetterling
auf ihre Kosten drucken und mit Kupfertafeln ausstatten.

Die Veröffentlichungen der Royal Society führten die Bezeichnung
Philosophical Transactions436. Sie erschienen seit dem
Jahre 1664 und bildeten durch ihre Berichte und ihre Abhandlungen
die wichtigste Quelle für die Entwicklung, welche die
Wissenschaften im Verlauf der letzten Jahrhunderte genommen
haben.

Seit ihrer Begründung stand für die Royal Society die Astronomie
im Mittelpunkte des Interesses. Dieses wurde besonders
durch die lebhafte Anteilnahme genährt, die Karl II. ihrer nautischen
Anwendung wegen für die Astronomie empfand. Auf das
Zusammenwirken des Königs und der Gesellschaft, der auch der
königliche Astronom angehörte, ist die Gründung der Sternwarte
in Greenwich zurückzuführen. Unter den übrigen wissenschaftlichen
Aufgaben, mit denen man sich um die Mitte des 18. Jahrhunderts
beschäftigte, standen obenan die Probleme der Mechanik,
der Ausbau der Lehre von der Bewegung zu einem zusammenhängenden,
auf wenige Axiome sich gründenden System. Dem
Verdienste der Royal Society, das vor allem darin bestand, die
wissenschaftlichen Aufgaben ihrer Zeit zu erkennen und deren
Lösung stets wieder in Anregung zu bringen, gesellte sich das
besondere Glück zu, daß in ihrem Schoße der Genius erstand, der
diese Fragen einer umfassenden Lösung entgegenführte. Dieses
Genie, das bedeutendste Mitglied der Royal Society, war Newton.
In ihm finden nämlich die beiden Hauptstämme der neueren Naturwissenschaft,
die Astronomie in der Gestalt, die Kepler ihr gegeben,
und die Mechanik, wie sie aus dem Haupte Galileis hervorging,
ihren Zusammenschluß und ihre Fortentwicklung.

Wie die Royal Society, so ging auch die Pariser Akademie der
Wissenschaften, die 1666 unter Ludwig XIV. durch Colbert ins
Leben gerufen wurde, aus dem Bedürfnis einiger Forscher hervor,
die sich zwanglos zusammenfanden. Es war das der Kreis, der
sich schon Jahrzehnte vor der Gründung der Akademie um Mersenne437
versammelte.

Die Pariser Akademie der Wissenschaften438 entwickelte sich
noch im 17. Jahrhundert zu einer der Royal Society ebenbürtigen
Einrichtung. Beide Akademien gaben in regelmäßiger Folge
Druckschriften heraus, in denen die bedeutendsten Arbeiten der
einheimischen aber auch fremder Gelehrter veröffentlicht wurden.



Während der Revolution wurde die Pariser Akademie der
Wissenschaften zunächst (1793) aufgehoben, indes schon 1795
wieder eingerichtet. Ihre endgültige Einrichtung empfing sie nach
der Beendigung des Revolutionszeitalters (im Jahre 1816). Sie
zählt statutengemäß 65 Mitglieder und zerfällt in 11 Abteilungen,
nämlich in eine solche für Mathematik, Mechanik, Astronomie,
Geographie, Physik, Chemie, Mineralogie, Botanik, Agrikultur,
Zoologie einschließlich Anatomie, Heilkunde.

An die Royal Society und die Pariser Akademie haben sich
im 18. Jahrhundert eine größere Zahl von ähnlichen Forschungsinstituten
angeschlossen. Die wichtigsten unter ihnen sind die
folgenden: Berlin (1700), Petersburg (1725), Stockholm (1739),
München (1759). Die Münchener Akademie verdient besondere
Anerkennung für die Verdienste, die sie sich um die Geschichte
der Wissenschaften erworben hat439.

Bevor wir uns mit dem Lebensgange und den Taten Newtons
befassen, wollen wir einen Blick auf Deutschland werfen, das
während des 17. Jahrhunderts in Leibniz einen dem englischen
Forscher zwar nicht ebenbürtigen, ihn an Vielseitigkeit aber übertreffenden
Führer besaß, in dem die aus der Renaissance, der Reformation
und der exakten Wissenschaft hervorquellenden Kräfte,
wie in keinem anderen, in die Erscheinung traten. Daneben ist
Jungius zu nennen, in dem sich während der ersten Hälfte des
17. Jahrhunderts das Streben nach einer Erneuerung der Wissenschaften
verkörperte. Auch in dem Bemühen, die der freien
Forschung sich widmenden Kräfte zu gemeinsamer Tätigkeit anzuspornen,
müssen wir Jungius als einen Vorläufer von Leibniz
bezeichnen.

Joachim Jungius wurde im Jahre 1587 in Lübeck geboren.
Er widmete sich der Heilkunde und hielt sich einige Jahre in
Italien auf, wo er mit den botanischen Forschungen Caesalpins
bekannt und mit dem Geiste der in Italien aufblühenden
neueren Naturwissenschaft erfüllt wurde. Nach Deutschland
zurückgekehrt, nahm er dort den Kampf gegen die Scholastik
auf und suchte gleichgesinnte Männer um sich zu scharen. Von
diesem Bestreben geleitet, gründete Jungius 1622 in Rostock
die erste deutsche Gesellschaft, welche die Pflege der Mathematik
und die Erforschung der Natur als ihre wichtigste Aufgabe bezeichnete.
Ihr Zweck sollte darin bestehen, »die Wahrheit aus
der Vernunft und der Erfahrung zu erforschen, die Wissenschaften
von der Sophistik zu befreien und durch Erfindungen zu vermehren«.
Von den Erfolgen, die Jungius selbst in der gewollten Richtung
aufzuweisen hatte, wird an anderer Stelle die Rede sein440.

Neben der Rostocker Gesellschaft verdient auch die etwas
später (1652) auf deutschem Boden entstandene Kaiserlich Leopoldinische
Akademie genannt zu werden. Sie gibt seit dem Jahre
1672 Abhandlungen meist naturgeschichtlichen Inhalts heraus,
hat aber für das wissenschaftliche Leben in Deutschland keine
ihrem stolzen Namen entsprechende Bedeutung gewonnen. Dies
lag daran, daß der Sitz dieser Akademie häufig wechselte und daß
ihre Mitglieder über das ganze Land zerstreut lebten. Damit fiel
das fruchtbarste Moment, der häufige persönliche Gedankenaustausch
zwischen den Mitgliedern fort. Auch der Umstand, daß
die einzelnen deutschen Länder (Preußen, Bayern) in ihren Hauptstädten
Akademien unterhielten, ließ eine allgemeine deutsche Akademie,
wie es die Leopoldinische sein wollte, nicht erstarken.

Der Gedanke, den Jungius und die Gründer der Leopoldinischen
Akademie wenn auch nur in bescheidenem Maße verwirklichten,
lebte in Leibniz wieder auf, als er während seines
mehrjährigen Aufenthaltes in Paris den außerordentlichen Nutzen
einer großen, vom Staate in freigebiger Weise geförderten
Vereinigung gelehrter Forscher kennen gelernt hatte. Leibniz
bot seinen ganzen Eifer und seine Beredsamkeit auf, um eine ähnliche
Einrichtung für Deutschland ins Leben zu rufen.

Dies geschah in seiner von mehreren Entwürfen begleiteten
Consultatio vom Jahre 1672441. Die Grundsätze, die Leibniz darin
entwickelte, sind in Kürze die folgenden: Alle Kräfte müssen
sich vereinigen, um tiefer in die Natur einzudringen. Zunächst
sind deshalb die einfacheren gelösten und die schwierigeren ungelösten
Probleme übersichtlich zusammenzustellen, um der Forschung
Ziel und Richtung zu geben. Die von einer solchen Neubelebung
zu erwartenden Ergebnisse sind der Allgemeinheit
zugänglich zu machen, damit sie auch für die Bildung und das
Leben Früchte zeitigen können. Deshalb sollte sich die zu gründende
Akademie in ihren Veröffentlichungen der deutschen Sprache bedienen.
Scharf und zutreffend urteilt bei dieser Gelegenheit schon
Leibniz über den Wert der einseitig klassischen Bildung und
die übertriebene Wertschätzung der grammatisch-philologischen
Schulung, wenn er sagt: »Wir nötigen unsere Jugend dazu, zuerst
die Herkulesarbeit der Bezwingung verschiedener Sprachen
zu leisten, wodurch oft die Schärfe des Geistes abgestumpft wird,
und verurteilen alle, welche die Kenntnis des Lateinischen entbehren,
zur Unwissenheit«. Die Befürchtung, daß durch das Aufgeben
der alten Sprachen als allgemeines Bildungsmittel das altsprachliche
Studium in Verfall kommen werde, weist Leibniz
mit vollem Recht zurück. Niemals werde der Theologe das
Griechische oder der Jurist das Lateinische entbehren wollen,
noch der Geschichtsforscher sich den Zugang zu den Quellen versperren
lassen.

Die Anregungen, welche die Consultatio brachte, waren zunächst
ohne Erfolg. Leibniz wurde dadurch recht deutlich daran
erinnert, daß es wohl ein Frankreich, aber kein Deutschland gab.
Er ließ jedoch seinen Plan nicht fallen, an dessen Verwirklichung
er die Hoffnung knüpfte, daß die deutsche Wissenschaft bald
die der anderen Nationen überflügeln werde. Was sich nicht
für das Deutsche Reich ins Leben rufen ließ, war vielleicht in
einem der Einzelstaaten, die das Reich in seinem lockeren Gefüge
zusammensetzten, möglich. Und so richtete er denn in
dieser, ihm wie keine andere am Herzen liegenden Sache seine
Aufmerksamkeit auf den mächtigsten deutschen Staat, auf das
emporstrebende Brandenburg-Preußen. Ein äußerer Umstand kam
Leibniz zu Hilfe. Der Kurfürst Friedrich III. von Brandenburg
vermählte sich mit der hannoverschen Prinzessin Sophie
Charlotte. An dieser hatte Leibniz, der nach seiner Rückkehr
aus Paris in hannoversche Dienste getreten war, eine begeisterte
Schülerin gefunden. Die Beziehungen zwischen der neuen Kurfürstin
und ihrem früheren Lehrer erhielten in einem regen Briefwechsel
ihre Fortsetzung, und der wichtigste Gegenstand dieses Briefwechsels
war der alte Leibniz'sche Plan, in Deutschland, und zwar jetzt
in Berlin, eine der französischen Akademie der Wissenschaften
ebenbürtige Schöpfung ins Leben zu rufen. Leibniz wies besonders
darauf hin, daß Preußen auf dem Gebiet der praktischen Künste
Kraft gewinnen müsse. Denn bei dem Kampf und Wettbewerb
der Völker werde die zivilisierteste und gewerbreichste Nation
den Sieg davontragen. Die Akademie sollte eins der Mittel sein,
dem protestantischen Deutschland unter Preußens Führung durch
die Anwendung der Wissenschaften auf Landwirtschaft und Gewerbe
einen inneren, friedlichen Machtzuwachs zu verleihen.

Nach langem Harren und Mühen drang Leibniz endlich in
Berlin mit seinen Vorschlägen durch. Am 19. März des Jahres
1700 befahl der Kurfürst, eine »Académie des Sciences und ein
Observatorium in Berlin zu etablieren.« Ein Vierteljahrhundert
hatte es also gewährt, bis der erste, von Leibniz in seiner Consultatio
entwickelte Vorschlag in die Tat umgesetzt worden war.
Leibniz wurde nach Berlin berufen und an die Spitze der Akademie
gestellt. Im übrigen entsprachen die zur Verfügung gestellten
Mittel zunächst in keiner Weise der Größe des von Leibniz
entwickelten Planes. Der ganzen Sinnesart Friedrich
Wilhelms I., der etwa ein Jahrzehnt nach der Begründung der
Akademie den Thron bestieg, entsprach es nicht, gelehrte Einrichtungen
zu fördern. Dieser König, dem Preußen im übrigen
so vieles verdankt, verkannte, ja verhöhnte sogar die Akademie
und ihre Einrichtungen. Die einzige Wissenschaft, die er achtete,
und förderte, war die Chemie, die während seiner Regierungszeit
in Preußen einige hervorragende Vertreter, wie Stahl und Pott,
besaß.

Mit einem Schlage änderten sich die unter Friedrich Wilhelm
I. bestehenden Verhältnisse, als sein großer Sohn die Regierung
übernahm und mit ihm »die Wissenschaften und die Künste auf
den Thron stiegen«. Schon als Kronprinz hatte Friedrich II.
den Plan gefaßt, die Akademie der Wissenschaften zu neuem Leben
zu erwecken. Er hatte sogar in Europa nach geeigneten Gelehrten
Ausschau gehalten, die er nach seiner Thronbesteigung durch die
Akademie an Preußen zu fesseln wünschte. Seine Aufmerksamkeit
richtete sich zunächst auf Maupertuis und Wolf. Maupertuis
galt seinen Zeitgenossen als einer der hervorragendsten Vertreter
der Astronomie sowie der mathematischen Physik. Wolf dagegen
genoß als Philosoph das größte Ansehen. Friedrich glaubte,
daß diese beiden Männer berufen seien, Newton und Leibniz
zu ersetzen. Die Geschichte hat sie jedoch weit geringer einschätzen
müssen. Wolf nahm die Berufung nach Berlin nicht
an. Er hatte in Preußen schlechte Erfahrungen gemacht. Während
er in Halle die Professur der Philosophie bekleidete, hatten seine
theologischen Amtsgenossen ihn der Irreligiosität beschuldigt und
damit erzielt, daß Wolf bei Strafe des Stranges binnen 48 Stunden
das Land verlassen mußte. Wolfs Verdienst um die Philosophie
beschränkte sich im wesentlichen darauf, daß er die Leibniz'schen
Lehren weiter ausbaute und für ihre Verbreitung sorgte. Dabei
bediente er sich – und das ist ein bahnbrechendes Verdienst gewesen
– der von Leibniz gegebenen Anregung gemäß der
deutschen Sprache.

Maupertuis dagegen folgte dem Rufe des Königs und wurde
1742 zum Direktor der Akademie ernannt. Ein Jahr vorher war
auch der große Euler für sie gewonnen worden. Die ersten
Jahrzehnte der Fridericianischen Zeit waren für die Preußische
Akademie der Wissenschaften die bedeutendsten. Maupertuis
verstand es, hervorragende Männer als wirkliche oder auswärtige
Mitglieder in ihr zu vereinigen. Die Preußische Akademie war
damals, und das ist ihr schönster Ruhmestitel gewesen, eine Freistätte
für die vom Fanatismus oder vom Absolutismus aus anderen
Ländern vertriebenen Gelehrten und eine Burg gegenüber der
Unduldsamkeit der Kirche442. Was ihre Mitglieder, unter denen
neben den erwähnten noch Lagrange, Lambert und Marggraf
genannt seien, für die Wissenschaft geleistet haben, bleibt späteren
Abschnitten vorbehalten.

Unter den Mitteln, deren sich die Akademien zur Erreichung
ihrer Zwecke bedienten, standen die Preisaufgaben obenan. An
ihrer Lösung beteiligten sich in regem Wetteifer die besten Kräfte.
Sie waren gleichsam, wie der Historiograph der Preußischen Akademie
der Wissenschaften sich ausdrückt, die Hebel, durch die Jahr
für Jahr die Wissenschaften um eine Stufe gehoben wurden. Der
Fragestellung, in welcher der Geist und das Geschick der betreffenden
Akademie zum Ausdruck kam, blickte man fast mit der
gleichen Spannung entgegen wie der Verkündigung des Preises.

Die von Seiten der Akademien herausgegebenen Berichte
fanden eine wertvolle Ergänzung in anderen periodisch erscheinenden
wissenschaftlichen Veröffentlichungen. Unter ihnen sind besonders
die Acta Eruditorum zu nennen. Sie erschienen seit dem
Jahre 1682 in Leipzig und enthalten viele mathematische und
physikalische Abhandlungen, daneben aber auch solche aus allen
anderen Wissensgebieten. Leibniz, Tschirnhausen und viele
andere Männer von Bedeutung gehörten zu ihren Mitarbeitern.
Der letzte Band ist 1776 erschienen. In dem Maße, in dem für
die einzelnen Zweige der Naturwissenschaft besondere Zeitschriften
ins Leben gerufen wurden, verloren die »Acta Eruditorum« an
Wert und gingen endlich (1776) ein.

Auch durch die im 18. Jahrhundert herrschende Sitte, daß
sich die Mitglieder der verschiedenen Akademien gegenseitig
Probleme vorlegten, wurde die Wissenschaft gefördert, doch entstanden
hierbei nicht selten durch nationale Eifersucht geschürte
Streitigkeiten, die sich namentlich zwischen den Deutschen und
den Engländern geltend machten. Solche Streitigkeiten waren
mitunter recht unerquicklich. Im ganzen genommen, haben sie
der Wissenschaft aber nicht geschadet.




12. Newton.

Nachdem wir den allgemein geschichtlichen, kulturhistorischen
und naturphilosophischen Hintergrund kennen gelernt haben, von
dem sich die gewaltige Forschergestalt Newtons abhebt, gehen
wir zur Schilderung seiner Lebensarbeit und seiner Persönlichkeit
über.

Isaak Newton443 wurde am 4. Januar 1643 in Woolsthorpe,
einem in der Grafschaft Lincolnshire gelegenen Dorfe, geboren,
ein Jahr, nachdem Galilei die Augen geschlossen hatte und
hundert Jahre nach dem Tode des Koppernikus. Sein Vater,
der dort Landwirtschaft betrieb, war einige Monate vor der
Geburt des Sohnes gestorben. Die Mutter hegte den Wunsch,
daß letzterer das kleine Besitztum, das sie ihr eigen nannte, später
übernehmen möchte. Newton wurde auf die Schule zu Grantham,
einem wenige Meilen von Woolsthorpe entfernten Städtchen, geschickt.
Seine Lernbegierde war zunächst gering. Mit besonderem
Eifer beschäftigte er sich mit der Herstellung mechanischer Vorrichtungen.
So entstanden Windmühlen, Sonnen- und Wasseruhren
usw. Auch in anderer Hinsicht zeigte sich die Eigenart
Newtons, der an den Spielen seiner Jugendgefährten nur geringen
Anteil nahm.

Als der Knabe mit 14 Jahren auf das kleine Gut der Mutter
zurückkehrte, dessen Bewirtschaftung er übernehmen sollte, zeigte
es sich, daß er für die Geschäfte des praktischen Lebens keine
rechte Neigung besaß. Auf Anraten und unter Beihilfe seines
Oheims, der ihn hinter einer Hecke, mit dem Lesen eines geometrischen
Buches beschäftigt, gefunden hatte, wurde Newton
deshalb nach Grantham zurückgeschickt. Mit 17 Jahren bezog
er die Universität Cambridge. Hier studierte er zunächst die
mathematischen Werke der Alten, insbesondere die Geometrie
Euklids. Darauf fesselten ihn die Arbeiten der neueren Schriftsteller.
Er las die mathematischen Schriften des Descartes,
die Arithmetik von Wallis444, welche die Keime der später von
Newton und Leibniz erfundenen Infinitesimalrechnung enthält,
und die Dioptrik Keplers. An alle Arbeiten anderer trat er
jedoch mit einer Selbständigkeit des Denkens heran, wie sie nur
hervorragende Geister auszeichnet. Eigene mathematische Untersuchungen
leiteten ihn schon während seiner Studienzeit zur Auffindung
des allgemeinen binomischen Lehrsatzes. Auch nahm er,
bereits bevor er in Cambridge als letzten akademischen Grad die
Magisterwürde erlangt hatte, das Gravitationsproblem in Angriff.
Ihn leitete dabei der fruchtbare Gedanke, die Identität der Schwere
und der von der Erde auf den Mond wirkenden Kraft nachzuweisen.
Indes gelangte er damals noch nicht zum Ziele, weil
ihm die, seiner Rechnung zugrunde zu legenden Abmessungen der
Erde nicht hinreichend genau bekannt waren. Die später zu besprechende
Gradmessung Picards verschaffte endlich seiner Ableitung
die richtigen Unterlagen, so daß erst 16 Jahre später jener
Gedanke als zutreffend bewiesen werden konnte.

Fortschritte der praktischen Optik.

In den Beginn der wissenschaftlichen Tätigkeit Newtons
fällt seine erste Beschäftigung mit der Optik. Wie auf Galilei,
so wurde auch auf Newton die Mitwelt zuerst infolge seiner
Verdienste um die Erfindung, beziehungsweise die Verbesserung
des Fernrohrs aufmerksam. Man hatte bemerkt, daß zwei
Eigenschaften der Glaslinsen der Vervollkommnung dieses Instrumentes
im Wege standen. Einmal wurden parallel einfallende
Strahlen nicht genau in einem Punkte vereinigt; zweitens machten
sich an den Bildern farbige Ränder bemerkbar. Beide Erscheinungen
sind unter dem Namen der sphärischen und der chromatischen
Abweichung bekannt. Da die letztere an den durch
Hohlspiegel erzeugten Bildern nicht auftritt, so brachte Newton
die von mehreren Seiten445 geäußerte Idee eines Spiegelteleskops
zur Ausführung (s. Abb. 68).
Das durch einen sphärischen
Hohlspiegel (aqsb) erzeugte
Bild wurde von einem schräg
gestellten Planspiegel (fg) seitwärts
reflektiert und durch
eine in der Seitenwand angebrachte
Linse (h) betrachtet
(siehe Abb. 69).


[image: Abb. 68]
Abb. 68.
Ansicht von Newtons Spiegelteleskop446.




[image: Abb. 69]
Abb. 69. Newtons schematische Zeichnung seines Spiegelteleskops.



Das erste, im Jahre 1668
verfertigte Spiegelteleskop war
nur 5 Zoll lang. Man war
jedoch imstande, damit die Monde Jupiters, sowie die Lichtgestalten
der Venus zu erkennen. Einige Jahre später447 sandte
Newton ein zweites, größeres Instrument an die Royal Society.
Es fand deren Beifall und erregte auch die Bewunderung des
Hofes. Dieses Instrument wird noch heute in der Bibliothek jener
Gesellschaft aufbewahrt. Es trägt die Inschrift:


Invented by Sir Isaac Newton

and made with his own hands.

1671.


Das Verdienst des genialen Erfinders, der seit dem Jahre
1662 die Professur der Mathematik in Cambridge bekleidete,
wurde dadurch anerkannt, daß man ihn in die Royal Society
aufnahm, deren Vorsitz er in späteren Jahren führte.


[image: Abb. 70]
Abb. 70. Hadleys Spiegeloktant.



Eine kurze Erwähnung verdient auch der Spiegelsextant.
Sein Erfinder ist John Hadley. Nach Maskelyne448 hat sich
schon Newton mit der Idee befaßt, für die Beobachtung von
Monddistanzen einen Spiegeloktanten herzustellen. Die Beschreibung
eines brauchbaren Spiegelmeßapparats, der alle älteren, bisher
von den Seefahrern benutzten Winkelmeßinstrumente verdrängte,
veröffentlichte Hadley im Jahre 1731449. Seine Abbildung
stellt einen Oktanten mit einem senkrecht zur Mittellinie gerichteten
Fernrohr dar. Vor dem Fernrohr befindet sich der feste, und links
davon der auf einer beweglichen Alhidade angebrachte Spiegel.
Vor diesem kann ein Blendglas (ganz links in der Abbildung) gedreht
werden. An Stelle des in Grade und Minuten geteilten
Oktanten setzte man den Sextanten, von dem das Instrument
seinen Namen erhielt.

Die Untersuchung des Sonnenspektrums.

Von nicht geringerem Belang als jene, in erster Linie der
Praxis dienenden Erfolge war die Förderung, welche die theoretische
Optik durch Newton erfuhr. Mit der Brechung des Lichtes hatten
sich schon die Alten, sowie unter den Neueren besonders Kepler
und Snellius befaßt. Eine Vertiefung von großer Tragweite erlangte
dieses Problem, als Newton sein Augenmerk auf die bis dahin
kaum weiter verfolgte Erscheinung der Farbenzerstreuung richtete.
Sämtliche grundlegenden Versuche, welche dieses Gebiet betreffen
und die ihn seit dem Jahre 1666 beschäftigten, rühren von ihm
her. Eine zusammenfassende Darstellung gab Newton in seinen
drei Büchern über die Optik450. Newton beginnt das erste Buch
mit der Versicherung, daß er die Eigenschaften des Lichtes nicht
durch Hypothesen erklären, sondern daß er sie nur aufdecken und
durch Versuche und Rechnung klarstellen wolle. Diesem Vorsatz ist
er nicht immer treu geblieben, sondern durch das ganze Werk zieht
sich die Auffassung, daß wir es in dem Licht mit einer feinen,
aus gesonderten Teilchen bestehenden Materie zu tun haben, die
von den leuchtenden Körpern ausgestoßen wird. Newtons Ansicht
ist unter dem Namen der Emanations- oder Emissionstheorie bekannt
geworden und hat die Wissenschaft bis in das 19. Jahrhundert
hinein beherrscht.

Den Ausgangspunkt der Untersuchung bildete der Nachweis,
daß Licht verschiedener Farbe einen verschiedenen Grad der
Brechbarkeit besitzt. In einem dunklen Zimmer brachte Newton
hinter einer kleinen Öffnung ein Glasprisma an. Letzteres lenkte
den Lichtstrahl, der durch die Öffnung eindrang, ab und rief auf
der gegenüberliegenden Wand des Zimmers ein Spektrum hervor.
Die Achse des Prismas war senkrecht zu den einfallenden Lichtstrahlen
gerichtet. Als Newton das Prisma um diese Achse
drehte, sah er das Spektrum zuerst hinab- und dann wieder hinaufsteigen.
Zwischen der Ab- und Aufwärtsbewegung, in dem Augenblicke,
als das Bild still zu stehen schien, also das Minimum der
Ablenkung stattfand, stellte er das Prisma fest. Nun ließ er das
gebrochene Licht senkrecht auf einen Bogen weißen Papieres MN
fallen, der auf der gegenüberliegenden Wand des Zimmers angebracht
war, und beobachtete die Gestalt und die Größe des dort
entstandenen Spektrums (Abb. 71). Letzteres war rot in seinem am
wenigsten gebrochenen Ende T, violett in dem am stärksten abgelenkten
Ende P. Darauf wurden in den Weg des Lichtstrahls
zwei Bretter (Abb. 72) DE und de mit Öffnungen bei G und g gestellt.
Durch G. ging nur ein Teil des gebrochenen Lichtes,
während der Rest aufgefangen wurde. Zwölf Fuß von dem ersten
Brette entfernt, befestigte Newton das zweite Brett de (Abb. 72)
in der Weise, daß wieder nur ein Teil des gebrochenen Lichtes,
das durch G gelangt war, das Loch g in jenem zweiten Brette
passieren konnte. Unmittelbar hinter dem zweiten Brette de
brachte er dann ein anderes Prisma abc an, welches das die
Öffnung g passierende Licht ablenken sollte. Indem er nun das
erste Prisma ABC langsam um seine Achse hin- und herdrehte,
bewirkte er, daß das Spektrum sich auf- und abbewegte, so daß
alle Teile desselben nacheinander auf das Prisma abc fallen
mußten. Gleichzeitig merkte Newton die Stellen auf der gegenüberliegenden
Wand NM (Abb. 72) an, auf welche die Lichtstrahlen
nach ihrem Durchgänge durch das zweite Prisma abc
gelangten. Aus der verschiedenen Höhe dieser Stellen fand er,
daß die Strahlen stärkster Brechbarkeit, die den blauen Teil des
Spektrums bilden, stärker gebrochen werden, als das rote Licht.
Trat nämlich der untere rote Teil des Spektrums durch die
Öffnung g, so gelangte dieses Licht zu einer tieferen Stelle M der
Wand. Wurde dagegen der obere blaue Teil des Spektrums
durch dieselbe Öffnung g geworfen, so gelangte der betreffende
Strahl zu der höheren Stelle N. Die dazwischen befindlichen Teile
des Spektrums endlich fielen nach dem Passieren der Öffnung g
zwischen M und N auf die Wand (Abb. 72).


[image: Abb. 71]
Abb. 71. Newton untersucht das Spektrum451.
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Abb. 72. Newtons Nachweis, daß die Spektralfarben verschieden brechbar sind452.



Diesem Versuch wurde von Newton eine solch entscheidende
Bedeutung beigelegt, daß er ihn als Experimentum crucis, d. h. als
einen am Kreuzwege entscheidenden Versuch, bezeichnet hat. Das
Wort ist der bei Bacon üblichen, an Bildern so reichen Terminologie
entnommen.

Durch Vereinigung sämtlicher Spektralfarben ließ sich das
weiße Sonnenlicht in seiner vollen Ursprünglichkeit wieder herstellen.
Newton zeigte dies durch folgenden Versuch.

ABC abc (Abb. 73) stellt ein Prisma vor, das in ein dunkles
Zimmer fallendes Sonnenlicht so brach, daß es auf die Linse MN
fiel und darauf bei pqrst die bekannten Spektralfarben erzeugte.
Die divergierenden Strahlen gelangten dann vermöge der Brechung
durch die Linse nach X und erzeugten dort durch Mischung
sämtlicher Farben einen weißen Lichtstrahl.

Darauf wurde ein zweites Prisma DEG deg parallel dem ersten
in X aufgestellt, um das weiße Licht aufwärts nach Y zu brechen
(Abb. 73). Die Brechungswinkel der Prismen und ihre Abstände
von der Linse waren gleich, so daß die Strahlen, die nach X zu
konvergierten und, ohne eine dort stattfindende Brechung, sich
daselbst hätten schneiden und hierauf wieder divergieren müssen,
durch das zweite Prisma parallel gemacht wurden. War letzteres
der Fall, so setzten diese Strahlen wieder einen weißen Lichtstrahl
zusammen, und man konnte sämtliche Versuche mit diesem
Strahle XY anstellen, die vorher im direkten Sonnenlicht gemacht
waren. Durch Auffangen irgend einer Spektralfarbe pqrst vor
der Linse MN ließ sich zeigen, daß die durch Versuche mit dem
Strahl XY erzeugten Farben keine anderen waren, als diejenigen,
die den Strahlen entsprachen, aus denen XY zusammengesetzt
wurde. Daraus war ersichtlich, daß die Farben nicht durch
irgend eine, infolge der Brechung und der Reflexion bewirkte
Veränderung des Lichtes sich erst bilden, sondern daß sie aus der
Trennung und der Zusammensetzung von Strahlen hervorgehen,
von denen jeder eine gewisse Farbe besitzt.


[image: Abb. 73]
Abb. 73. Newton vereinigt die Spektralfarben zu weißem Licht453.



Newtons Farbentheorie.

Um die Ursache der Körperfarben zu erkunden, brachte
Newton verschiedene Gegenstände in den Strahl XY (Abb. 73)
und fand, daß sie dort sämtlich in der Farbe erschienen, die sie
bei Tageslicht besitzen. So zeigte z. B. Zinnober in dem Lichtstrahl
XY dieselbe Farbe wie im Tageslicht. Wenn man bei der Linse MN
die grünen und die blauen Strahlen auffing, wurde seine rote
Farbe noch voller und lebhafter. Beseitigte man aber diejenigen
Lichtstrahlen, welche die rote Farbe hervorrufen, so erschien der
Zinnober nicht mehr rot, sondern er war gelb oder grün oder von
anderer Farbe, entsprechend den Strahlenarten, die auf ihn fielen.
Setzte Newton Zinnober und Ultramarin nebeneinander dem
homogenen roten Lichte aus, so erschienen beide rot. Zinnober
zeigte jedoch ein helles, glänzendes, Ultramarin dagegen ein
schwaches dunkles Rot. Im homogenen blauen Licht erschienen
dagegen beide Stoffe blau. Diesmal erglänzte aber Ultramarin in
einem kräftigen, glänzenden Blau, während Zinnober nur eine
schwache, dunkelblaue Farbe aufwies. Aus diesen Versuchen
schloß Newton, daß die Farben daher rühren, daß die Körper
je nach ihrer Art die einen oder die anderen Strahlenarten vorwiegend
reflektieren. Die Veilchen reflektieren die brechbarsten
Strahlen am meisten und haben daher ihre Farbe. Und so ist es
nach Newton bei allen übrigen Körpern. Jeder wirft die Strahlen
der ihm eigentümlichen Farbe in größerer Menge zurück als die
anderen und hat seine Farbe dadurch, daß die ersteren in dem
von ihm reflektierten Lichte überwiegen. Streng genommen sind
also die Körper, wie Newton hervorhebt, nicht gefärbt, sondern
sie besitzen eine gewisse Kraft, die Empfindung dieser oder jener
Farbe zu erregen. Wie der Schall einer Glocke nichts anderes
ist, als eine zitternde Bewegung des tönenden Körpers, die sich
auf die Luft überträgt und unser Empfindungsorgan erregt, so
sind auch »die Farben an den Objekten nichts weiter als ihre
Fähigkeit, diese oder jene Strahlenart zu reflektieren. Und in
den Strahlen ist wiederum nichts anderes als die Fähigkeit,
diese Bewegung bis in unser Empfindungsorgan zu verbreiten.
In letzterem endlich entsteht die Empfindung dieser Bewegungen
in Gestalt von Farben«.

Ohne Zweifel bedeutet die Farbentheorie Newtons einen der
größten Fortschritte der Optik. Man muß sich vergegenwärtigen,
daß die Lehre des Aristoteles, nach der die Farben aus einer
Mischung von Weiß und Schwarz, von Licht und Finsternis hervorgehen,
im 17. Jahrhundert noch in voller Geltung war. Selbst
Kepler wurde von dieser aristotelischen Auffassung beherrscht454
und de Dominis äußerte sich in seiner so hervorragenden
optischen Schrift vom Jahre 1611, mische man dem Lichte etwas
Dunkles hinzu, ohne jedoch das ganze Licht zu verhindern oder
auszulöschen, so entständen die Farben455. Z. B. erscheine ein
Feuer rot, weil der Rauch, den es mit sich führt, es verdunkle.



Nachdem Newton die verschiedene Brechbarkeit der Strahlenarten
nachgewiesen hatte, mußte sich die Frage erheben, ob das ohne
Rücksicht auf die Farbenlehre von Snellius aufgestellte Gesetz, daß
der Sinus des Einfallwinkels zum Sinus des Brechungswinkels in
einem bestimmten Verhältnis steht, für jede einzelne Strahlengattung
gültig ist. Es sei sehr glaublich, meinte Newton, daß es sich so verhalte,
weil die Natur immer gleichförmige Gesetze befolge. Ein experimenteller
Nachweis456 war indessen doch erwünscht, und wurde
von Newton auch erbracht. Brechung und Farbenerzeugung hielt
Newton auf Grund dieser Versuche für zwei stets miteinander verknüpfte
Vorgänge. Daher hielt er sich auch für überzeugt, daß es kein
Mittel gäbe, den Fehler der chromatischen Abweichung zu beseitigen.

Die Unvollkommenheit der Fernrohre wurde vor Newton
ausschließlich der sphärischen Gestalt der Gläser zugeschrieben.
Nach ihm entsteht der größte Fehler dadurch, daß Strahlen
verschiedener Brechbarkeit nicht nach einem Punkt konvergieren.
Die Untersuchung hatte nämlich ergeben, daß für Strahlen, die
von einem weit entfernten leuchtenden Punkte kommen, der Brennpunkt
der brechbarsten Strahlen, verglichen mit demjenigen der
am wenigsten brechbaren Strahlen, ungefähr um den 28. Teil der
mittleren Brennweite näher bei der Linse liegt. Trotz dieser Erkenntnis
erhob sich ein Wettkampf zwischen dem dioptrischen
Fernrohr und dem Spiegelteleskop. Man suchte den Fehler des
ersteren nämlich dadurch zu verringern, daß man der Objektivlinse
eine sehr mäßige Krümmung und dementsprechend eine bedeutende
Brennweite gab. Das Fernrohr nahm infolgedessen immer größere
Abmessungen an. Schließlich verzichtete man nach einem von
Huygens herrührenden Vorschlage auf eine feste Verbindung der
beiden Linsen. Es entstand das sogenannte Luftfernrohr (Abb. 74),
bei dem die Objektivbrennweite auf 2 Meter gesteigert war. Auch
der Reflektor erreichte später infolge der Bemühungen Wilhelm
Herschels die ansehnliche Länge von 40 Fuß457. Wie die durch
Euler angebahnte Erfindung der achromatischen Linse dem Refraktor
endlich zum Siege verhalf458 und das Irrtümliche der
Newton'schen Voraussetzung aufdeckte, wird der Gegenstand
späterer Betrachtungen sein.


[image: Abb. 74]
Abb. 74. Luftfernrohr nach Huygens.



Eine weitere Folge von Newtons Spektraluntersuchungen
war seine Theorie vom Regenbogen, durch die ein Jahrtausende
altes Rätsel gelöst wurde. Aristoteles hatte den Regenbogen
aus der Spiegelung zu erklären gesucht, während ihn die arabischen
Optiker auf die Brechung des Lichtes zurückführten. Nachdem
dann Snellius sein Gesetz gefunden, vermochten Descartes
und de Dominis die Erscheinung theoretisch und experimentell
soweit zu analysieren, daß nur noch das Auftreten der Farben
zu erklären blieb. Dies geschah durch Newton. Die seiner
»Optik« entnommene Abb. 75 stellt den inneren und den äußeren
Regenbogen, sowie den Gang der Lichtstrahlen durch Tropfen
dar, die sich im roten F und im violetten Teile E befinden459. Man
erkennt, daß im innern Bogen eine einmalige, im äußern dagegen
eine doppelte Reflexion an der Wand der Tropfen stattfindet.
Letzteres hatte schon Descartes angenommen, um zu erklären,
daß der äußere Bogen lichtschwächer ist. Newton zeigte nun,
wie von dem Tröpfchen E, dessen Winkelabstand von dem gemeinschaftlichen,
in der Verlängerung der Linie OP liegenden
Mittelpunkt der beiden Bögen 40° 17ʹ beträgt, der violette Teil
des Spektrums nach dem Auge O des Beobachters gelangt. OP ist
die Linie, welche die Sonne mit dem Auge verbindet. Der
Tropfen F dagegen, dessen Abstand von dem Punkte, wo OP
das Himmelsgewölbe schneidet, 42° 2ʹ beträgt, wird Strahlen
geringerer Brechbarkeit zum Auge senden, wie aus der Abbildung
ohne weiteres ersichtlich ist. Diejenige ringförmige Zone, in der
sich der Tropfen F befindet, muß deshalb rot erscheinen. Im
äußeren Bogen kehrt sich das Verhältnis um. Der Tropfen H
sendet den stärker abgelenkten, violetten Teil des Spektrums zum
Auge, während das Rot von der inneren, durch den Tropfen G
repräsentierten Zone erzeugt wird.


[image: Abb. 75]
Abb. 75. Newton erklärt das Zustandekommen des Regenbogens460.



Den experimentellen Nachweis lieferte Newton nach dem
Vorgange von Descartes und de Dominis461, indem er eine
mit Wasser gefüllte Glaskugel in die Sonne hing und die Kugel
hob und senkte, so daß der Winkel zwischen dem Sonnenstrahl
und der die Glaskugel mit dem Auge verbindenden Linie die verschiedensten
Werte durchlief. Betrug dieser Winkel etwa 42°,
so sah man an der unteren, von der Sonne abgewendeten Seite
der Kugel ein lebhaftes Rot. Ließ man die Kugel herab, so daß
der Winkel um einige Grade kleiner wurde, so erschienen an Stelle
des Rot nach und nach Gelb, Grün und Blau. Wurde die Kugel
hinaufgezogen, so erschien bei einem Winkel von 51° das Rot auf
der oberen, der Sonne zugekehrten Seite. Die übrigen Farben
erschienen nacheinander, wenn man den Winkel allmählich durch
weiteres Emporziehen der Kugel um einige Grade vergrößerte.

Emissions- und Wellentheorie.

Im Verlauf des 17. Jahrhunderts waren mehrere, bisher unbekannte
Erscheinungen in den Gesichtskreis der Physiker getreten.
Bartholin hatte die Doppelbrechung am isländischen Kalkspat,
Grimaldi die Beugung des Lichtes entdeckt, während Hooke
sich zuerst mit den Farben dünner Blättchen beschäftigte. Dadurch
waren neue Aufgaben auf dem Gebiete der Optik gegeben.
Zwar blieb die theoretische Lösung dieser Aufgaben einem späteren
Zeitalter vorbehalten; ihre experimentelle Erforschung hat indes
Newton gleichfalls in erheblichem Maße gefördert.

Der italienische Mathematiker Grimaldi (1618–1663) hatte
seine Beobachtungen über die Natur des Lichtes in einem Werk
zusammengefaßt, das im Jahre 1665, zu jener Zeit, als Newton
seine Untersuchungen begann, veröffentlicht wurde. In diesem
Werke findet sich nicht nur die erste Beschreibung des durch
ein Prisma erzeugten Sonnenspektrums462, es wird darin auch über
merkwürdige Erscheinungen berichtet, die später mit dem Namen
der Diffraktion und der Interferenz belegt wurden. Die für die
Theorie des Lichtes grundlegenden Versuche Grimaldis wurden
schon in einem früheren Abschnitt geschildert463.

Die ersten Anhänger einer die Allverbreitung eines außerordentlich
elastischen Mediums voraussetzenden Wellentheorie
waren außer Grimaldi, der die Wahrheit nur dunkel ahnte,
Hooke und Huygens. Letzterer hat die Undulationstheorie,
wie wir später sehen werden, besonders klar entwickelt464 und gilt
mit Recht als ihr eigentlicher Begründer. Manche Äußerungen
Newtons weisen darauf hin, daß er der Wellentheorie durchaus
nicht jede Berechtigung absprach. Dennoch sah er sich veranlaßt,
seine eigenen Erklärungen auf die Annahme zu stützen, daß das
Licht ein Stoff sei, der von den leuchtenden Körpern ausgesandt
wird. Während nämlich beide Lehren, die Undulationstheorie,
sowie die von Newton begründete Emissionstheorie, die Erscheinungen
der Reflexion und der Brechung zu deuten vermochten,
war die erstere in der Fassung, die Huygens ihr gegeben, noch
nicht imstande, das Auftreten der Farben zu erklären.

Nach der Annahme Newtons gibt es Lichtteilchen verschiedener
Größe. Trifft ein Strahl des weißen Lichtes, in dem
alle Größen vertreten sind, in schräger Richtung auf einen durchsichtigen
Körper, so werden die kleinsten, das Violett ausmachenden
Teilchen durch eine von den Partikeln des Körpers ausgehende
Anziehung in höherem Grade aus ihrer Richtung abgelenkt als
die gröberen, die rote Farbe bedingenden. Zwischen beiden Ablenkungen
finden alle Übergänge statt, und so entsteht nach
Newton das zusammenhängende Farbenband des Spektrums. Um
die Beugung und die gleich zu besprechenden Farben dünner
Blättchen zu erklären, mußte Newton dem Lichtstoff wieder neue
Eigenschaften beilegen, so daß seine Hypothese mit jeder neu
hinzutretenden Erscheinung verwickelter wurde, ein Umstand, der
von vornherein nicht gerade zu ihren Gunsten sprach. Gestützt
auf das große Ansehen ihres Urhebers hat sich die Emissionstheorie
dennoch, obgleich von verschiedenen Seiten, insbesondere
von Euler465, auf ihre Schwächen hingewiesen wurde, durch das
ganze 18. Jahrhundert und darüber hinaus behauptet.

Ein weiteres Feld für optische Untersuchungen hatten Hookes
Arbeiten über die Farben dünner Blättchen erschlossen. Robert
Hooke wurde 1635 auf der Insel Wight geboren und starb im
Jahre 1703 in London. Er war Mitglied der Royal Society und
zeichnete sich durch große Vielseitigkeit aus, die ihn leider von
dem beharrlichen Verfolgen eines Grundgedankens abzog. An
Hookes Bemerkungen über die Natur des Lichtes knüpfte
später Huygens die ausführliche Darstellung der Undulationstheorie
an.


[image: Abb. 76]
Abb. 76. Hooke erklärt das Zustandekommen der Interferenz.



Hookes Untersuchungen, die zu denjenigen Newtons hinüberleiten,
finden sich in seiner Mikrographie466, einem Werke, das
auch in naturgeschichtlicher Hinsicht wichtig ist, weil darin die
ersten Beobachtungen über den zelligen Bau der Pflanzen mitgeteilt
werden. »Dicke Glimmerblättchen«, heißt es dort467, »sind
farblos. Mache ich sie durch Spaltung immer dünner, so zeigt
sich zuletzt jedes Blättchen schön gefärbt; dringt in die Spalten
Luft ein, so zeigen sich Regenbogenfarben. Beim Zusammenpressen
von Glasplatten entstehen Erscheinungen der gleichen
Art«. Sehr dünn geblasenes Glas, angelassener Stahl, überhaupt
sehr dünne durchsichtige Körper, die auf reflektierenden Körpern
von anderer brechender Kraft liegen, bringen dieselben Farben
hervor. Hooke führt die Entstehung dieser Farben auf eine »Verwirrung«
der an den Grenzflächen der dünnen Schicht reflektierten
Schwingungen zurück. Die Teilchen jedes leuchtenden Körpers
seien in größerer oder geringerer Bewegung. Manche Stoffe würden
durch Stoß oder Reibung leuchtend. Man müsse daher annehmen,
daß das Licht in feinen Vibrationen bestehe, und daß nur solche
Körper durchsichtig seien, welche diese Bewegung aufnehmen und
fortleiten könnten. Das Zustandekommen der Interferenzfarben
erläutert obenstehende, dem Werke Hookes entnommene Abbildung.
(Siehe Abbildung 76.) Fällt danach ein Lichtstrahl, dem
Hooke einen gewissen Durchmesser beilegt, auf eine dünne durchsichtige
Platte, so wird ein Teil des Strahles gleich an der
ersten Oberfläche zurückgeworfen. Ein anderer Teil dringt in die
Platte ein und wird dann an der unteren Grenzfläche reflektiert,
um endlich, abermals gebrochen und dem zuerst reflektierten Teile
parallel, aus der Platte wieder auszutreten. Da nun das Licht
zu seiner Fortpflanzung Zeit gebraucht, so werden die beiden Teile,
in die der Strahl zerlegt ist, nicht gleichzeitig von der ersten Fläche
zurückgehen. Durch dieses Nacheinander werden nach Hooke auf
der Netzhaut die Farben hervorgerufen. Rot ist danach der Eindruck,
den das Licht erzeugt, wenn der stärkere, an der ersten Oberfläche
reflektierte Teil vorangeht und der schwächere folgt. Beim
Blau ist es umgekehrt. Letzteres entsteht bei der Interferenz, wenn
das schwächere, aus der Platte kommende Licht mit dem Teil eines
nachfolgenden Lichtstrahls zusammentrifft, der an der oberen Fläche
reflektiert wird. Der schwächere Teil kann dann vorangehen und
der einheitlich empfundene Lichtstrahl die Empfindung von Blau
hervorbringen. Blau und Grün sind für Hooke die Grundfarben.
Aus ihrer Mischung entstehen die übrigen. Bei aller
Unzulänglichkeit der Hooke'schen Theorie ist doch ihr Grundgedanke,
die Farben dünner Blättchen durch die Interferenz
zweier an den Oberflächen reflektierten Strahlen entstehen zu
lassen, in die heutige theoretische Optik übergegangen. Sein
Mühen, Beziehungen zwischen der Dicke der die Interferenzerscheinungen
veranlassenden Schicht und den erzielten Wirkungen
zu finden, blieb jedoch erfolglos.

»Eins, was von größter Wichtigkeit für diese Hypothese zu
sein scheint«, sagt Hooke über diesen Punkt, »nämlich die Bestimmung
der Dicke der Platten, die für das Eintreten jener
Farbenerscheinungen notwendig ist, habe ich vielfach vergeblich
auszuführen versucht. So außerordentlich dünn sind jene Platten
und so unvollkommen unsere Mikroskope, daß alle meine Bemühungen
in dieser Beziehung erfolglos gewesen sind.«

An diesem Punkte setzten die Untersuchungen Newtons ein,
die er im zweiten Buche seiner Optik zusammenfaßt. Um die
Reihenfolge der Farben genauer zu ermitteln, legte Newton die
Linse eines Teleskops auf eine ebene Glasfläche. Es entstanden
die den Farben dünner Blättchen entsprechenden »Newtonschen
Ringe«, die im einfachen Lichte nur in einer Folge von hell und
dunkel bestehen, während das auf die Platte fallende Sonnenlicht
die Spektralfarben hervorruft.



In der Nähe der Berührungsstelle, die selbst vollkommen
durchsichtig und farblos ist, bemerkte Newton die Farbenringe
in der Reihenfolge Violett, Blau, Grün, Gelb, Rot. Und diese Folge
wiederholte sich, bis die Farben immer schwächer wurden und nach
der vierten Folge etwa in Weiß übergingen. Auch aus diesem
Ineinanderfließen schloß er, daß das weiße Licht eine Mischung
aller Farben sei.

Aus der Krümmung der Linse und dem Abstand der Ringe
vom Berührungspunkte berechnete Newton die jeder Farbe entsprechende
Tiefe der Luftschicht. Für das Gelb eines jeden Farbenringes
verhielten sich die betreffenden Werte wie 1 : 3 : 5 : 7 ...
während für die zwischen den gelben Zonen liegenden dunklen
Partien die Durchmesser der Schicht dem Verhältnis 2 : 4 : 6 ...
entsprachen. Es ergab sich somit auf Grund der Messungen
und Berechnungen das einfache Gesetz, daß die den hellen und den
dunklen Stellen entsprechenden Tiefen des vom Glase eingeschlossenen
Mediums sich wie die natürlichen Zahlen verhalten468.

Newtons weitere Bemühungen bestanden darin, eine Analogie
zwischen den dauernden Farben der natürlichen Körper und den
Farben dünner durchsichtiger Blättchen darzutun. Dies geschah,
indem er die Oberflächen der Körper als dünne Platten auffaßte,
da alle Körper bis zu einem gewissen Grade durchsichtig seien.

Wie den Betrachtungen Hookes verhielt sich Newton auch
den Versuchen Grimaldis gegenüber. In beiden Fällen ergänzte
er die Arbeiten seiner Vorgänger durch genaue Messungen und
lieferte dadurch wertvolles Material zur festeren Begründung der
Theorie, die später an die Stelle seiner eigenen, unzutreffenden
Ansichten über die Natur des Lichtes treten sollte.

Das dritte Buch der Optik enthält außer einer Nachprüfung
und Erweiterung der Grimaldischen Versuche über die Beugung
des Lichtes eine Anzahl von Betrachtungen, die Newton »Fragen«
(Queries) genannt hat. In diesen »Fragen« bringt er das zur
Sprache, was er den Forschern zur Prüfung durch weitere Beobachtungen
und Versuche überlassen wollte. Newton wünschte
nämlich aus seinem Lehrgang der Optik dasjenige auszuscheiden,
worüber er mit sich selbst noch nicht ins Reine gekommen war.
So wird die Frage aufgeworfen, ob das Licht nicht die Körper
dadurch erwärme, daß es die Körperteilchen in eine vibrierende
Bewegung versetze469. Daß erhitzte Körper Licht aussenden, scheint
ihm wiederum von einer vibrierenden Bewegung ihrer Teilchen
herzurühren470. In den Belegen, die Newton für diese Meinung
beibringt, werden allerdings Erscheinungen zusammengestellt, für
die sich im weiteren Verlaufe der Forschung die verschiedensten
Ursachen ergeben haben. So sagt Newton, es leuchte Meerwasser
beim Sturm, Quecksilber, wenn es im Vakuum geschüttelt werde,
der Rücken einer Katze, wenn man ihn im Dunklen streichle.
Ferner leuchte Phosphor beim Reiben und Eisen, wenn es rasch
mit dem Hammer bearbeitet werde. Setze man eine Glaskugel
in rasche Umdrehung, so leuchte sie an der Stelle, gegen die man
die Handfläche presse.

Weiter wird gefragt, ob nicht die Empfindung verschiedener
Farben etwa dadurch erregt werde, daß das Licht Schwingungen
von verschiedener Größe mache, etwa so, wie die Schwingungen
der Luft je nach ihrer Verschiedenheit die Empfindung der
Töne erregen. Allerdings dachte sich Newton diese Schwingungen
als longitudinale Schwingungen in dem Strome der
materiellen Lichtkörperchen. – Newton verläßt also auch hier
den Boden seiner Theorie nicht. Ja er ist sogar der Ansicht,
daß sich die festen Körper und das Licht ineinander umwandeln
lassen471.

In einer seiner »Fragen«, die er an das Verhalten des Lichtes
zum Doppelspat anknüpft, ist der Ursprung des Namens »Polarisation«
zu suchen. »Sieht nicht«, sagt Newton472, »die ungewöhnliche
Brechung im isländischen Kristall gar sehr danach aus, als
käme sie durch eine Art anziehender Kraft zustande, die nach
gewissen Seiten hin sowohl den Strahlen als den Kristallteilchen
innewohnt?« Die den Strahlen innewohnende Kraft sollte derjenigen
der Kristallteilchen ebenso entsprechen wie sich die »Pole zweier
Magnete entsprechen«. Wie ferner der Magnetismus verstärkt oder
geschwächt werden oder ganz fehlen könne, so sei auch die Kraft,
die senkrecht einfallenden Lichtstrahlen zu brechen, größer im
Doppelspat, kleiner im Bergkristall und endlich in anderen Körpern
gar nicht vorhanden.

Dieser Gedanke Newtons wurde ein Jahrhundert nachher von
Malus, als er die Polarisation durch Reflexion entdeckte, wieder
aufgenommen. Und das Wort »Polarisation«, das zur Bezeichnung
der »Seitlichkeit« gewisser Lichtstrahlen gewählt war, wurde später
auch von den Anhängern der Wellenlehre gebraucht.

Im Anschluß an seine »Fragen« entwickelte Newton, gleichfalls
in hypothetischer Form, die Grundzüge der Emissions- oder
Emanationstheorie. Nach dieser bestehen die Lichtstrahlen aus
sehr kleinen Körperchen, die von den leuchtenden Substanzen ausgesandt
werden. Solche Körper werden sich durch ein gleichförmiges
Medium in geraden Linien fortbewegen. Durchsichtige
Substanzen werden aus der Entfernung auf sie wirken, indem sie
sie brechen, zurückwerfen und beugen. Um die Verschiedenheit
in den Farben und in den Graden der Brechbarkeit zu erklären,
genügt die Annahme, daß die Lichtstrahlen aus Körperchen verschiedener
Größe bestehen, von denen die kleinsten das Violett
erzeugen, die übrigen in dem Maße, in dem sie größer werden,
das Blau, Grün, Gelb und Rot hervorrufen und immer schwerer
abgelenkt werden.

Am meisten tritt die Schwäche der Emissionstheorie dort
hervor, wo es sich um Interferenzerscheinungen handelt. Die Annahme
periodisch wiederkehrender Anwandlungen leichterer Reflexion
und leichteren Durchganges, die Newton hier machte, kann
den Rang einer mechanischen Erklärung nicht beanspruchen.
Ähnliche Schwierigkeiten bereitete die Doppelbrechung im isländischen
Kalkspat. Newton meinte indes, sie müsse gleichfalls
durch eine Art anziehender Kraft zustande kommen, die nach gewissen
Seiten hin sowohl den Strahlen als den Kristallteilchen
innewohne. Es sei aber schwer zu begreifen, wie die Lichtstrahlen
nach zwei Seiten hin eine Kraft äußern könnten, wenn sie nicht
aus Korpuskeln beständen.

Obgleich Newton selbst sich durchaus nicht entschieden zugunsten
der einen oder der anderen der in dem Anhang zur Optik
erörterten Theorien entschieden hatte, wurde von seinen Schülern
und Anhängern der Emanationstheorie der Wert eines durch die
Autorität des Meisters gestützten Dogmas beigelegt. Was Newton
nur bezweifelte, wurde verworfen, was er dagegen für wahrscheinlich
hielt, wurde als vollkommen sicher erachtet. So wurde er
durch seine Schule zum Vater der Emanationstheorie473, während
er doch immer seine Neutralität gegenüber jeder Hypothese betont
hatte. Diese Theorie setzte sich so unerschütterlich in den Köpfen
fest, daß abweichende, von Huygens, Euler und Christian Wolf
geäußerte Ansichten gar keine Beachtung fanden. Scheu und Ehrfurcht
gegenüber Newton hielt die meisten Physiker des 18. Jahrhunderts
davon ab, auch nur den leisesten Zweifel in die Richtigkeit
der Emanationstheorie zu setzen. »Es ist wirklich ein trüber
Fleck in der Geschichte der Physik«, sagt einer ihrer Darsteller474,
»und ein schlagender Beweis dafür, wie schädlich die Autorität
eines großen Geistes auf die nachfolgenden Zeitalter wirken kann,
wenn sie sich soweit steigert, daß dadurch die unbefangene Forschung
unterdrückt wird.«

Die Entdeckung des Gravitationsgesetzes.

Seinen Höhepunkt erreichte Newtons Schaffen, als er den
im Jahre 1666 erfolglos angestellten Versuch, die Bewegung der
Himmelskörper aus den Gesetzen der Mechanik zu erklären, wieder
aufnahm. Anlaß hierzu bot ihm die im Jahre 1682 an ihn gelangte
Mitteilung, daß Picard in Frankreich wesentlich andere Abmessungen
für die Erdkugel erhalten habe, als man in England
zur Zeit Newtons annahm. Jean Picard (1620–1682), ein
Mitglied der französischen Akademie, hatte noch unter der Voraussetzung,
daß die Erde die Gestalt einer Kugel besitze, eine
Gradmessung durch Triangulation zwischen Amiens und Malvoisine
ausgeführt475. Bei dieser Messung kamen zum erstenmal mit Fernrohren
versehene Winkelmeßinstrumente in Anwendung. Picard
hatte für den Breitengrad den Wert von 70 englischen Meilen
oder 57060 Toisen476 gefunden, während Newton, der die von
Snellius im Jahre 1617 ausgeführte Messung nicht kannte477, bei
seiner 1666 angestellten Rechnung 60 englische Meilen für den
Breitengrad zu Grunde gelegt hatte.

Die mittlere Entfernung des Mondes war hinlänglich genau
bekannt. Newton nahm sie zu 60 Erdhalbmessern an. Das Stück,
um das der Mond in einer Minute infolge der auf ihn wirkenden
Zentripetalkraft von der Tangente seiner Bahn abgelenkt wird,
ergab sich aus diesen Daten gleich 15 Fuß478. Unter der im Jahre
1666 gemachten Annahme hatte die Rechnung 13½ Fuß ergeben,
ein Wert, der keine einfache Beziehung zu dem an der Oberfläche
der Erde von einem frei fallenden Körper in einer Minute durchlaufenen
Wege erkennen ließ. Letzterer beträgt 5400 = 60 · 60 · 15
Fuß. Er ist also im Verhältnis des Quadrates der Entfernung größer
als die zum Erdzentrum gerichtete Bewegung des Mondes, und
in demselben Maße ist es daher auch die auf den fallenden Körper
wirkende Kraft. Die Zentripetalkraft ergab sich folglich als mit
der Schwere identisch, wenn man für die letztere voraussetzte,
daß ihre Abnahme dem Quadrate der Entfernung entspricht.
Damit war ein Gesetz von der größten Allgemeingültigkeit aufgefunden,
das man mit Recht als das Weltgesetz bezeichnet hat.

Als Newton die soeben mitgeteilte Folgerung zog, ergriff ihn
eine solche Erregung, daß er einen Freund bitten mußte, die
Rechnung zu Ende zu führen. Was schon Anaxagoras vorgeahnt
hatte, als er aussprach, wenn die Schwungkraft des Mondes aufhöre,
so müsse dieser zur Erde fallen wie der Stein aus der
Schleuder; was bei Kepler und bei Hooke mit wachsender
Deutlichkeit hervortrat: das stand mit einem Schlage klar vor dem
Geiste Newtons. Auf die glückliche Entdeckung des Augenblicks
folgten dann Jahre mühevollster Arbeit. Galt es doch, die
Richtigkeit des gefundenen Prinzips durch seine Anwendung auf
sämtliche astronomischen Erscheinungen zu erweisen. Die Untersuchung
wurde auf die Planeten, die Jupitermonde, die Erscheinung
der Ebbe und Flut, ja selbst auf die Kometen ausgedehnt.
Überall ergab sich die Bestätigung des Gravitationsgesetzes,
nach dem die anziehende Kraft den Massen direkt und
dem Quadrate der Entfernung umgekehrt proportional ist. So
entstanden die »Mathematischen Prinzipien der Naturwissenschaft«,
durch welche Newton die Erklärung des Weltmechanismus
aus seiner Gravitationstheorie zu einem vorläufigen Abschluß
brachte479.

In seiner Schrift über die Bewegung der Erde480 streifte Hooke
schon an die Entdeckung des Gravitationsgesetzes. »Ich werde«,
heißt es dort, »ein Weltsystem entwickeln, das in jeder Beziehung
mit den bekannten Regeln der Mechanik übereinstimmt. Dies System
beruht auf drei Annahmen: Erstens, daß alle Himmelskörper ohne
Ausnahme eine gegen ihren Mittelpunkt gerichtete Anziehung oder
Schwerkraft besitzen, wodurch sie nicht bloß ihre eigenen Teile,
sondern auch alle innerhalb ihrer Wirkungssphäre befindlichen
Himmelskörper anziehen. Die zweite Voraussetzung ist die, daß
alle Körper, die in eine geradlinige und gleichförmige Bewegung
versetzt werden, sich so lange in gerader Linie fortbewegen, bis
sie durch irgendeine Kraft abgelenkt und in die Bahn gezwungen
werden, die einem Kreise, einer Ellipse oder einer anderen, nicht
so einfachen, krummen Linie entspricht. Nach der dritten Annahme
sind die anziehenden Kräfte um so stärker, je näher ihrem
Sitz der Körper ist, auf den sie wirken. Welches die verschiedenen
Grade der Anziehung sind, habe ich noch nicht durch Versuche
feststellen können. Aber es ist ein Gedanke, der, wenn er weiter
verfolgt wird, den Astronomen in den Stand setzen muß, alle
Bewegungen der Himmelskörper nach einem gewissen Gesetze zu
bestimmen.« An diese Ausführungen wird der Wunsch geknüpft,
daß jemand diesen Gedanken verfolgen möge, da der Verfasser
durch andere Dinge zu sehr in Anspruch genommen sei.

Die Gravitationsmechanik stellt sich im wesentlichen als eine
Fortbildung der von Galilei aufgefundenen Sätze über den Wurf
dar. Am klarsten geht dieser Zusammenhang aus der folgenden,
von Newton selbst gegebenen Darstellung hervor481: »Daß durch
die Zentralkräfte die Planeten in ihren Bahnen erhalten werden
können, ersieht man aus der Bewegung der Wurfgeschosse. Ein
geworfener Stein wird, indem auf ihn die Schwere wirkt, vom
geraden Wege abgelenkt und fällt, indem er eine krumme Linie
beschreibt, zuletzt zur Erde. Wird er mit größerer Geschwindigkeit
geworfen, so fliegt er weiter fort. Und so könnte es geschehen,
daß er einen Bogen von 10, 100, 1000 Meilen beschriebe und zuletzt
über die Grenzen der Erde hinausginge und nicht mehr
zurückfiele. Es bezeichne (Abb. 77) AFB die Oberfläche der
Erde, C ihren Mittelpunkt und
VD, VE, VF krumme Linien, die
ein von der Spitze V eines sehr
hohen Berges in horizontaler Richtung
und mit wachsender Geschwindigkeit
geworfener Körper
beschreibt. Damit der Widerstand
der Luft nicht in Rechnung gestellt
zu werden braucht, wollen wir sie
uns ganz fortgenommen denken.
Auf dieselbe Weise, wie der mit
zunehmender Geschwindigkeit geworfene
Körper die Bögen VD,
VE und VF beschreibt, wird er
endlich, wenn die Geschwindigkeit
noch weiter vergrößert wird, über
den Umfang der Erde fortgehen und zu dem Berge, von dem
aus er geworfen wurde, zurückkehren482. Da nach den Sätzen, die
von der Zentrifugalkraft handeln483, die Geschwindigkeit bei der
Rückkehr zum Berge nicht kleiner als beim Ausgange sein kann,
so muß der Körper fortfahren, sich in derselben Weise um die
Erde herumzubewegen. Denken wir uns Körper aus höheren
Punkten in horizontaler Richtung fortgeworfen, und zwar aus
Punkten, die 10 Meilen, 100 Meilen oder ebensoviele Halbmesser
über der Oberfläche der Erde liegen, so werden diese Körper, je
nach ihrer Geschwindigkeit und nach der in den einzelnen Punkten
herrschenden Anziehung, Kurven beschreiben, die entweder konzentrisch
oder exzentrisch sind. In diesen Bahnen werden sie
fortfahren, nach der Weise der Planeten den Weltraum zu durchwandern.«


[image: Abb. 77]
Abb. 77. Newtons Ableitung der
Zentralbewegung aus der Wurfbewegung484.



Die hier gegenüber der Betrachtung Galileis eingetretene
Erweiterung besteht also darin, daß die Richtung der auf den
Körper konstant wirkenden Kraft sich stetig ändert, während sie
im anderen Falle485 die gleiche bleibt.

Newton begründete mit seinem Werk die neuere mathematische
Physik; und die »Prinzipien« sind zwar nicht dem Umfange,
wohl aber der Methode nach das erste Lehrbuch dieses
Gebietes.

Newtons »Prinzipien«.

Die Bedeutung der »Prinzipien« für die Entwicklung nicht
nur der Mechanik und der Astronomie, sondern aller übrigen
Zweige der Naturwissenschaft ist so groß, daß wir diesem Werke
eine etwas eingehendere Betrachtung widmen müssen.

Newton beginnt mit einer Reihe von Definitionen und
Gesetzen, die teils neu sind, teils zum ersten Male mit der
nötigen Klarheit von ihm ausgesprochen werden. Die wichtigsten
lauten486:

	Die Größe oder die Masse der Materie wird durch ihre
Dichtigkeit und ihr Volumen bestimmt.

	Die Größe der Bewegung ist das Produkt aus Masse und
Geschwindigkeit.

	Jeder Körper, auf den keine Kraft wirkt, beharrt im Zustande
der Ruhe oder der gleichförmigen Bewegung.

	Eine Kraft ist das auf einen Körper wirkende Bestreben,
seinen Bewegungszustand zu ändern.

	Die Änderung der Bewegung ist der Einwirkung der bewegenden
Kraft proportional und geschieht in der nämlichen
Richtung, in der jene Kraft wirkt.

	Die Wirkungen zweier Körper auf einander sind stets
gleich und von entgegengesetzter Richtung.

	Ein Körper beschreibt unter der Wirkung zweier Kräfte
die Diagonale eines Parallelogramms. Und zwar geschieht
dies in derselben Zeit, in der er vermöge der einzelnen
Kräfte die Seiten beschrieben haben würde.





Um verwickeltere Bewegungsaufgaben zu lösen, genügte die
von den Alten geschaffene mathematische Methode nicht mehr.
In der Dynamik waren veränderliche, »fließende« Größen und die
momentanen Veränderungen, die ihr Verhältnis erleidet, in Rechnung
zu ziehen. Newton befand sich, als er die »Prinzipien«
schrieb, schon im Besitze einer von ihm erfundenen, als Fluxionsrechnung
bezeichneten Methode, die speziell für die Mechanik geschaffen
war und der soeben ausgesprochenen Forderung genügte.
Newton gibt an mehreren Stellen seines Werkes, allerdings nur
kurze, lückenhafte Abrisse dieser Methode. Seltsamerweise zieht
er aber bei der Lösung der Bewegungsaufgaben die alte, geometrisch-synthetische
Art der Darstellung vor, obgleich er, wie er
später selbst angab, auf analytischem Wege zu seinen Resultaten
gelangt war.

Nachdem er die mechanischen Grundbegriffe, wie wir an
einigen Beispielen gesehen haben, formuliert und seine mathematische
Methode auseinandergesetzt, wendet sich Newton seiner
eigentlichen Aufgabe zu, nämlich
der Bestimmung der Zentralkräfte.
Zunächst beweist er
in der noch heute üblichen
Weise, daß die Bahnen von Körpern,
die sich unter dem Einfluß
einer Zentripetalkraft bewegen,
in festen Ebenen liegen, und
daß die von den Radien beschriebenen
Flächen den Zeiten
proportional sind. Es möge
wenigstens die Newtons Beweis
zugrunde liegende Konstruktion
hier Platz finden (Abb. 78).


[image: Abb. 78]
Abb. 78. Newtons Satz über die
Zentralbewegung.



Auf diesen Satz folgt seine Umkehrung, daß nämlich jeder
Körper, der sich in einer festen Fläche so bewegt, daß die Leitstrahlen
in gleichen Zeiten gleiche Flächen beschreiben, unter der
Wirkung einer Zentripetalkraft steht.

Newton geht dann zu der Bewegung der Körper in Kegelschnitten
über, deren einer Brennpunkt das Kraftzentrum ist.
Er betrachtet zuerst den für die Planetenbewegung wichtigsten
Fall, daß der Körper sich in einer Ellipse bewegt, und sucht das
Gesetz der nach ihrem Brennpunkt gerichteten Zentralkraft zu
ermitteln. Es ergibt sich, daß die gesuchte Kraft dem Quadrate
des Radius vector umgekehrt proportional ist. Dasselbe Gesetz
wird dann auch für die Parabel und für die Hyperbel dargetan.
In einem besonderen Abschnitt werden die anziehenden Kräfte
sphärischer Körper erörtert. Ihre Gesamtanziehungen werden aus
den Einzelanziehungen der Teilchen abgeleitet, die den Körper
zusammensetzen. Newton findet, daß die Wirkung einer homogenen
Vollkugel auf einen außerhalb befindlichen Punkt der Masse direkt
und dem Quadrat des Abstandes vom Mittelpunkt der Kugel umgekehrt
proportional ist. Dagegen ergibt sich, daß die Wirkung
der Vollkugel auf einen inneren Punkt der Entfernung dieses
Punktes vom Mittelpunkte entspricht. Die Anziehungen endlich,
die zwei Kugeln aufeinander ausüben, verhalten sich wie die
Massen der anziehenden Kugeln und umgekehrt wie die Quadrate
der Entfernungen der Mittelpunkte.

Nachdem Newton in den beiden ersten Büchern seines
fundamentalen Werkes die allgemeinen Gesetze der Bewegung,
einschließlich der Bewegungen der Flüssigkeiten entwickelt, bringt
er im dritten Buche die Anwendung dieser Gesetze auf das Weltsystem.

Newton zeigt, daß sowohl das zweite wie auch das dritte
Keplersche Gesetz aus dem allgemeinen Gesetze, das die Anziehung
regelt, gefolgert werden können. Es wird ferner dargetan,
daß alle Monde gegen ihre Planeten und alle Planeten gegen die
Sonne gravitieren, sowie daß sich die Bewegungen dieser Körper
durch Zentralkräfte regeln, die den Massen direkt und dem
Quadrate der Entfernung umgekehrt proportional sind. Das
Newtonsche Gesetz gilt somit für den ganzen Weltraum. Es ist
das schon so lange erstrebte, mehr oder minder deutlich von
anderen vorgeahnte, von Newton dagegen erst in voller Klarheit
enthüllte Weltgesetz.

Auf die Erkenntnis dieses allgemeinsten Gesetzes folgt wieder
die Ableitung der Einzelheiten, wie der planetarischen Störungen,
der Ungleichheiten der Mondbewegung, der Ebbe und Flut des
Meeres usw. »Alle Planeten«, sagt Newton, »sind gegeneinander
schwer, daher werden z. B. Jupiter und Saturn sich in der Nähe
ihrer Konjunktion anziehen und ihre Bewegungen wechselseitig
merklich stören. Ebenso wird die Sonne die Bewegung des Mondes
stören, und Sonne und Mond das Meer beeinflussen.« Die Ableitung
der gedachten Erscheinungen, die bisher jeder mechanischen Erklärung
gespottet hatten, aus dem Gravitationsgesetz machte nicht
geringe Schwierigkeiten. Sie völlig zu heben, war Newton noch
nicht imstande, weil er sich auf die anziehenden Kräfte von Körpern
sphärischer Gestalt beschränkte. Doch ist es ihm gelungen, in der
Hauptsache den Zusammenhang und die Begründung des Weltsystems
aus seinem Gesetze abzuleiten.

Daß die Gezeiten wohl auf eine kosmische Anziehung zurückzuführen
seien, hatte schon Kepler ausgesprochen. Er betrachtete
Ebbe und Flut als einen Beweis dafür, daß sich die anziehende
Kraft des Mondes bis zur Erde erstrecke. Selbst im Altertum
begegnet uns schon diese Ansicht. Ja, Seneca erwähnt sogar,
daß sich bei Springfluten außer der Kraft des Mondes auch die
der Sonne bemerkbar mache487.

Von diesen Vermutungen bis zur Begründung der Gesetze
einer Erscheinung und bis zum Nachweise, daß die Tatsachen im
allgemeinen diesen Gesetzen entsprechen, war indessen ein großer
Fortschritt. Ihn herbeigeführt zu haben, ist eins der wesentlichsten
Verdienste Newtons. Auf ihn konnten sich später Euler und
Laplace stützen und die Gezeitentheorie im 17. Jahrhundert zu
einem gewissen Abschluß bringen488. Der Kernpunkt der Newtonschen
Theorie ist der Satz, daß das Wasser auf der dem Monde
zugekehrten Seite der Erde stärker angezogen wird als auf der
vom Monde abgewandten Seite, so daß es dort der Erde gegenüber,
die ja auch zum Monde gravitiert oder sozusagen nach ihm
hinfällt, zurückbleibt. Die Folge ist, daß zwei Flutwellen entstehen.
Das Ansteigen des Wassers auf der dem Monde zugekehrten Seite
erschien ja auch vor Newton begreiflich. Das Zustandekommen
der zweiten Welle und manche Einzelheit der Flutbewegung wurde
jedoch erst durch ihn erklärt.

An die Gravitationslehre anknüpfend, wollen wir noch die
Ansichten erwähnen, die Newton sich nach dem Vorgange von
Descartes und Gassendi über die Konstitution der Materie
gebildet hatte. Er hielt es für das Wahrscheinlichste, daß sie aus
festen, undurchdringlichen, beweglichen Partikeln bestehe. Da die
Naturkörper, z. B. das Wasser, in ihren Eigenschaften unveränderlich
seien, so müßten die Partikeln, aus denen sie beständen,
weder abgenutzt noch zerstört werden können. Der Wandel der
körperlichen Dinge sei ausschließlich in die Trennungen, Vereinigungen
und Bewegungen jener unveränderlichen Teilchen zu
verlegen. Diese Veränderungen sollten aus aktiven Prinzipien
folgen, zu denen Newton die Schwerkraft rechnet.

Den Begriff der anziehenden Kraft (als causa mathematica)
übertrug Newton auch auf die Erscheinungen der Kohäsion, der
Adhäsion, der chemischen Verbindung usw. »Ich möchte«, sagte er,
»aus der Kohärenz der Körper schließen, daß auch deren kleinste
Teilchen sich gegenseitig anziehen durch eine Kraft, die auf
kleine Entfernungen hin auch die chemischen Wirkungen hervorbringt«489.
Er betont aber, daß diese Prinzipien nicht mit den verborgenen
Qualitäten der Aristoteliker verwechselt werden dürften,
sondern allgemeine Naturgesetze seien. Die Wahrheit dieser
Prinzipien werde uns aus den Erscheinungen deutlich, wenn ihre
Ursachen bis jetzt auch nicht entdeckt worden seien. Der Unterschied
ist also der, daß die Aristoteliker annahmen, die Wirkungen
der Dinge entsprängen unbekannten Eigenschaften, die sich weder
entdecken noch klarstellen ließen. Damit war natürlich jeder
Fortschritt in der Naturerkenntnis gehemmt. Die neuere, durch
Newton vertretene Richtung erkannte es dagegen als einen
großen Fortschritt, aus den Erscheinungen allgemeine Prinzipien
der Bewegung herzuleiten und dann zu zeigen, wie aus solchen
Prinzipien die Eigenschaften und Wirkungen der körperlichen
Dinge folgen, wenn auch die Ursache jener Prinzipien selbst unbekannt
bleibt. Das war der Grundgedanke, der Newton bei
seinen Forschungen leitete; und in diesem Sinne ist auch sein oft
erwähnter Ausspruch: »Hypothesen ersinne ich nicht« zu verstehen.
Die gleiche Beschränkung wie Newton hatte sich Galilei
auferlegt. »Die Ursache der Gesetze freifallender Körper ist kein
notwendiger Teil unserer Untersuchung«, sagt dieser. »Für uns
genügt es, die Eigenschaften dieser Bewegung unter der Voraussetzung
eines einfachen Gesetzes kennen zu lernen.«

Newtons Weltanschauung.

Newtons Weltanschauung war indessen keine rein materialistische.
Es erscheint ihm durchaus unphilosophisch, anzunehmen,
die Welt sei allein durch die Wirkung der Naturgesetze aus dem
Chaos entstanden. Die wundervolle Gesetzmäßigkeit im Planetensystem
z. B. könne nicht aus einem blinden Walten hervorgegangen
sein, sondern sie entspräche einer bestimmten Sorgfalt und Anordnung.
Wir werden später sehen, daß das 18. Jahrhundert Newton
hierin nicht beipflichtete, und daß ein Kant und ein Laplace
versucht haben, den Aufbau des Planetensystems auf rein mechanisch
wirkende Ursachen zurückzuführen.

Aber auch abgesehen von diesen, auf einen teleologischen
Standpunkt Newtons hindeutenden Erwägungen ist seine Auffassung
des Weltganzen eine dualistische. Er nimmt an, daß eine
geistige Substanz alle Körper durchdringe und in ihnen enthalten
sei. »Durch die Kraft dieser geistigen Substanz«, sagt er490, »ziehen
sich die Teilchen der Körper wechselseitig an«. Durch diese
Kraft wirken sie aber auch auf die größte Entfernung. Aus den
Vibrationen der geistigen Kraft scheint ihm auch die Tätigkeit
des Gehirns und die Wirkung dieses Organs auf die Nerven und die
Muskeln erklärlich. Daß Newton außerdem in den »Prinzipien«
Betrachtungen über das Wesen Gottes anstellt, als den er nicht
etwa die Weltseele gelten lassen will, steht außer Zusammenhang
mit seinem, im übrigen so wohl gefügten, Lehrsystem.

Newtons Lehre vermochte sich, zumal in Frankreich und in
Deutschland, nur langsam Bahn zu brechen, da die zeitgenössischen
Astronomen, noch mehr aber die Physiker, zu sehr in der von
Descartes herrührenden Wirbeltheorie befangen waren. Letzterer,
der als Begründer der neueren Philosophie das größte Ansehen
genoß, und dessen Bemühen um die Formulierung des Brechungsgesetzes,
um die Theorie des Regenbogens, sowie um die Begründung
der analytischen Geometrie alle Anerkennung verdiente,
dachte sich die Planeten in kreisenden Ätherströmen schwimmend,
in deren Mitte sich die Sonne befinden sollte. Eine Wirkung in
die Ferne schien den Anhängern der Cartesianischen Physik
ganz unannehmbar491.



Aus Newtons Schriften geht nicht mit Sicherheit hervor, ob
er sich die Wirkung in die Ferne als eine unvermittelte oder als
eine vermittelte dachte. Anfangs war Newton zu der Annahme
geneigt, daß die Bewegungen der Gestirne aus mechanischen Prinzipien
zu erklären seien. Später sah er jedoch davon ab, da er sich
außerstande fühlte, den Grund der Schwere aus den Erscheinungen
abzuleiten. In der Vorrede zur zweiten Ausgabe der »Prinzipien« von
1713 wird die Gravitation denn auch als eine »causa simplicissima«
hingestellt, für die es keine mechanische Erklärung gebe. Jene Vorrede
hat indessen Newtons Freund Cotes (Prof. d. Astronomie
in Cambridge) verfaßt, und man darf die darin geäußerten Ansichten
nicht ohne weiteres auf Newton übertragen. Dafür, daß
Newton ein materielles Agens durchaus nicht etwa für ganz ausgeschlossen
hielt, spricht nämlich folgende von ihm herrührende
Bemerkung: »Daß die Gravitation eine inhärente Eigenschaft der
Materie sei, derart, daß ein Körper auf einen anderen aus der
Ferne und durch den völlig leeren Raum ohne die Vermittlung
von irgend etwas anderem wirke, erscheint mir als eine große
Absurdität. Ich kann mir nicht vorstellen, daß jemand, der fähig
ist, philosophisch zu denken, in sie verfallen kann.«

Jedenfalls ist also die Annahme einer durch das Medium erfolgenden
Wirkung nicht erst im 19. Jahrhundert durch Faraday
entstanden. Sie hat vielmehr schon im 18. Jahrhundert namhafte
Vertreter gefunden. Auch Kepler hat sich lange vor Newton
gegen die Möglichkeit einer »actio in distans« ausgesprochen und eine
die Schwere bedingende Strahlungsenergie angenommen, die sich
wie das Licht durch den Raum ausbreiten und alle Körper durchdringen
sollte492. Der große deutsche Philosoph Leibniz nahm eine
vermittelnde Stellung ein. Viel weniger als er konnte sich Huygens
mit der Newtonschen Kraftidee befreunden493. Er bemühte sich
deshalb, auf Cartesianischer Grundlage die Schwerkraft, für die
er das Newtonsche Gesetz nicht etwa in Abrede stellte, mechanisch
zu erklären. Seine Ansichten, auf die wir in dem nächsten
Abschnitt zurückkommen, entwickelte er im Jahre 1690 als Anhang
zu seinem Werke über das Licht.

Allmählich gelangte die Newtonsche Gravitationsmechanik
indessen doch zur allgemeinen Anerkennung. In Frankreich, wo
man besonders lange an Descartes festhielt, wurde der neuen
Lehre erst durch Voltaire und Maupertuis Bahn gebrochen.
Das Gravitationsgesetz wurde zwar als richtig anerkannt, um so
energischer bekämpfte man die Annahme der in die Ferne wirkenden
Kraft, der »Zentripetalkraft« Newtons, und suchte durch
ein modifiziertes Wirbelsystem die kosmischen Erscheinungen zu
erklären. Auch durch den Stoß von Molekeln, die sich im Weltraum
bewegen sollten, suchte man die Gravitation auf ein anschauliches
Prinzip zurückzuführen494. Indes hundert Jahre später waren
es gerade die Franzosen,
vor allem ihr
großer Astronom
Laplace, die das
von Newton in den
gröberen Zügen ausgearbeitete
System
bis in alle Einzelheiten
vollendet haben.

Zu jener Zeit,
als die »Prinzipien«
erschienen, bekleidete
Newton immer
noch die Professur
der Mathematik in
Cambridge, deren
kärgliche Besoldung
nur den bescheidensten
Ansprüchen genügte.
Dazu traf
ihn das Unglück,
daß ein Teil seiner
wertvollen Aufzeichnungen verbrannte. Newton wurde dadurch so
bekümmert, daß man eine Geistesstörung befürchtete. Diese äußeren
Verhältnisse wurden mit einem Schlage durch Newtons Ernennung
zum königlichen Münzmeister geändert. Seitdem wohnte
er, im Alter mit Ehren überhäuft, bald in der Hauptstadt, bald
auf einem Landsitz in der Nähe, bis ein Steinleiden am 31. März
des Jahres 1727 seinem, an wissenschaftlichen Erfolgen so überaus
reichen Leben ein Ende bereitete.
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Abb. 79. Newton in seinem 84. Lebensjahre.





Newton war trotz seiner außerordentlichen Bedeutung ein
bescheidener, stiller Gelehrter. »Ich weiß nicht«, sprach er einst,
»wie ich der Welt erscheine. Mir selbst aber komme ich vor wie
ein Knabe, der am Meeresufer spielt und sich damit belustigt,
dann und wann einen glatten Kiesel oder eine schönere Muschel
als gewöhnlich zu finden, während der große Ozean der Wahrheit
unerforscht vor mir liegt.«

Newton wurde in der Westminsterabtei, der Stätte, wo
Englands große Männer ruhen, unter Ehrenbezeugungen beigesetzt,
wie sie sonst nur verstorbenen Mitgliedern des königlichen Hauses
erwiesen werden. Das Denkmal, das seinen Staub bedeckt, trägt
einen in lateinischer Sprache verfaßten Nachruf. Er lautet in
deutscher Übersetzung:


Hier ruht

Sir Isaac Newton,

Der mit fast göttlicher Geisteskraft

Der Planeten Bewegung und Gestalten,

Die Bahnen der Kometen und die Gezeiten des Ozeans

Mit Hilfe seiner mathematischen Methode

Zuerst erklärte.

Er ist es, der die Verschiedenheiten der Lichtstrahlen,

Sowie die daraus entspringenden Eigentümlichkeiten der Farben,

Die niemand vorher auch nur vermutete, erforscht hat.

Als der Natur, der Altertümer und der Heiligen Schrift

Fleißiger, scharfsinniger und getreuer Deuter,

Verherrlichte er die Majestät des allmächtigen Schöpfers in seiner Philosophie.

Die vom Evangelium geforderte Einfalt bewies er durch seinen Wandel.

Mögen die Sterblichen sich freuen, daß unter ihnen wallte

Eine solche Zierde des Menschengeschlechts.

Geboren am 25. Dezember 1642, gestorben am 20. März 1727495.





13. Huygens und die übrigen Zeitgenossen
Newtons.

Aus der Schar der zeitgenössischen Forscher ragte wohl niemand
so weit an Newton heran wie der schon wiederholt erwähnte
Niederländer Huygens, den Newton selbst Summus Hugenius
nannte. Auch Huygens stand auf den Schultern Galileis. Seine
Tätigkeit erstreckte sich auf dieselben Wissensgebiete, auf denen
Newton bahnbrechend wirkte, auf die Optik und die Mechanik;
und wo zwischen beiden Forschern Meinungsverschiedenheiten entstanden,
hat deren Klärung nur Fortschritte gezeitigt.


[image: Abb. 80]
Abb. 80. Christiaan Huygens.





Christiaan Huygens wurde am 14. April des Jahres 1629
im Haag geboren. Ausgestattet mit einer mathematischen Begabung,
die frühzeitig Bewunderung erregte, zeichnete ihn außerdem
ein hervorragendes Geschick für die praktische Bewältigung
mechanischer Probleme aus. Wie auf Galilei und auf Newton,
so ist auch auf ihn die Mitwelt zuerst durch seine astronomischen
Entdeckungen aufmerksam geworden. Die von Galilei
am Saturn beobachtete, rätselhafte Erscheinung, die Galilei
für eine Verdreifachung dieses Gestirns angesehen hatte496, erfuhr
nämlich durch Huygens die richtige Deutung. Vor ihm
hatten sich Grimaldi und besonders Hevel mit der Deutung des
rätselhaften Aussehens dieses Planeten beschäftigt. Grimaldi hatte
den Eindruck, als ob Saturn mit zwei Henkeln versehen sei, während
Hevel für das veränderliche Aussehen des Planeten einen periodischen
Wechsel innerhalb eines bestimmten Zeitraums nachwies.

Huygens dagegen
erkannte vermittelst
der vorzüglichen,
von ihm
verfertigten Refraktoren,
daß es sich
hier weder um
eine Verdreifachung
handeln könne, noch
um zwei Henkel, die
spätere Beobachter
zu sehen glaubten;
sondern er erblickte
den Saturn von
einem freischwebenden Ringe umgeben, wie es uns die dem
Werke über das System des Saturn497 entnommene Abbildung 81
erkennen läßt.


[image: Abb. 81]
Abb. 81. Huygens' Darstellung des Saturnringes.



Huygens machte diese Entdeckung im Jahre 1655. Er veröffentlichte
sie zunächst nach damaliger Sitte in Form eines
Änigmas. Es lautete:


a7 c5 d1 e5 g1 h1 i7 l1 m2 n9 o4 p2 q1 r2 s1 t5 u5.


In diesem Ausdruck bedeuten die Ziffern, wie oft der betreffende
Buchstabe in der Lösung vorkommt. Letztere war: Saturnus cingitur
annulo tenui, plano, nusquam cohaerente et ad eclipticam
inclinato498.

Huygens durfte mit Recht von einem System des Saturn
reden, da er auch den sechsten und größten der ihn umkreisenden
Monde gefunden hatte499. Er verfolgte diesen neuen Weltkörper
lange Zeit und fand, daß er in 16 Tagen seinen Umlauf um den
Saturn vollendet.

Der von Huygens entdeckte Mond des Saturn war der erste500
der vielen kleinen Begleiter dieses Planeten, den ein menschliches
Auge erblickte; deshalb war auch diese Entdeckung Huygens'
eine wesentliche Bereicherung unserer Kenntnis des Planetensystems.

Fast zur selben Zeit, als die Entdeckung des Saturnringes
erfolgte, wurde Huygens auf die später zu besprechende Erfindung
der Pendeluhr geleitet501. Durch diese Leistungen war er
schon, bevor er das 30. Lebensjahr erreicht und noch ehe er seine
für die Mechanik und die Optik grundlegenden Werke veröffentlicht
hatte, zu einer Berühmtheit von europäischem Rufe geworden.

Als daher Colbert die französische Akademie der Wissenschaften
errichtete, war es das Erste, daß er den niederländischen
Forscher an sie berief. Huygens leistete der Ernennung Folge
und blieb von 1666 bis 1681 eine Zierde des neubegründeten Instituts.
Da jedoch in Frankreich die Verfolgungen der Protestanten
einen bedrohlichen Charakter annahmen, kehrte er noch vor der
Aufhebung des Ediktes von Nantes in die Vaterstadt zurück, obgleich
man ihm selbst volle Religionsfreiheit zugesichert hatte.
Er starb am 8. Juni 1695.

Der Ausbau der Wellentheorie des Lichtes.

Huygens' Hauptverdienst um die Optik besteht in dem Ausbau
der Wellentheorie des Lichtes. Angeregt wurden seine Betrachtungen
einerseits durch die Spekulationen Descartes' und
Hookes502, von denen der letztere das Licht gleichfalls als eine
Wellenbewegung ansprach, ohne jedoch seine Ansichten ausführlicher
zu begründen; andererseits durch die Entdeckung der Doppelbrechung,
sowie der Fortpflanzungsgeschwindigkeit des Lichtes503.
Mit dem Problem, diese Geschwindigkeit gleich derjenigen des
Schalles zu messen, hatte sich schon Galilei befaßt. Er war indes,
wie man es bei der Anwendung einfacher Lichtsignale nicht
anders erwarten konnte, zu keinem Ergebnis gelangt. Descartes'
Meinung ging dahin, daß zwar nichts Stoffliches von den leuchtenden
Körpern in unser Auge gelange; indessen sei das Licht keine
Bewegung, sondern vielmehr ein Streben nach Bewegung. Und
dieses Streben beanspruche, als etwas gänzlich Unkörperliches, zu
seiner Fortpflanzung keine Zeit. Descartes war der Erste, der
die Frage durch astronomische Gründe zu entscheiden suchte.
Braucht das Licht, so schloß er, zu seiner Ausbreitung Zeit, dann
kann die Verfinsterung des Mondes durch die Erde nicht in demselben
Augenblicke eintreten, in dem sich die Erdkugel zwischen
Mond und Sonne schiebt. Nun zeigen aber die Beobachtungen,
daß die Mondfinsternis in eben diesem Augenblicke beginnt. Die
Fortpflanzung des Lichtes kann also keine Zeit beanspruchen.
Demgegenüber bemerkte Huygens, daß die Betrachtungen, die
Descartes anstellte, wohl eine sehr schnelle, keineswegs aber eine
augenblickliche Fortpflanzung des Lichtes beweisen. Wenn letzteres
z. B. den Weg von der Erde zum Monde innerhalb zehn Sekunden
zurücklege, so würde dies bei der astronomischen Beobachtung
nicht leicht wahrzunehmen sein.

Descartes war es auch, der zuerst die alte pseudo-aristotelische
Ansicht von der Entstehung der Farben aus einer Mischung von
Hell und Dunkel durch eine auf mechanischen Prinzipien beruhende
Erklärung zu ersetzen suchte, während Huygens von einer Erklärung
der Farben gänzlich absah.

Huygens' Voraussetzung, daß das Licht zu seinem Wege
Zeit gebrauche, hatte erst wenige Jahre vor der Veröffentlichung
seiner Wellentheorie ihre Bestätigung gefunden504. Dies geschah
durch die Beobachtungen, die der dänische Mathematiker Olaf
Römer505 an dem innersten Jupitertrabanten anstellte. Letzterer
bewegt sich in etwa 42½506 Stunden um den Zentralkörper und
tritt nach jedesmaligem Ablauf dieses Zeitraums aus dem Schatten
des Jupiter heraus. Huygens gibt in seiner Abhandlung folgenden
Bericht über die von Römer angestellten Beobachtungen und
Folgerungen: A (Abb. 82) sei die Sonne, BCDE die jährliche
Bahn der Erde, F der Jupiter und GN die Bahn des nächsten
seiner Begleiter. Bei H möge dieser aus dem Schatten des Jupiter
treten. Setzt man nun voraus, daß dies geschah, während
die Erde sich im Punkte B befand, so müßte
man, wenn die Erde an derselben Stelle bliebe,
nach Ablauf von 42½ Stunden einen ebensolchen
Austritt beobachten. Wenn die Erde
beispielsweise während 30 Umläufe des Mondes
immer in B verharrte, so würde man ihn gerade
nach 30 · 42½ Stunden wieder aus dem Schatten
hervorkommen sehen. Während dieser Zeit hat
sich indes die Erde nach C bewegt, indem sie
sich mehr und mehr von dem Jupiter entfernt,
der infolge seiner langen Umlaufszeit seine
Stellung wenig verändert. Daraus folgt, daß,
wenn das Licht für seine Fortpflanzung Zeit
gebraucht, das Auftauchen des kleinen Mondes
in C später bemerkt werden wird, als dies in B
geschehen wäre. Man muß nämlich zu der Zeit
von 30 · 42½ Stunden noch diejenige hinzufügen,
die das Licht gebraucht, um den Weg
MC, nämlich den Unterschied der Strecken
CH und BH zu durcheilen. Ebenso wird
man, wenn die Erde von D nach E gelangt und sich somit
dem Jupiter nähert, das Eintreten des Mondes G in den Schatten
bei E früher beobachten müssen, als dies geschehen würde, wenn
die Erde in D geblieben wäre. Römers Beobachtungen und
Berechnungen ergaben, daß das Licht ungefähr 11 Minuten gebraucht,
um den Halbmesser der Erdbahn zu durchlaufen. Spätere
Messungen haben diesen, in Anbetracht der großen Strecke sehr
geringen Wert sogar auf 8 Minuten herabgesetzt. Die Lichtgeschwindigkeit
ist demnach nicht das 600000fache derjenigen des
Schalles, wie Huygens angab, sondern nahezu das 900000fache.


[image: Abb. 82]
Abb. 82.
Römer berechnet
die Geschwindigkeit
des Lichtes507.



Wenn das Licht zu seinem Wege Zeit gebraucht, so folgt
daraus nach Huygens, daß es sich wie der Schall in kugelförmigen
Flächen oder Wellen ausbreitet. Indessen hebt er einen
wichtigen Unterschied hervor. Während nämlich der Schall durch
die plötzliche Erschütterung des ganzen Körpers oder eines beträchtlichen
Teiles eines solchen hervorgebracht wird, muß die
Lichtbewegung von jedem Punkte des leuchtenden Gegenstandes
ausgehen, damit man alle seine Teile wahrnehmen kann.

Um das Licht zu erklären, nimmt Huygens ferner an, die
leuchtenden Körper seien aus sehr kleinen Teilchen zusammengesetzt,
die sich heftig bewegen und gegen die umgebenden, noch
viel kleineren den Raum erfüllenden Teilchen stoßen. »Die Bewegung
dieser Teilchen, die das Licht verursachen«, fügt er hinzu,
»muß viel schneller und heftiger sein als diejenige der Körper,
die den Schall bewirken, denn wir sehen, daß die zitternde Bewegung
eines tönenden Körpers ebenso wenig imstande ist, Licht
zu erzeugen, wie die Bewegung der Hand in der Luft Schall hervorzubringen
vermag.«

Die Materie, in der die von den leuchtenden Körpern ausgehende
Bewegung sich ausbreitet, nennt Huygens »Äther«. Sie
könne nicht dieselbe sein, wie diejenige, die zur Ausbreitung des
Schalles diene. Denn man finde, daß letztere nichts anderes ist,
als die Luft, und daß, wenn man die Luft wegnimmt, die andere,
dem Lichte dienende Substanz zurückbleibt. Es muß also, schließt
Huygens, ein von der Luft verschiedener Stoff, eben der Äther,
vorhanden sein. Dieser erfüllt den unendlichen Himmelsraum und
den Raum zwischen den wägbaren Teilchen der Körper. Er ist nicht
schwer und somit nicht dem Gesetz der Gravitation unterworfen.

Aus seiner Äthertheorie erklärte Huygens auch die Adhäsion
sowie die Kapillarität. Er war anfangs geneigt, beide auf
den Druck der Luft zurückzuführen. Versuche mit der Luftpumpe
ergaben ihm jedoch, daß die Erscheinungen im Vakuum
dieselben bleiben. Darauf erklärte er die Adhäsion, die Kapillarität
und verwandte Erscheinungen aus dem Druck einer materia subtilis,
auf die er auch das Licht zurückführte.



Um die so außerordentlich rasche Fortpflanzung des Lichtes
zu verstehen, legt Huygens den Ätherteilchen drei Eigenschaften
bei. Sie sind äußerst klein, weit kleiner als die Luftteilchen; sie
sind ferner sehr hart, gleichzeitig aber äußerst elastisch. Nimmt
man nämlich eine Anzahl gleich großer Kugeln aus sehr hartem
und gleichzeitig sehr elastischem Stoff, etwa Stahl, und ordnet sie
in gerader Linie so an, daß sie sich berühren, so wird, wenn eine
gleiche Kugel gegen die erste Kugel dieser Reihe stößt, die Bewegung
wie in einem Augenblicke bis zur letzten gelangen. Diese
trennt sich darauf von der Reihe, ohne daß man bemerkt, daß
die übrigen sich bewegt hätten. Die Kugel, die den Stoß ausgeübt
hat, bleibt sogar unbeweglich mit den übrigen vereint508. Es
offenbare sich hierin ein Bewegungsübergang von außerordentlicher
Geschwindigkeit, die umso größer sei, je größere Härte und
Elastizität die Substanz der Kugeln besitze. Darin, daß der
Äther als flüssiger Körper sich in beständiger Bewegung befinden
muß, weil die Bewegung der übrigen Materie in ihm vor sich geht,
erblickt Huygens keine Schwierigkeit. Die Fortpflanzung der
Ätherwellen besteht nämlich nach ihm nicht
in der Fortbewegung der Ätherteilchen, sondern
in einer geringen Erschütterung, die sich
trotz der ihre gegenseitige Lage verändernden
Bewegung auf die umgebenden Teilchen übertragen
müsse. Was den Ursprung dieser
Wellen und die Art ihrer Fortpflanzung anbetrifft,
fährt Huygens fort, so folgt aus dem
Vorausgeschickten, daß jede kleine Stelle eines
leuchtenden Körpers, wie der Sonne, einer
Kerze oder einer glühenden Kohle, Wellen
erzeugt, deren Mittelpunkt diese Stelle ist.
Sind z. B. in einer Kerzenflamme A, B, C
(Abb. 83) verschiedene Punkte, dann stellen die um jeden dieser
Punkte beschriebenen konzentrischen Kreise die Wellen dar, die
von den Punkten ausgehen.


[image: Abb. 83]
Abb. 83. Die Fortpflanzung
des Lichtes.



Auch darin, daß eine Menge von Wellen sich durchkreuzen,
ohne sich gegenseitig aufzuheben, liegt für Huygens nichts Unbegreifliches.
Könne doch dasselbe Stoffteilchen mehrere Wellen
fortpflanzen, die von verschiedenen oder sogar von entgegengesetzten
Seiten kommen. Und zwar geschehe dies nicht nur, wenn
das Teilchen durch rasch aufeinanderfolgende Stöße, sondern
auch, wenn es durch Stöße getroffen werde, die in demselben
Augenblicke darauf wirken. Als Beweismittel führt Huygens
den schon oben erwähnten, aus elastischen Kugeln bestehenden
Apparat ins Feld. Wenn man nämlich gegen die ruhenden Kugeln
von entgegengesetzten Seiten in demselben Augenblicke gleich große
Kugeln A und D stoße (Abb. 84), so werde man jede Kugel mit
derselben Geschwindigkeit, die sie beim Aufprall hatte, zurückschnellen
und die ganze Reihe an ihrer Stelle verharren sehen,
obgleich die Bewegung vollständig und zwar zweimal durch sie
hindurchgegangen sei. Zwar könne es unglaublich erscheinen, daß
die durch die Bewegung so kleiner Körperchen hervorgebrachten
Wellen sich auf so ungeheure Entfernungen fortzupflanzen vermögen,
wie von der Sonne oder den Fixsternen bis zur Erde. Doch auch
dies Bedenken weiß Huygens zu beseitigen. Wenn sich nämlich
auch die Kraft dieser Wellen in dem Maße abschwäche, in dem
sich die Wellen von ihrem Ursprünge entfernen, so müsse man
doch erwägen, daß in einer großen Entfernung vom leuchtenden
Körper eine Unzahl von Wellen sich vereinigen. »Die unendliche
Zahl von Wellen, die in demselben Augenblicke von allen Punkten
eines Fixsternes, etwa eines so großen wie die Sonne, herkommen,
bilden nur eine einzige Welle, die auch genügend Kraft besitzen
wird, um auf unsere Augen Eindruck zu machen.«


[image: Abb. 84]
Abb. 84. Huygens erklärt die Fortpflanzung des Lichtes.



Hinsichtlich der Fortpflanzung dieser Wellen sei ferner zu bedenken,
daß jedes Teilchen des Stoffes, in dem eine Welle sich ausbreitet,
nicht nur dem nächsten Teilchen, das in der von dem leuchtenden
Punkte aus gezogenen geraden Linie liegt, seine Bewegung
mitteilen muß, sondern auch allen übrigen, die es berühren und die
sich seiner Bewegung widersetzen. Daher muß sich um jedes Teilchen
eine Welle bilden, deren Mittelpunkt dieses Teilchen ist. Wenn
also DCF (s. Abb. 85) eine Welle sei, die von dem leuchtenden
Punkte A als Zentrum ausgegangen ist, so werde das Teilchen B,
das zu den von der Kugel DCF umschlossenen gehört, seine die
Welle DCF in C berührende besondere Welle KCL in demselben
Augenblicke gebildet haben, in dem die von A ausgesandte Hauptwelle
in DCF angelangt sei. Ferner sei klar, daß die Welle KCL
die Welle DCF eben nur in dem Punkt C berühre, d. h. in
demjenigen, der auf der durch AB gezogenen Graden liegt. Auf
dieselbe Weise bilde jedes andere Teilchen innerhalb der Kugel
DCEF wie bbdd usw. seine eigene Welle. Jede dieser Wellen
sei indessen nur unendlich klein im Vergleich zur Welle DCEF,
zu deren Bildung alle übrigen mit demjenigen Teile ihrer Oberfläche
beitragen, der von dem Mittelpunkte A am weitesten entfernt
sei. Ferner könne der Wellenteil
BG (Abb. 85), der den leuchtenden
Punkt A zum Mittelpunkt hat,
sich nur bis zu dem von den Geraden
ABC und AGE begrenzten Bogen
CE ausbreiten. Obgleich nämlich die
Einzelwellen, welche durch die im
Raume CAE enthaltenen Teilchen
erzeugt werden, auch außerhalb dieses
Raumes sich ausbreiten müßten, so
träfen sie doch nirgends sonst, als eben
nur in dem Bogen CE, im nämlichen
Augenblicke zusammen, um eine die Bewegung abgrenzende Welle
zu bilden. Hierin liegt für Huygens auch der Grund, weshalb
sich das Licht, sofern seine Strahlen nicht zurückgeworfen oder
gebrochen werden, nur in geraden Linien fortpflanzt, so daß es
einen Gegenstand nur dann beleuchtet, wenn der Weg von seiner
Quelle bis zu diesem Gegenstande längs solcher Linien offen steht.
Wenn beispielsweise eine durch undurchsichtige Körper begrenzte
Öffnung BG vorhanden wäre, so würden die von dem Punkte A
kommenden Wellen immer durch die Geraden BC und GE begrenzt
sein, da diejenigen Teile der Einzelwellen, die sich über
BC und GE hinaus ausbreiten, zu schwach seien, um daselbst
Licht hervorzubringen.


[image: Abb. 85]
Abb. 85. Erläuterung des
Huygens'schen Prinzips.



Die Erscheinungen der Reflexion und der Brechung vermag
Huygens aus seinem soeben entwickelten Prinzip ohne Schwierigkeiten
abzuleiten. AB sei eine ebene Fläche (Abb. 86), AC ein
Teil einer Lichtwelle, deren Mittelpunkt soweit entfernt sei, daß
AC als gerade Linie betrachtet werden kann. Die Einzelwellen,
die von den Punkten KKK ausgehen, werden dann in einem bestimmten
Augenblicke durch die gemeinschaftliche Tangente BN
begrenzt. Aus der Figur (Abb. 86) ersieht man, daß die Winkel
CBA und NAB gleich sind, somit das Reflexionsgesetz bewiesen
ist509.

Ebenso leicht erklärt Huygens aus seinem Prinzip die einfache
Brechung, unter der Voraussetzung, daß das Licht in den durchsichtigen
Körpern eine Verminderung seiner Geschwindigkeit erleidet.
Daß die Körper keine kontinuierliche Masse bilden, sondern aus
nebeneinander gelagerten Teilchen bestehen, schließt Huygens
daraus, daß der Magnetismus und die Schwerkraft, die für ihn
materieller Natur sind, durch feste Körper hindurch wirken.
Die verbleibenden Zwischenräume sollen durch die Teilchen des
Äthers ausgefüllt sein. Beim
Durchgang des Lichtes durch
Körper seien aber nicht nur die
Äther-, sondern auch die Körperteilchen
in Bewegung und aus
der geringeren Elastizität der
letzteren erkläre sich die Verlangsamung
der Lichtwellen510.
Es erhebt sich nun die Frage,
weshalb nicht alle Körper durchsichtig
sind, da doch der Äther
ihre Poren erfüllt. Huygens
begegnet dieser Schwierigkeit
durch die Annahme, daß gewisse
Körperteilchen dem Äther gegenüber
nachgiebig seien, ihre Gestalt unter dem Druck des Äthers
verändern und so die Bewegung des Äthers vernichten.

Wir sehen, wie Huygens die von der neueren Philosophie,
insbesondere von Descartes begründete Korpuskulartheorie auszubauen
und den Zwecken der Naturerklärung dienstbar zu machen
suchte. Huygens nahm in der Entwicklung dieser Theorie eine
abschließende Stellung ein, indem er ihr den Wert einer wissenschaftlichen,
die Grundsätze der Kinetik benutzenden Betrachtungsweise
zu verleihen wußte. Sehen wir nun, wie Huygens das
Verhalten des Lichtstrahls beim Eindringen in durchsichtige Körper
aus seinen Prinzipien erklärt.


[image: Abb. 86]
Abb. 86. Huygens erklärt die
Reflexion des Lichtes.



AB (Abb. 87) sei die Grenze des durchsichtigen Körpers,
AC ein Wellenteil einer Lichtquelle, die soweit entfernt ist, daß
AC als gerade Linie angenommen werden kann. Es mögen sich
ferner die Geschwindigkeiten außerhalb und innerhalb des Körpers
wie 3 : 2 verhalten. Dann wird sich in der Zeit, die das Licht
gebraucht, um von C nach B zu gelangen, um A in dem Körper
eine Welle gebildet haben, die
durch BN begrenzt wird, und
zwar wird das Stück AN nach
der Voraussetzung zwei Drittel
von AG sein. Indessen auch
um die Punkte KKK bilden
sich Einzelwellen, die durch
Kreise dargestellt werden, deren
Halbmesser zwei Drittel der
entsprechenden Verlängerungen
KM, KM, KM betragen. Alle
diese Kreise haben nun BN
als gemeinschaftliche Tangente.
Letztere begrenzt die Bewegung und ist somit die Fortsetzung der
Welle AC für den Augenblick, in dem sie von C nach B gelangt
ist. Die Lichtgeschwindigkeiten CB und AN, die für diesen Fall
= 3 : 2 angenommen wurden, verhalten sich auch wie der Sinus von
EAD zum Sinus von FAN, so daß die Konstruktion mit dem
Brechungsgesetz in vollkommenem Einklang steht.


[image: Abb. 87]
Abb. 87. Huygens leitet aus seinem
Prinzip das Brechungsgesetz ab.



Doppelbrechung und Polarisation.

Weit größere Schwierigkeiten machte es, aus dem Prinzip der
Elementarwellen die um die Mitte des 17. Jahrhunderts am isländischen
Spat entdeckte Doppelbrechung abzuleiten. Die betreffende
Untersuchung von Huygens bildet, wie sein Herausgeber
sich ausdrückt, den Glanz- und Mittelpunkt des ganzen Werkes
und ist ein unübertroffenes Muster des Zusammenwirkens experimenteller
Forschung und scharfsinniger Analyse.

Huygens war bei dem Aufsehen, das Bartholins Schrift
über den Doppelspat511 erregt hatte, zu seiner Untersuchung geradezu
gezwungen, weil die neuentdeckte, wunderbare Erscheinung
seine Erklärung der gewöhnlichen Brechung umzustürzen schien.
Das Ergebnis war, daß sich die Doppelbrechung auf das gleiche
Grundgesetz zurückführen und somit zur Bestätigung desselben verwerten
ließ.

Huygens begab sich zunächst an eine Nachprüfung der von
Bartholin gefundenen Ergebnisse. Die Winkel C, D (Abb. 88)
des Rhomboeders fand er gleich 101° 52ʹ, die Winkel A, B dagegen
gleich 78° 8ʹ.


[image: Abb. 88]
Abb. 88. Huygens untersucht den
Doppelspat.




[image: Abb. 89]
Abb. 89. Huygens erläutert den
Aufbau des Doppelspats.



Um die Form, die Spaltbarkeit und weiterhin auch die optischen
Eigenschaften des Doppelspats zu erklären, unternahm
Huygens einen für die weitere Entwicklung der mineralogischen
Wissenschaft sehr wichtigen Schritt. Er stellte sich nämlich vor,
daß der Kristall aus kleinsten Teilchen zusammengesetzt sei. Indem
er dann weiter über die Form und die Lagerung dieser
Teilchen gewisse Annahmen machte, gelang es ihm, aus diesen
Annahmen die beobachteten Erscheinungen abzuleiten. Huygens
nahm an, die Teilchen des Kristalles seien Sphäroide, wie sie aus
der Umdrehung einer Ellipse um ihre kleinere Achse hervorgehen.
Stehen die Achsen dieser Sphäroide in einem bestimmten Verhältnis
und setzt man eine größere Zahl solcher Sphäroide in der
in Abb. 89 angegebenen Weise zusammen, so ergibt sich die aus
der Beobachtung gefundene Form mit den an ihr gefundenen
Winkel- und Spaltungsverhältnissen. Wären nämlich die Sphäroide
durch ein Bindemittel (im Modell könnte man die in der
Natur zwischen den Sphäroiden wirkenden Anziehungen durch Zusammenleimen
ersetzen) verbunden, so würde sich der aus ihnen
aufgebaute Körper nach Flächen spalten, welche den die Ecken
bildenden Flächen parallel sein müßten. Jedes Sphäroid würde
sich nämlich von nur drei Sphäroiden der benachbarten Schicht
losreißen, während es sich doch von sechs Sphäroiden trennen
müßte, um die Schicht zu verlassen, der es selbst angehört.

Da Huygens die Entdeckung machte, daß auch der Bergkristall
das Licht doppelt bricht, nahm er für dieses Mineral einen
ähnlichen Aufbau an. Derartige Betrachtungen über den regelmäßigen
Bau der Kristalle aus gleichartigen Teilchen von bestimmter
Form sind, wie wir sehen werden, im 19. Jahrhundert
durch Hauy wieder aufgenommen und auf sämtliche Kristallformen
ausgedehnt worden.

Über die Entdeckung der viel weniger auffallenden Doppelbrechung
des Bergkristalls teilt Huygens mit, er habe aus dem
Material nach verschiedenen Richtungen Prismen schneiden und
diese gut polieren lassen. Als er durch solche Prismen nach einer
Kerzenflamme blickte, erschien sie ihm doppelt. Jetzt war auch
die Tatsache aufgeklärt, daß sich Linsen aus dem so durchsichtigen
Bergkristall für Fernrohre von einiger Länge als unbrauchbar erwiesen
hatten.

Wie die Form und die Spaltbarkeit des Doppelspats durch
die Annahme kleiner Sphäroide verständlich wird, so lassen sich
die optischen Eigenschaften nach Huygens aus sphäroidischen
Lichtwellen erklären, die in ihrer Lage mit den Körperteilchen
übereinstimmen, so daß der Aufbau des Kristalls als die Ursache
sämtlicher geometrischen und physikalischen Eigenschaften erscheint512.
Es würde indessen zu weit führen, wenn wir den Gang
dieser Untersuchung eingehender verfolgen wollten. Es genügt
hier, die Fortpflanzung in sphäroidischen Wellen für das Licht zu
betrachten, das senkrecht auf die Fläche des Kristalles trifft und
trotzdem abgelenkt wird. Solche Wellen werden sich bilden, wenn
sich das Licht »in der einen Richtung etwas schneller als in der
anderen ausbreitet.« AB (Abb. 90) sei die Grenze zwischen dem
Kristall und der Luft, RC sei ein Wellenteil des Lichtes. Der
Strahl treffe den Kristall in AKkkB. Von diesen Punkten
gehen aber nicht, wie es sonst die Regel ist, halbkugelförmige,
sondern halbsphäroidische Einzelwellen aus, deren große Achsen,
wie VAX, gegen die Ebene AB geneigt sind. Um Punkt A
wird sich nach Ablauf eines gewissen Zeitteilchens ein halbes
Sphäroid SVNT gebildet haben, das die vom Punkte A ausgehende
Einzelwelle darstellt. Um die Punkte K, k, k, B bilden
sich in derselben Zeit gleiche und ähnlich wie SVNT liegende
Einzelwellen, deren gemeinsame Tangente
NQ analog der früheren Betrachtungsweise
wieder die in dem Kristall
befindliche Fortsetzung der Welle RC
ist, denn diese Linie begrenzt in demselben
Augenblicke die Bewegung, die
von der auf AB treffenden Welle RC
herrührt. Diese gemeinsame Tangente
NQ ist zwar AB parallel und an Länge
gleich, sie liegt aber nicht AB genau
gegenüber. »Jetzt verstand ich«, sagt
Huygens, »daß die an der Öffnung AB anlangende Welle RC
fortfährt, sich von dort zwischen den Parallelen AN und BQ
fortzupflanzen.«


[image: Abb. 90]
Abb. 90. Huygens erklärt die
Doppelbrechung.



Wie Huygens dann die Lage und das Achsenverhältnis der
Sphäroide ergründet und unter der Annahme halbsphäroidischer
Einzelwellen durch eine Tangentenkonstruktion ähnlich derjenigen,
die wir in Abb. 87 kennen gelernt haben, den Gang des außergewöhnlichen
Strahles für schräg einfallendes Licht findet, muß in seiner
Abhandlung selbst nachgesehen werden513.

Aus der Konstruktion ergibt sich außer der zuerst betrachteten
Anomalie, daß senkrecht auffallendes Licht gebrochen wird, auch
die Notwendigkeit, daß es schräg einfallende Strahlen geben muß,
welche durch den Doppelspat hindurchgehen, ohne eine Brechung
zu erleiden. In Übereinstimmung mit der Rechnung zeigte die
Erfahrung, daß sich so der Strahl verhält, der die Fläche des
Kristalls unter einem Winkel von 73° 20ʹ trifft514. Kurz, Huygens
fand, daß jede Erscheinung, die er aus seiner Hypothese abzuleiten
vermochte, mit der Beobachtung übereinstimmte, ein »nicht gering zu
veranschlagender Beweis« für die Richtigkeit seiner Voraussetzungen.

Nachdem Huygens seine Untersuchungen der optischen
Eigenschaften des Doppelspats bis zu diesem Punkte gefördert
hatte, entdeckte er noch »eine wunderbare Erscheinung«, die er
aus seiner Theorie nicht abzuleiten vermochte, nämlich die Polarisation
des Lichtes durch Doppelbrechung. Er beschreibt diese Entdeckung
in folgender Weise: »Nimmt man zwei Stücke des Kristalls
und legt sie (Abb. 91) so aufeinander, daß alle Seiten des einen
denjenigen des anderen parallel sind, so wird der Strahl AB, der
in dem ersten Stück in die beiden Strahlen BD und BC zerlegt
wird, beim Eintritt in das zweite Stück sich nicht noch einmal
spalten. Es wird vielmehr der von der regelmäßigen Brechung
herrührende Strahl DG noch eine regelmäßige Brechung, der
außergewöhnliche Strahl CE eine unregelmäßige Brechung erleiden
(Abb. 91). Dies geschieht immer, wenn die Hauptschnitte beider
Rhomboeder in ein und derselben Ebene liegen, auch wenn die
Seitenflächen der Rhomboeder gleichzeitig gegeneinander geneigt
sind.«
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[image: Abb. 92]
Abb. 91                 Abb. 92. 

Huygens entdeckt die Polarisation durch Doppelbrechung.



Ordnete Huygens die beiden Kristalle dann in der Weise
an, daß ihre Hauptschnitte sich rechtwinklig schnitten (Abb. 92),
so erlitt der gewöhnliche Strahl ABDG in dem zweiten Kristall
nur die eine, aber außergewöhnliche Brechung GH, der außergewöhnliche
Strahl aber nur die eine, und zwar gewöhnliche
Brechung EF.

In allen Zwischenstellungen endlich teilten sich die Strahlen
beim Eintritt in den unteren Kristall von neuem in je zwei, so daß
aus dem ursprünglich einzigen Strahl AB vier Strahlen entstanden.
Diese vier Strahlen sind, wie Huygens fand, je nach der Stellung
der Kristalle bald von gleicher, bald von verschiedener Helligkeit,
jedoch so, daß sie »alle zusammen anscheinend nicht mehr
Licht enthalten, als der eine Strahl AB.«

Wenn Huygens sich auch nicht an eine Erklärung dieser
von ihm herrührenden, höchst wichtigen Entdeckung heranwagt, so
macht er doch darüber eine sehr zutreffende Bemerkung, welche
denen, die sich später mit dem Problem beschäftigten, einen wertvollen
Fingerzeig bot. Huygens meint nämlich, die Lichtwellen
erhielten offenbar bei ihrem Durchgang durch den ersten Kristall
eine gewisse Anordnung, durch die ihr Verhalten in dem zweiten
Kristall bestimmt werde. Welcher Art aber die Anordnung sei,
dafür habe er keine befriedigende Erklärung finden können. Die
von Huygens als Polarisation bezeichnete Erscheinung blieb als
vereinzelte Sonderbarkeit fast unbeachtet, bis Malus nach mehr
als einem Jahrhundert fand, daß das Licht auch durch Reflexion
polarisiert werden kann515. Die Polarisation mußte solange jedem
Erklärungsversuche widerstreben, als man mit Huygens annahm,
daß die Lichtschwingungen gleich denjenigen des Schalles longitudinal
seien. Erst nachdem man diese Annahme aufgegeben, gelang
der Undulationstheorie, wie uns die weitere Entwicklung lehren
wird, die Erklärung sämtlicher optischen Erscheinungen.

Auch auf eine Erklärung der Farben hat Huygens verzichtet.
Ihre Entstehung wird in seiner Abhandlung nirgends gestreift.
Dieser Umstand hat viel dazu beigetragen, daß die Wellentheorie
zunächst der Emissionstheorie ihre Herrschaft nicht streitig zu
machen vermochte. Die, wenige Jahre vor der Entstehung seiner
Abhandlung von Grimaldi (1665) entdeckte, Beugung des Lichtes
scheint Huygens damals noch nicht gekannt zu haben, da er sie
nirgends erwähnt.

Descartes war der erste Physiker, der eine Farbenlehre schuf,
die von der bisher gültigen Meinung des Aristoteles516, nach der
die Farben durch Mischung von Licht und Dunkelheit entstehen
sollten, abwich. Für ihn enthält der kosmische Raum eine
außerordentlich feine Materie, die auch die Zwischenräume der
aus gröberem Stoff gebildeten, unseren Sinnen sich offenbarenden
Materie ausfüllt. Dieser feine Stoff befindet sich nach Descartes
als Ganzes und auch in seinen einzelnen Teilchen in einer rotierenden
Bewegung. Die großen Wirbel sind die Ursache der Planetenbewegung,
während die verschieden großen Teilrotationen die
Verschiedenartigkeit der Farben bedingen. Der Lichtstrahl selbst
besteht nur in einem Druck auf die den kosmischen Raum erfüllenden
Elementarteilchen, und ein solcher Druck braucht, weil er ja
nur Tendenz zur Bewegung und nicht Bewegung selbst ist, zu
seiner Fortpflanzung keine Zeit. Das Auge empfindet diesen Druck
als Licht, und als Farben die Rotationsbewegung der Elementarteilchen,
die unter dem Einfluß dichter optischer Medien überdies
Änderungen erleidet, welche zum Zustandekommen des Spektrums
führen. Der stärksten Rotation der kugelförmigen Teilchen entspricht
das Rot, der schwächsten das Violett.

Descartes' Theorie fand zwar keine Annahme. Sie erregte
aber als der erste Versuch, das Licht und die Farben mechanisch zu
erklären die Aufmerksamkeit aller zeitgenössischen Physiker. Auch
Boyle und Newton haben sich mit ihr auseinander gesetzt.

Die Erfindung der Pendeluhr.

Von gleicher Bedeutung wie seine Leistungen auf dem Gebiete
der Optik waren Huygens' Arbeiten auf dem Felde der Mechanik,
wenn es sich auch hier nur um ein Fortbauen auf den von Galilei
herrührenden Grundlagen handeln konnte. Knüpfte Newton an
Galileis Untersuchungen über den Wurf an, so entwickelte
Huygens die Theorie des Pendels, für das der große Meister
nur die fundamentalen Gesetze aufgefunden hatte, bis in alle
Einzelheiten. Dabei wandte er in seinem 1673 erschienenen Werke
über die Pendeluhr517, das den »Prinzipien« Newtons als ebenbürtig
an die Seite gestellt werden kann, die Geometrie in solch
bewunderungswürdiger Weise auf mechanische Probleme an, daß
Newton sehr wahrscheinlich durch die Mustergültigkeit der
Huygens'schen Darstellung bewogen wurde, sich in dem genannten
Hauptwerk gleichfalls geometrischer Beweise zu bedienen,
anstatt der höheren Analysis, in deren Besitz er sich damals schon
befand, den Vorzug einzuräumen518.

Die Frage der Einführung eines genauen Zeitmaßes war im
Verlauf des 17. Jahrhunderts, in dem so große Dinge auf den
Gebieten der Astronomie und der Physik geschahen, zu einer
brennenden geworden. Der weitere Fortschritt dieser Wissenschaften
mußte wesentlich von der Einführung eines solchen abhängen.
Wir sahen, daß noch Galilei sich bei seinen Fallversuchen
einer Art Wasseruhr bediente519. Da Galilei mit Hilfe dieser
Vorrichtung die Schwingungsdauer eines und desselben Pendels
als konstant erwies, so mußte er auf den Gedanken kommen, sich
dieses so viel einfacheren Mittels als Zeitmaß zu bedienen.
Galilei hatte sogar die Idee, das Pendel mit einem Zählwerk zu
verbinden520. Es kam nur noch darauf an, den wiederholten Anstoß
seitens der Hand, den die von Galilei ersonnene Vorrichtung
erforderte, durch eine automatisch wirkende Einrichtung zu
ersetzen. Hierin besteht die Erfindung des großen Huygens,
auf die er 1667, im 28. Jahre seines Lebens, ein Patent nahm521.

Während man sich im Altertum, sowie im früheren Mittelalter
nur der Sonnen- und der Wasseruhren bedient hatte, kamen
seit dem 11. Jahrhundert Räderuhren mit Gewichten auf. Später
wurden diese Uhren mit einem Schlagwerk in Verbindung gesetzt.
In der zweiten Hälfte des 14. Jahrhunderts gab es derartige Turmuhren
schon in vielen Städten. Ihre Regulierung erfolgte durch
Windflügel, wie sie noch heute bei den Spielwerken gebräuchlich
sind, oder durch eine horizontale, mit Gewichten beschwerte
Stange. Ihr Gang war jedoch so ungenau, daß ein Wärter ihn
überwachen und nach der Sonne und den Sternen regeln mußte.



Die nachstehende Abbildung zeigt uns die älteste der noch
vorhandenen Turmuhren. Sie hat von 1348–1872 in Dover die
Stunden angegeben. Das nicht mit abgebildete Gewicht hängt
am Seile a und dreht zunächst das Zahnrad b. Dieses setzt vermittelst
des Zahngetriebes das Sperrad c in Bewegung, das seinerseits
mit der senkrechten Achse d eines Horizontalpendels in Verbindung
steht. Letzteres wird durch Laufgewichte zu schnellerem
oder langsamerem Schwingen veranlaßt und erhält seinen Antrieb
durch zwei an seiner Achse d befindliche Platten, die um den
Durchmesser des Sperrades von einander entfernt sind und abwechselnd
in dessen Zähne eingreifen.


[image: Abb. 93]
Abb. 93. Im South-Kensington-Museum (London) aufbewahrte Turmuhr
aus dem 14. Jahrhundert.



Deutschlands berühmteste Uhr war die im Jahre 1574 eingeweihte
astronomische Uhr im Straßburger Münster522. Sie war
mit einem Himmelsglobus verbunden (er befindet sich noch in
Straßburg). Dahinter befand sich ein immerwährender Kalender.
Ein Astrolabium zeigte den jeweiligen Stand der Planeten im Tierkreise
an usw. Manches davon ist erhalten geblieben523.

Für astronomische
Beobachtungen
hat zuerst Walther
in Nürnberg im Jahre
1484 eine Räderuhr
konstruiert und benutzt.
Hausuhren mit
Schlagwerk kamen
um die Mitte des
16. Jahrhunderts auf.
Auch Taschenuhren
waren damals schon
häufiger anzutreffen.
Sie werden auf Peter
Henlein in Nürnberg
zurückgeführt,
der das Gewicht durch
eine Feder ersetzte
(1505). Ein Zeitgenosse
schreibt darüber:
»Er machte
kleine Uhren mit vielen
Rädern. Diese
Uhren können im
Geldbeutel getragen
werden.« Wegen ihrer
Form nannte man sie
Nürnberger Eier.


[image: Abb. 94]
Abb. 94. Huygens' Abbildung der von ihm
erfundenen Pendeluhr524.



Die dem Werke
des Huygens entnommene
Abbild. 94
zeigt die von ihm
erfundene Pendeluhr.
Sie besteht in der Verbindung eines horizontalen, gezähnten Rades K
mit einer horizontalen Achse, deren Schaufeln LL abwechselnd
zwischen die Zähne eingreifen. Über D ist eine Schnur gewickelt,
die das Gewicht trägt. Die heute gebräuchliche Ankerhemmung
wurde erst später erfunden525.

Galilei hatte die Analogie der Pendelbewegung mit dem Fall
über die schiefe Ebene nachgewiesen. Huygens verallgemeinerte
diese Betrachtung, indem er den Fall durch eine beliebige Kurve
auf eine Folge von Bewegungen auf geneigten Ebenen zurückführte.
Er fand, daß unter den von ihm untersuchten Linien eine
vorhanden war, in der die Fallbewegung im luftleeren Raum vollkommen
isochron verläuft. Es war dies nicht der Kreisbogen,
für den Galilei die Isochronie der Schwingungen nachgewiesen
zu haben glaubte, sondern die Cykloide. Der tiefste Punkt B der
Cykloide ABC (siehe Abb. 95) wird nämlich, wenn ein Körper in
dieser Kurve fällt, stets in derselben Zeit erreicht, von welchem
der zwischen A und B gelegenen Punkte aus die Bewegung auch
beginnen mag526.


[image: Abb. 95]
Abb. 95. Huygens beweist, daß die Schwingungen in der Cykloide
isochron erfolgen527.



Dieses Ergebnis seiner mathematischen Untersuchung wußte
Huygens auch praktisch zu verwerten. Um dem Pendel anstatt der
Kreis- die Cykloidenbewegung zu erteilen, kam es darauf an, daß
der Faden, der bei dem Kreispendel in jeder Stellung eine gerade
Linie bildet, gezwungen wird, sich an eine Kurve von bestimmter
Gestalt anzuschmiegen. Die Untersuchung ergab, daß diese Kurve
gleichfalls eine Cykloide sein muß. In der Abb. 95 stimmen dementsprechend
die Cykloidenstücke AD und CD
mit den Stücken AB und BC überein. Abb. 96
zeigt uns die von Huygens für sein Cykloidenpendel
vorgeschlagene Einrichtung. Sie besitzt
zwei feste, cykloidisch gekrümmte Backen, denen
sich der obere fadenförmige Teil des Pendels
anschmiegt. Anwendung hat das Cykloidenpendel
selten gefunden, da das Kreispendel
nach Einführung der Ankerhemmung und bei
Anwendung kleiner Ausschläge den hinsichtlich
der Genauigkeit des Ganges zu stellenden Anforderungen
genügend entspricht.

Die Taschenuhr versah Huygens (siehe
Abb. 97) mit der noch jetzt gebräuchlichen
Unruhe528. Ferner entwickelte er die Theorie
des konischen oder Zentrifugalpendels529, das in
einem horizontalen, vollen Kreise schwingt,
während gleichzeitig der Faden die Kegelfläche beschreibt, eine
Vorrichtung, die später Watt als Regulator der von ihm verbesserten
Dampfmaschine verwendet hat.


[image: Abb. 96]
Abb. 96. Huygens'
Cykloidenpendel530.




[image: Abb. 97]
Abb. 97. Huygens' Unruhe.





Fügen wir noch hinzu, daß Huygens die Länge des Sekundenpendels
zum erstenmal genauer bestimmte (er fand sie gleich
3,0565 Pariser Fuß), daß er ferner die Formel für die Pendelbewegung531
und aus ihr die Beschleunigung für den freien Fall
ableitete, so erkennen wir, mit welcher Fülle neuer Entdeckungen
die Wissenschaft durch ihn bereichert wurde.

Die Beschleunigung g für den freien Fall oder die Acceleration
der Schwerkraft ergab sich, indem man in die Pendelformel
t = π√(l/g) für l die Werte für das Sekundenpendel (t = 1 und
l = 3,0565) einsetzte und sie dann nach g auflöste: 1 = π√(3,0565/g);
g = π2 · 3,0565 = 30,1666 Pariser Fuß, wofür Huygens 30 Fuß
2 Zoll setzte.

Den Wert, den Huygens in Paris für die Länge des Sekundenpendels
ermittelt hatte, brachte er als Einheit für das Längenmaß
in Vorschlag, ohne jedoch den Beifall seiner Zeitgenossen
zu finden.

Huygens hat sich nicht damit begnügt, die Wirkungen der
Schwerkraft zu erforschen, er hat sie auch, wie das Licht, mechanisch
zu erläutern gesucht532. Die Schwere darf man nach ihm
nicht auf eine »Eigenschaft« oder Neigung zurückführen wollen,
sondern sie ist, wie jeder Vorgang in der Natur, aus der Bewegung
zu erklären. Huygens knüpft an Descartes an, der die
Schwere aus der Bewegung einer um die Erde kreisenden Materie
zu begreifen gesucht hatte. Die Schwere, sagt Huygens, wirke
auf eine so geheime Weise, daß die Sinne nichts darüber zu entdecken
vermöchten. Früher habe man diese Wirkungen inhärenten
Eigenschaften (Qualitäten) der Körper zugeschrieben. Dies heiße
jedoch nicht die Ursachen auseinandersetzen, sondern dunkle
Prinzipien unterschieben. Descartes dagegen habe erkannt,
daß man die physikalischen Vorgänge auf Begriffe zurückführen
müsse, die unsere Fassungskraft nicht übersteigen. Als solche
gelten Descartes und Huygens die qualitätslose Materie und
ihre Bewegung.

Huygens ging dabei von folgendem Experiment aus. Er
bedeckte den Boden eines zylindrischen Gefäßes mit kleinen
Stückchen eines festen Körpers (z. B. Siegellack). Dann füllte
er es zum Teil mit Wasser und ließ es mit Hilfe einer Zentrifugalmaschine
um die Achse rotieren. Hielt er die Maschine
und damit das Gefäß plötzlich an, so rotierte das Wasser noch
einige Zeit. Dabei zeigte es sich, daß die Siegellackstückchen
nach dem Mittelpunkt des Bodens getrieben wurden. Wie das
Wasser in dem Gefäß, so rotiert nach Huygens um die Erde
eine »Äthermaterie«, deren Flüssigkeitsgrad man sich unvergleichlich
viel größer vorstellen müsse als denjenigen, den wir beim
Wasser bemerken. Befänden sich in dieser flüssigen Materie gröbere
Körper, so würden sie, wie der Versuch es zeige, nicht der
raschen Bewegung jener Materie folgen, sondern nach dem
Zentrum der Bewegung gestoßen. Die Schwere sei also »die Wirkung
des Äthers, der sich um den Erdmittelpunkt bewegt und sich
von diesem Zentrum zu entfernen und an seine Stelle diejenigen
Körper zu drängen sucht, welche dieser Bewegung nicht folgen.«

Auf die hier von Huygens entwickelten Vorstellungen gehen
im Grunde genommen auch die neueren Bestrebungen zurück, die
Gravitation mechanisch zu erklären.

Förderung der Theorie des Pendels.

Huygens' Bedeutung ist hiermit bei weitem noch nicht
erschöpft. Die bisher gestreiften Leistungen auf dem Gebiete
der Mechanik waren nämlich entweder praktischer Art, oder sie
bestanden in der Betrachtung des einfachen Pendels, worunter
ein materieller Punkt verstanden wird, der an einem gewichtslosen
Faden schwingt. Bald nachdem die Untersuchungen Galileis
in den nördlichen Ländern Europas bekannt geworden waren,
hatte ein französischer Gelehrter533 die Frage aufgeworfen, nach
welchen Gesetzen denn die Schwingungen beliebig gestalteter
Körper vor sich gingen. Descartes und andere scharfsinnige
Mathematiker, darunter auch der damals 17 Jahre alte Huygens,
nahmen das Problem in Angriff, ohne eine Lösung finden zu
können. Descartes gab zwar eine schärfere Formulierung.
»Wie es einen Schwerpunkt in allen frei herabfallenden Körpern
gibt«, sagt er, »so haben alle Körper, die sich vermöge der
Schwere um irgend einen Punkt bewegen, einen Agitationspunkt;
und alle Körper, bei denen dieser Agitationspunkt
gleich weit vom Aufhängepunkt entfernt ist, machen
ihre Hin- und Hergänge in derselben Zeit«. Die
Bestimmung dieses Agitations-, Oszillations- oder
Schwingungsmittelpunktes gelang erst viel später
Huygens, der seine Methode, 27 Jahre, nachdem
die Frage aufgeworfen war, in seinem Werke über
die Pendeluhr bekannt gab.

Man nehme außer dem materiellen Punkt, der
das einfache Pendel bildet, auf der Pendellinie noch
einen zweiten Punkt an, der mit dem ersten in fester
Verbindung steht (siehe Abb. 98). Sucht man nun
die Länge ox desjenigen einfachen Pendels zu bestimmen,
das die gleiche Schwingungszeit wie das
System ab besitzt, so hat man das Problem des
Schwingungsmittelpunktes in seiner einfachsten Form.
Der Punkt b wird durch a gehemmt, a durch b dagegen
beschleunigt. Mithin wird der Punkt b langsamer
und der Punkt a schneller schwingen, als sie
es für sich allein tun würden, und es muß zwischen
b und a einen Punkt geben, der die gleiche Schwingungszeit besitzt
wie das System ab.


[image: Abb. 98]
Abb. 98. Das
Problem des
Schwingungsmittelpunktes.



Es entsteht nun die Frage, wie sich bei einem physischen,
aus unendlich vielen Massenteilchen zusammengesetzten Pendel die
Bewegungen der untereinander in fester Verbindung stehenden
Teile zu einer Gesamtbewegung vereinigen. Die Lösung dieses
Problems des physischen oder zusammengesetzten Pendels ist ohne
Frage die bedeutendste Leistung, die Huygens auf dem Gebiete
der theoretischen Mechanik vollbrachte. Er widmet dem
Problem den vierten Teil seines großen Werkes. Vorausgeschickt
sind einige Erklärungen, darunter vor allem die Definition des
Schwingungsmittelpunktes. Sie lautet: »Als Schwingungs- oder
Oszillationszentrum einer beliebigen Figur wird derjenige Punkt
auf der Schwerelinie bezeichnet, der soweit von der Schwingungsachse
entfernt ist, wie die Länge des einfachen Pendels beträgt,
das die gleiche Schwingungsdauer wie die Figur besitzt534.« Man
kann sich also in diesem Punkte die Masse des schwingenden
Körpers ebenso konzentriert denken, wie in dem Schwerpunkt die
Masse des ruhenden Körpers. Auch in dem Oszillationspunkt sind
nämlich die verschiedenen, auf die Teile des Pendels während seiner
Schwingung wirkenden Kräfte zu einer Resultierenden vereinigt,
wie während der Ruhelage die parallel gerichteten Schwerkräfte
sich zu einer Resultierenden zusammensetzen, die durch einen Punkt
des ganzen Systems geht, den wir deshalb als Schwerpunkt bezeichnen.
Die Lösung dieses verwickelten Problems gelang Huygens
auf Grund eines von ihm aufgestellten Prinzips, das sich sowohl
hier als auch in der Folge als eins der allerwichtigsten erwiesen
hat. Es lautet in der Fassung seines Begründers: »Wenn irgendwelche
schwere Körper vermöge der auf sie wirkenden Schwerkraft
sich in Bewegung setzen, so kann ihr gemeinsamer Schwerpunkt
nicht höher steigen, als er sich zu Beginn der Bewegung befand«535.
Huygens erläutert dies Prinzip am Pendel, indem er
sagt, nach der Entfernung der Luft und jedweden anderen Hindernisses
müsse der Schwerpunkt des bewegten Pendels beim Herabfallen
und Emporsteigen stets gleiche Bogen durchlaufen. Damit
ist für ihn zugleich die Möglichkeit des Perpetuum mobile, d. h.
einer Erzeugung von Kraft ohne einen entsprechenden Aufwand
widerlegt. Eine solche Erzeugung aus dem Nichts würde nämlich
statthaben, wenn die Masse höher stiege, als sie zuvor herabgefallen
ist.



Aus den Fallgesetzen war bekannt, daß die Höhe, welche die
Masse beim Emporsteigen erreicht, proportional ist dem Quadrate
der Geschwindigkeit, die sie beim Herabfallen erlangt. Die Geschwindigkeiten
der Massenteilchen des Pendels
sind aber den Abständen dieser Teilchen von
der Drehungsachse proportional. Mit Hilfe dieser
Sätze gelingt Huygens die allgemeine Lösung
des Problems vom Schwingungsmittelpunkt. »Man
findet seine Entfernung von der Drehachse«, sagt
er, »indem man die Summe der Produkte der
Massen mit den Quadraten der Abstände von
der Drehungsachse durch das Produkt aus der
Summe dieser Massen und ihren Abständen von
der Drehungsachse dividiert.« Zur Erläuterung
diene die Abb. 99. Eine Reihe von materiellen
Punkten B, C, D ..., deren Massen m1 m2 m3
sind, seien zu einem Massensystem verbunden.
Ihre Entfernungen von der Drehungsachse A
seien a1, a2, a3 ... Dann ist nach dem von Huygens gefundenen
Satze die Entfernung z des Schwingungspunktes O vom Aufhängepunkt
A:


z = (m1a12 + m2a22 + m3a32 ...)/(m1a1 + m2a2 + m3a3 ...)

oder kürzer ausgedrückt:


z = (∑ (ma2))/(∑ ma)



[image: Abb. 99]
Abb. 99. Huygens
löst das Problem
des Schwingungsmittelpunktes.



Nachdem dann Euler für das Produkt aus der Masse und dem
Quadrat ihrer Entfernung von der Drehungsachse die Bezeichnung
»Trägheitsmoment« eingeführt hatte, lautete der Satz von Huygens
in der noch heute üblichen Fassung: Man erhält die Entfernung
des Schwingungspunktes von der Drehachse eines physischen Pendels,
wenn man die Summe der Trägheitsmomente durch die Summe
der statischen Momente dividiert.

Der von Huygens ausgesprochene Satz, daß der gemeinschaftliche
Schwerpunkt miteinander verbundener, als Ganzes aber isolierter
Massen nicht höher steigen kann, als er zuvor durch den Fall
herabgesunken ist, wurde später von Johann Bernoulli als ein
allgemeines Naturgesetz hingestellt und das »Prinzip von der Erhaltung
der lebendigen Kräfte« genannt. Der letztere Ausdruck
stammt wieder von Leibniz her, der unter lebendiger Kraft das
Produkt aus der Masse und dem Quadrate der Geschwindigkeit
verstand und über den im Weltall vorhandenen Kräftevorrat gleichfalls
schon Betrachtungen anstellte.

Auf die Ableitung der Hauptsätze folgt die Bestimmung des
Schwingungsmittelpunktes für einige geometrische Figuren. Auch
darauf machte schon Huygens aufmerksam, daß sich die Schwingungszeit
eines Pendels nicht ändert, wenn man es im Schwingungsmittelpunkte
aufhängt, und daß in diesem Falle der Punkt, der
vorher Aufhängepunkt war, zum Schwingungsmittelpunkte wird.
Von ihm rührt also die Idee des Reversionspendels her, das erst
im 19. Jahrhundert für die genauere Bestimmung der Länge des
Sekundenpendels so wichtig geworden ist.

Untersuchungen über die Zentrifugalkraft.

Am Schlusse seines Werkes über die Pendeluhr bringt
Huygens noch die wichtigsten Sätze über die Zentrifugalkraft.
Auch hier handelt es sich um eine Erweiterung der Galilei'schen
Lehre von der Pendelbewegung. Wird ein Körper, der sich im
Zustande der geradlinigen und gleichförmigen Bewegung befindet,
in eine kreisförmige Bahn gezwungen, so übt er einen vom Zentrum
dieses Kreises fortgerichteten Zug aus, dem entweder durch den
gleichen Gegendruck oder durch die Spannung eines den Körper
und das Zentrum verbindenden Fadens das Gleichgewicht gehalten
werden muß. Huygens lieferte den Beweis, daß die Zentrifugalkraft
wie das Quadrat der Geschwindigkeit zunimmt und in dem
Verhältnis kleiner wird, wie der Radius wächst.

Eine ausführliche Abhandlung, die Huygens über die Zentrifugalkraft
geschrieben, wurde erst nach seinem Tode veröffentlicht.
Sie führt den Titel Tractatus de vi centrifuga und ist neuerdings
in deutscher Übersetzung herausgegeben worden536. Als sie zuerst
im Jahre 1703 erschien, hatte Newton die Lehre von der Zentrifugalkraft
schon von einem viel allgemeineren Standpunkt aus entwickelt
und sich dabei nicht wie Huygens auf die Kreisbewegung
beschränkt, sondern die Untersuchung dieses Problems auf die
elliptische Bewegung der Himmelskörper ausgedehnt.

Das Ergebnis der von Huygens über die Zentrifugalkraft
geführten Untersuchung läßt sich durch zwei Sätze ausdrücken,
aus denen man sämtliche für diese Kraft in Betracht kommenden
Umstände ableiten kann. Bezeichnet man nämlich die Geschwindigkeit
des im Kreise sich bewegenden Körpers mit v, seine Masse
mit m und den Halbmesser des Kreises mit r, so ist die Zentrifugalkraft:


P = mv2/r


Da ferner v gleich dem Verhältnis des Weges 2rπ zur Zeit t ist,
so ist auch


P = m4rπ2/t2


Die Formel P = (mv2)/r ist der kürzeste Ausdruck der beiden in der
Abhandlung vorangestellten Lehrsätze, die Huygens, wie folgt,
ausspricht:


	Wenn gleiche Körper auf ungleichen Kreisen mit gleicher
Geschwindigkeit rotieren, so verhalten sich die Zentrifugalkräfte
umgekehrt wie die Durchmesser, so daß auf dem
kleineren Kreise die besagte Kraft größer ist.

	Wenn gleiche Körper auf gleichen (oder auf demselben)
Kreise mit ungleichen Geschwindigkeiten rotieren, so verhalten
sich die Zentrifugalkräfte wie die Quadrate der
Geschwindigkeiten.


Huygens untersucht dann, wie groß die Geschwindigkeit
eines Körpers sein muß, wenn die auf ihn wirkende Zentrifugalkraft
die Schwere aufheben soll. Er erörtert ferner die infolge
der Pendelbewegung auftretende Zentrifugalkraft und findet beispielsweise537,
daß ein einfaches Pendel, dessen Masse = 1 gesetzt
wird, nach Ablauf der größten seitlichen Schwingung, d. h. nachdem
es durch den ganzen Quadranten des Kreises gefallen und
im tiefsten Punkte angekommen ist, mit einer dreimal so großen
Kraft an seinem Faden zieht, als wenn es ruhend an ihm hängt538.
Am eingehendsten betrachtet er endlich den Fall, daß »an Fäden
aufgehängte Körper so rotieren, daß sie horizontale Kreisperipherien
durchlaufen, während das andere Fadenende unbewegt bleibt«.
Er findet, daß sich die Kräfte, welche die Fäden spannen, bei zwei
Zentrifugalpendeln (Abb. 100) von gleichem Gewicht, aber ungleichen
Fadenlängen, bei gleicher Höhe der Kegel wie die Fadenlängen
verhalten. Bezüglich der übrigen bei der Bewegung des Zentrifugalpendels
obwaltenden Verhältnisse muß auf die Lehrsätze
VIII-XIV der Huygens'schen Abhandlung hingewiesen werden.

Unter den Versuchen, die Huygens über die Zentrifugalkraft
anstellte, sind ihrer Bedeutung wegen besonders die folgenden
hervorzuheben. Er ließ einen ganz mit Wasser gefüllten
Behälter, in den er zuvor einige Holzkugeln gebracht hatte,
um seine Achse rotieren. Die Holzkugeln eilten dann auf die
Achse zu, ein Beweis, daß die Zentrifugalkraft von dem spezifischen
Gewicht der rotierenden Körper abhängig ist. Der Versuch wird
heute in der Weise ausgeführt, daß man Holzkugeln in die Röhren
RR des in Abbildung 101 skizzierten Apparates bringt. Sind
die Röhren mit Luft gefüllt, so entfernen sich die Kugeln von der
Achse und laufen, wenn die Drehung hinreichend schnell erfolgt,
bergan. Füllt man die Röhren dagegen vollständig mit Wasser,
so bewegt sich das spezifisch leichtere Holz nach der Achse hin.
Das Hinablaufen der Holzkugeln in der mit Wasser gefüllten
Röhre erregt zunächst Verwunderung. Die Technik hat sich dies
Verhalten bekanntlich zunutze gemacht, um mittelst Zentrifugen
die wässrigen Bestandteile der Milch von den darin schwimmenden,
spezifisch leichteren Buttertröpfchen zu trennen.


[image: Abb. 100]
Abb. 100. Huygens untersucht
die Bewegung des
Zentrifugalpendels539.




[image: Abb. 101]
Abb. 101. Huygens zeigt, daß sich
bewegliche Körper unter dem Einfluß
der Zentrifugalkraft nach den
spezifischen Gewichten ordnen540.



Den zweiten Versuch stellte Huygens mit einer Tonkugel
an, indem er sie in rasche Drehung versetzte. Die Zentrifugalkraft
wirkt auf jeden, außerhalb der Drehachse gelegenen Punkt
eines rotierenden Körpers. Ist die Verbindung keine starre, besteht
der Körper z. B. aus einem plastischen Stoff, so werden, schloß
Huygens, infolge der mit der Entfernung von der Achse wachsenden
Zentrifugalkräfte Formveränderungen eintreten. Zum Beweise des
Gesagten wurde eine Tonkugel auf eine durch ihren Mittelpunkt
gehende Achse gesteckt und in Drehung versetzt. Die Kugel nahm
darauf die Form eines an den Polen abgeplatteten Sphäroids an.
Durch diesen Versuch und die vorausgehenden Überlegungen vermochte
Huygens die von ihm beobachtete Abplattung des Jupiter
zu deuten. Sie erschien ihm als das sicherste Zeichen dafür, daß
dieser Planet, ähnlich wie die Erde, eine Rotationsbewegung besitzt.
Dann war aber auch, schloß Huygens, die allen bisherigen
Gradmessungen zugrunde liegende Ansicht von der Kugelgestalt
der Erde vermutlich eine irrige. Rotiert nämlich die Erde, und
ist sie kein absolut starrer Körper, so muß sie gleichfalls von der
Kugelgestalt abweichen. Die von Huygens angestellte Berechnung
ergab für unseren Planeten eine Abplattung von 1 : 587. Newton,
der sich mit derselben Frage beschäftigte, fand auf theoretischem
Wege ein Resultat, das den Ergebnissen späterer Messungen besser
entsprach. Der von ihm berechnete Wert betrug 1 : 229.

Diese Untersuchungen der beiden großen Mathematiker sollten
durch eine merkwürdige Beobachtung, die zugleich auf die Wichtigkeit
der Pendeluhr das hellste Licht warf, ihre Bestätigung finden.
Der französische Astronom Jean Richer stellte im Jahre 1672
auf der in der Nähe des Äquators gelegenen Insel Cayenne astronomische
Messungen an. Dabei fiel ihm auf, daß seine von Paris
mitgenommene Uhr täglich um 2 Minuten zurückblieb. Als er
das Pendel um 5/4 Linien541 verkürzte, zeigte die Uhr wieder einen
richtigen Gang. Nach Paris zurückgebracht, ging sie indes zu
schnell, bis dem Pendel seine ursprüngliche Länge wiedergegeben
wurde. Huygens erklärte diese Erscheinung als eine Folge der
mit der Annäherung an den Äquator zunehmenden Schwungkraft,
welche der Schwere entgegenwirkt und unter dem Äquator 1/289
der Schwere zu Paris beträgt542. Würde demnach, führt Huygens
aus, die Erde 17mal so schnell rotieren (172 = 289), so würde die
Schwere durch die Schwungkraft völlig aufgehoben werden, so daß
bei einer weiteren Steigerung der letzteren die am Äquator befindlichen
Körper sich von der Erde fortbewegen müßten.

Eine Berechnung Newtons ergab zwar für die Schwungkraft
gleichfalls den von Huygens gefundenen Wert. Während letzterer
aber noch annahm, daß die Schwere auf der ganzen Erde die gleiche
sei, und daß die Änderungen in der Länge des Sekundenpendels
ausschließlich durch die wechselnde Größe der Schwungkraft bedingt
würden, zeigte Newton, daß die Schwere, auch wenn man
von der Zentrifugalkraft völlig absieht, einen veränderlichen Wert
besitzt und mit der Annäherung an den Äquator abnimmt. Für
die Notwendigkeit einer Verkürzung des Pendels an Orten geringerer
geographischer Breite ergaben sich somit zwei Ursachen, die Verminderung
der Schwere und das Anwachsen der, einen Teil der
letzteren aufhebenden, Zentrifugalkraft.

Die Mehrzahl der französischen Gelehrten verhielt sich diesen
Ergebnissen gegenüber ablehnend. Man war zunächst geneigt, die
von Richer beobachtete Erscheinung auf den Einfluß der Wärme
zurückzuführen. Newton hatte diesen Einfluß als zwar meßbar,
aber sehr geringfügig, angenommen, da eine 3 Fuß lange Eisenstange
während des Winters nur um 1/6 Linie kürzer sei als im
Sommer. Auch gegen die Lehre, daß die Erde ein an den Polen
abgeplattetes Sphäroid sei, erhob sich in Frankreich Widerspruch.
Dominique Cassini (1625–1712), der Direktor der im Jahre
1667 gegründeten Pariser Sternwarte, für dessen ausgezeichnetes
Beobachtungsvermögen die Entdeckung von vier Saturnmonden543,
sowie der Rotation des Jupiter sprachen, glaubte nämlich aus den
Resultaten neuerer Gradmessungen schließen zu dürfen, daß die Erde
eher ein längliches Sphäroid sei, anstatt an den Polen eine Abplattung
aufzuweisen. Die Newtonianer nahmen indes die Beobachtungen
an dem Jupiter, der entsprechend seiner auffallend
raschen Umdrehung544 eine starke Abplattung an den Polen zeigt,
als einen Analogiebeweis für ihre außerdem durch die oben erwähnten
theoretischen Gründe gestützte Ansicht in Anspruch.

Dieser Streit setzte sich bis über das Zeitalter Newtons hinaus
fort. Endlich sahen sich die französischen Gelehrten veranlaßt,
ihn durch genauere Gradmessungen zum Austrag zu bringen. Das
Ergebnis war die Richtigkeit der Voraussetzung Newtons, dessen
System nunmehr auch in Frankreich einen vollständigen Sieg errang.
Wir werden uns mit dieser Lösung des Problems bei der
Betrachtung des auf die Newton-Huygensperiode folgenden
Zeitraumes, in dem auch die erste genauere Feststellung der Abmessungen
unseres Sonnensystems gelang, zu beschäftigen haben545.

Die Begründung einer Theorie des Stoßes.

Auf das Gesetz von der Erhaltung der lebendigen Kräfte
wurde Huygens nicht nur, wie wir oben gesehen haben, durch
die Erforschung der Pendelbewegung geführt, sondern er gelangte
zu diesem Grundgesetz gleichfalls durch die von ihm und einigen
ihm nahestehenden Physikern in Angriff genommene Untersuchung
des Stoßes. Eine Theorie des Stoßes gab es während der ersten
Hälfte 17. Jahrhunderts noch nicht. Galilei hatte in seinen
»Unterredungen« dem Stoßproblem zwar einen besonderen Abschnitt
gewidmet; leider ist dieser aber unvollendet geblieben. Soviel
ist gewiß, daß Galilei hier über allgemeinere Überlegungen
nicht hinausgekommen ist546. Auch Descartes' Bemühungen, die
Gesetze des Stoßes zu ergründen, waren erfolglos geblieben. Aus
diesem Grunde stellte im Jahre 1668 die Royal Society ihren
Mitgliedern die Aufgabe, die angedeutete, in der Mechanik noch
bestehende Lücke auszufüllen. Infolgedessen entstanden die Abhandlungen,
die Wallis, Wren und Huygens kurze Zeit nach
der an sie ergangenen Aufforderung über die Theorie des Stoßes
veröffentlichten.

John Wallis wurde 1616 in einem kleinen Orte der Grafschaft
Kent geboren und bekleidete seit 1649 die Professur der
Mathematik in Oxford547. Sein Hauptverdienst ist seine Mitwirkung
an der Begründung der höheren Mathematik. Die von Cavalieri
und von Wallis herrührenden Vorarbeiten haben Newton und
Leibniz den Weg zur Erfindung der Infinitesimalrechnung geebnet.
Wallis war 1650 mit Cavalieris548 »Indivisibilien« bekannt geworden.
Er ließ auf dieses Werk im Jahre 1655 seine »Arithmetica
infinitorum« folgen549, in der Quadraturen durch Zerlegen
eines Flächenstückes in unendlich viele schmale Parallelogramme
und deren Summierung ausgeführt werden.

Wallis war der erste von den drei Begründern der Theorie
des Stoßes, der seine Abhandlung der Royal Society vorlegte.
Sie erschien im Jahre 1668 und führt den Titel: A summary
Account given by Dr. John Wallis of the general laws of motion550.

Wallis betrachtet den Stoß unelastischer Körper, und zwar
den zentralen Stoß, bei dem sich die Körper auf einer, ihre
Schwerpunkte verbindenden, geraden Linie bewegen. Für seine
Ableitung verwendet er den schon bei Descartes vorkommenden
Begriff der Bewegungsgröße. Die Massen der zusammenstoßenden
Körper seien m und m1. Die Geschwindigkeiten seien
v und v1. Die Geschwindigkeit, welche die Masse m + m1 nach
dem Stoß besitzt, sei dagegen u. Dann besteht, wie Wallis
fand, die Gleichung u = (mv + m1v1)/(m + m1) für die gleichgerichtete und
u = (mv - m1v1)/(m + m1) für die entgegengesetzt gerichtete Bewegung.

Der Zweite, der sich auf Veranlassung der Royal Society mit
der Erforschung der Stoßgesetze befaßte, war der als Baumeister
berühmte Christoph Wren, dem London mehr als 60 öffentliche
Gebäude und den Plan für seinen Wiederaufbau nach dem großen
Brande vom Jahre 1666 verdankte. Wren wurde 1632 geboren
und starb im Jahre 1723. Er gehörte zu den Gründern der Royal
Society.

Wren fand durch Versuche mit pendelnden Körpern die Sätze
für den Stoß elastischer Körper, ohne die dazu gehörenden Ableitungen
geben zu können. Auch Huygens veröffentlichte wenige
Monate nach Wren die Gesetze für den zentralen Stoß elastischer
Körper ohne Beweise (im Februar des Jahres 1669). Die von
Wren und von Huygens gefundenen Ergebnisse lassen sich in
folgende Formeln einkleiden. Sind m und m1 die stoßenden Massen,
v und v1 die Geschwindigkeiten vor, u und u1 die Geschwindigkeiten
nach dem Stoß, ist ferner e der Elastizitätskoeffizient, so ist:


u = (mv + m1v1 - e(v - v1)m1)/(m + m1)

u1 = (mv + m1v1 + e(v - v1)m)/(m + m1).



Huygens hat später die Lehre vom Stoß ausführlicher und
mit Beweisen entwickelt. Die betreffende Abhandlung erschien
aber erst acht Jahre nach seinem Tode in lateinischer Sprache.
Sie wurde neuerdings in deutscher Übersetzung herausgegeben551.
Mit dem Inhalt dieser grundlegenden Arbeit des großen Forschers
wollen wir uns etwas näher befassen.

Obgleich Huygens nirgends von vollkommener Elastizität
spricht, setzt er sie dennoch stets voraus. Es geht dies aus der
zweiten von den drei, seinen Lehrsätzen vorangestellten, Voraussetzungen
hervor. Sie lautet: »Wenn zwei gleiche Körper mit
gleichen Geschwindigkeiten aus entgegengesetzter Richtung und
direkt sich treffen, so prallt jeder von beiden mit derselben Geschwindigkeit
zurück, mit der er kam.« Die andere Voraussetzung
ist das Beharrungsgesetz und die dritte das wichtige, von Huygens
aufgestellte und in seiner Schrift zur konsequenten Durchführung
gebrachte Axiom der relativen Bewegung. Nach diesem Axiom
ist die Bewegung der Körper und die Gleichheit oder Verschiedenheit
der Geschwindigkeiten relativ aufzufassen, d. h. im Hinblick
auf andere Körper, die als ruhend betrachtet werden, wenn sie
auch vielleicht in einer anderen, gemeinsamen Bewegung begriffen
sind. Huygens erläutert z. B. den Fall, daß der Insasse eines
fahrenden Schiffes zwei gleiche Kugeln in der Fahrtrichtung mit
gleicher Geschwindigkeit aufeinanderprallen läßt. Für ihn werden
sie dann mit gleicher Geschwindigkeit voneinander zurückprallen.
Für einen am Lande stehenden Zuschauer muß indessen, wenn die
Geschwindigkeit der Kugeln gleich derjenigen des Schiffes ist, die
eine Kugel nach dem Stoße unbewegt bleiben, während die andere
mit einer Geschwindigkeit zurückprallt, die doppelt so groß ist als
die ihr von dem Passagier erteilte Geschwindigkeit.

Lebendige Kraft und Erhaltung der Kraft.

Die Sätze, welche Huygens entwickelt, behandeln durchweg
den zentralen Stoß. Da indessen das Verhältnis der Massen und
der Geschwindigkeiten geändert wird, so ergibt sich für seine Betrachtungen
eine Mannigfaltigkeit von Fällen. Einige der wichtigsten
mögen hier hervorgehoben werden. »Wenn auf einen ruhenden
Körper ein anderer gleicher Körper stößt, so wird dieser nach der
Berührung ruhen, für den ruhenden aber wird dieselbe Geschwindigkeit
gewonnen werden, die der stoßende besaß.«

Dieser Satz ist ein besonderer Fall des folgenden: »Wenn
zwei gleiche, mit ungleichen Geschwindigkeiten bewegte Körper
zusammenstoßen, so werden sie sich nach dem Stoße mit vertauschten
Geschwindigkeiten bewegen.«

In diesem, besonders aber in dem berühmten elften, von
Huygens aufgestellten Satze, kommt das umfassende Prinzip zum
Ausdruck, daß die gesamte Bewegungsenergie beim Stoße vollkommen
elastischer Körper unverändert bleibt.

Der elfte Satz lautet: Beim wechselseitigen Stoß zweier
Körper ist die Summe der Produkte aus den Massen mit den
Quadraten ihrer Geschwindigkeiten vor und nach dem Stoße gleich.
Jenes Produkt wurde seit Leibniz als lebendige Kraft bezeichnet.
In dem Satz von Huygens (1669) wird somit zum ersten Male
das umfassendste Gesetz der Mechanik, das Gesetz von der Erhaltung
der lebendigen Kraft, zum Ausdruck gebracht. Eine
philosophische Andeutung dieses Grundgesetzes findet sich zwar
schon bei Epikur, dessen Ansichten über das Kräftespiel des
Universums Lucretius Carus in poetische Formen kleidete552.
In seiner vollen Bedeutung konnte es erst später erkannt werden,
nachdem man die Wärme als eine besondere Art der Bewegung
kennen gelernt hatte. Einen Ausdruck für die Allgemeingültigkeit
des Gesetzes finden wir jedoch schon bei Leibniz, wenn er sich
folgendermaßen ausspricht: »Das Universum ist ein System von
Körpern, die mit anderen nicht kommunizieren. Daher erhält sich
in ihm immer dieselbe Kraft«553. Auch was beim Stoß die kleinsten
Teilchen an Kraft absorbieren, bemerkt Leibniz an anderer Stelle,
sei für das Universum nicht verloren554.

Den Ausgangspunkt für diese von Leibniz angestellten Betrachtungen
bildete eine Behauptung des Descartes, die Leibniz
als irrtümlich bekämpfte. Descartes hatte nämlich für die Kraftmessung
das Produkt aus Masse und Geschwindigkeit, das sogenannte
Bewegungsquantum, gewählt und behauptet, die Summe
der Bewegungsquanten müsse für das Universum konstant bleiben.
Hiergegen wandte sich Leibniz in seiner Abhandlung vom Jahre
1686, deren vollständiger, sehr bezeichnender Titel folgendermaßen
lautet555: Kurzer Nachweis des bemerkenswerten Irrtums des Descartes
und anderer bezüglich eines Naturgesetzes, demzufolge, wie
sie annehmen, durch Gott immer dasselbe Quantum an Bewegung
sich erhalte556.

Leibniz suchte seinen Gegner zu widerlegen, indem er einen
anderen, und zwar richtigen Satz des letzteren mit Hilfe der
von Galilei erkannten Fallgesetze auf einen neuen Ausdruck
brachte557. Descartes hatte nämlich den richtigen Gedanken, die
Größe der Kraft durch das Produkt von Gewicht und Erhebung
auszudrücken. Daraus ergab sich, weil nach den Fallgesetzen die
Erhebungen den Quadraten der beim Beginn des Aufsteigens vorhandenen
Anfangsgeschwindigkeiten proportional sind, daß die
Wirkungsgröße dem Produkt aus Gewicht und Geschwindigkeitsquadrat
und nicht dem Produkt aus Gewicht und Geschwindigkeit
proportional ist. Leibniz beging insofern noch einen Irrtum, als
er das Produkt mv2 als den Ausdruck für die Arbeitsfähigkeit
ansah, während der tatsächliche Wert mv2/2 ist.

Freilich war Leibniz das Verhältnis zwischen potentieller
und kinetischer Energie wie auch die Äquivalenz der Naturkräfte
noch unbekannt, obgleich er mit vielen seiner Zeitgenossen die
Ansicht teilte, daß die Wärme in einer Bewegung der kleinsten
Teilchen bestehe. Er gibt sogar ein bezeichnendes Bild von dem
Übergang der Massenbewegung in Molekularbewegung, indem er
diesen Übergang mit dem Wechseln eines größeren Geldstückes
in Scheidemünze vergleicht558.

Weiteres Schicksal der Lehre von der Erhaltung
der Kraft.

Wir wollen von dem Standpunkt, den Leibniz in dieser
Frage gewonnen, noch einen kurzen Blick vor- und rückwärts tun.
Auf die Anklänge bei Epikur haben wir schon hingewiesen.
Voltaire konnte daher im Hinblick auf den bei Descartes wieder
aufkeimenden Gedanken sagen, sein Landsmann habe nur eine alte
Chimäre Epikurs erneuert559. Newton hat sich um die Einführung
des Prinzips von der Erhaltung der Kraft in die Dynamik
keine Verdienste erworben, insbesondere war er weit davon entfernt,
Anschauungen über die Abgeschlossenheit und den Kräftevorrat
des Universums zu entwickeln, wie sie uns bei Leibniz
begegnen. Dies kommt auch in dem von Leibniz herrührenden
Worte zum Ausdruck, die göttliche Maschine Newtons, d. h. das
Universum, wie er es sich dachte, sei nach Newtons eigener
Annahme so unvollkommen, daß es von Zeit zu Zeit ausgebessert
werden müsse.

Aus den Stoßgesetzen hatte sich ergeben, daß die Quantität
der Bewegung nicht konstant ist, und Newton hatte daraus geschlossen,
daß, entgegen der Behauptung Descartes', das Bewegungsquantum
daher auch für das Weltall nicht konstant sein
könne. Es seien zwei Prinzipien nötig, eins, um die Körper
in Bewegung zu setzen, und ein anderes, um die Bewegung zu erhalten.
Dagegen wandte sich Joh. Bernoulli: Wenn Newton
die wahre Bedeutung des Prinzips der Erhaltung der lebendigen
Kräfte erkannt hätte, so würde er nicht zwei verschiedene Prinzipien
aufgestellt haben. Dasselbe Prinzip nämlich, durch das die
Bewegung mitgeteilt werde, bewirke auch, daß die Bewegung sich
erhalte, und zwar nicht im Verhältnis der Quantität der Bewegung,
sondern im Verhältnis der lebendigen Kräfte, woraus hervorgehe,
daß die Bewegung in der Welt niemals verloren gehen könne560.

Wie Joh. Bernoulli, so betonte auch Leibniz, daß die
Summe der Kräfte in der Welt erhalten bleibe. Die Kraft vermindere
sich nicht, da kein Körper seine Kraft verliere, ohne sie
auf einen anderen zu übertragen. Ebensowenig vermehre sich die
Kraft, da keine Maschine, also auch die Welt nicht, ohne äußeren
Impuls Kraft aus sich erzeugen könne.

Mit dem Prinzip von der Erhaltung der Kraft haben sich
unter Huygens' Nachfolgern während des 18. Jahrhunderts besonders
Johann und Daniel Bernoulli beschäftigt.

Am meisten Beachtung verdienen die Ausführungen, die
Daniel Bernoulli im Jahre 1750 über diesen Gegenstand veröffentlichte561.
Bei den Betrachtungen, die wir bei Huygens und
bei Leibniz antreffen, handelt es sich um die lebendigen Kräfte,
die durch eine gleichförmige, sich selbst parallel bleibende Schwerkraft
erzeugt werden. Daniel Bernoulli untersucht den Fall,
daß die Zentren ihren Ort verändern, und beispielsweise die Körper
sich gegenseitig nach dem Newtonschen Gesetze anziehen. Zunächst
seien es zwei Körper. Ihre Massen seien M und m und
ihre Entfernung a. Die Körper sind frei beweglich, so daß sie
sich einander nähern können. Bernoulli beweist dann, daß die
Summe ihrer lebendigen Kräfte unverändert fortbesteht, wie auch
die beiden Körper aus ihrer anfänglichen Entfernung a in eine
neue x übergehen. Darauf dehnt Bernoulli die Untersuchung auf
drei und weiter auf beliebig viele Körper aus und zeigt, daß auch
für sie das gleiche Gesetz gilt, gleichgültig, welche Bahnen die
einzelnen Körper auch beschreiben mögen. »Die Natur«, so schließt
er, »verleugnet niemals das große Gesetz von der Erhaltung der
lebendigen Kräfte«. Bernoulli war es also, der dieses Gesetz
zu seiner heutigen allgemeinen Bedeutung erhoben hat562.

Daniel Bernoulli zerstreute den metaphysischen Nebel, der
sich um das Prinzip der Erhaltung der lebendigen Kraft verbreitet
hatte. Um jeden Anstoß zu vermeiden, zieht er die Bezeichnung
vor: »Gleichheit zwischen dem aktuellen Herabsteigen und dem
potentiellen Aufsteigen« und knüpft damit direkt an Huygens an.

Johann Bernoulli563 sagt: »Wir schließen, daß jede lebendige
Kraft ihre bestimmte Quantität hat, von der nichts verloren gehen
kann, was sich nicht in dem ausgegebenen Effekte wiederfindet.
Hieraus folgt, daß die lebendige Kraft sich immer erhält, so daß
diejenige, die sich vor der Aktion in einem oder mehreren Körpern
befand, nach der Aktion in dem einen oder den anderen Körpern sich
vorfindet, wenn nicht ein Teil von ihr in dem ersten Körper oder
in dem System zurückgeblieben ist. Das ist es, was ich die »Erhaltung
der lebendigen Kräfte« nenne.« Dieses allgemeine Naturgesetz
sei auch da gültig, wo scheinbar eine Abweichung stattfinde.
»Wenn nämlich die Körper nicht vollkommen elastisch sind, so
scheint ein Teil der lebendigen Kräfte beim Zusammendrücken
ohne Rückkehr in den früheren Zustand verloren zu gehen. Wir
müssen uns aber vorstellen, daß dieses Zusammendrücken der
Kompression einer elastischen Feder entspricht, die durch ein
Band (Sperrvorrichtung) verhindert wird, sich wieder auszudehnen
und auf diese Art die lebendigen Kräfte, die sie von dem auf
sie treffenden Körper empfangen, nicht zurück gibt, sondern in
sich zurück behält, so daß ein Verlust an Kraft nicht stattfindet.«
Dies ist für Johann Bernoulli eine Denknotwendigkeit,
denn jedermann betrachte es als ein Axiom, daß keine wirkende
Ursache verloren gehen kann, weder als Ganzes noch als Teil,
ohne einen dem Verluste gleichen Effekt zu bewirken. Ähnlich
wie Johann äußert sich Daniel Bernoulli564. Beide waren also
dem Ziele nahe, den Übergang von Massenbewegung zur Molekularbewegung
und das mechanische Äquivalent der Wärme zu finden.

Was in dieser und der nächst folgenden Periode fehlte, waren
sichere numerische Daten. Mit Recht wies Diderot darauf hin565,
daß man zu einer Kenntnis der Korrelation der Naturkräfte erst
gelangen werde, wenn der experimentelle Teil der Physik weiter
vorgeschritten sei.

Da das Prinzip der Erhaltung der Energie auf die Mechanik
beschränkt blieb, und es nicht gelang, es für alle Gebiete der
Physik durchzuführen, geriet es fast in Vergessenheit, so daß selbst
Kant, obgleich er eine Schrift über die Schätzung der lebendigen
Kräfte veröffentlichte, das Prinzip nicht erwähnte.

Erst durch die neuere umfassendere Begründung des Prinzips
von der Erhaltung der Energie ist der Zusammenhang zwischen
den einzelnen Zweigen der Physik gewonnen und damit die
Mechanik zur Grundlage für alle übrigen Zweige der Physik
gemacht worden.



Auffallend ist, wie erwähnt, daß auch Kant bei seinen Betrachtungen
über das Weltall und den Weltbildungsprozeß nirgends
auf das Prinzip von der Erhaltung der Kraft Bezug nahm. Dagegen
lehrte er in seinen »Metaphysischen Anfangsgründen der
Naturwissenschaft« die Unveränderlichkeit der Quantität der Materie566.
Die Ausdehnung des Prinzips, von der Dynamik, für die
es zunächst erkannt war, auf sämtliche Naturvorgänge, erfolgte
erst in der Mitte des 19. Jahrhunderts durch Mayer, Joule und
Helmholtz. Das Verhältnis dieser Männer zu Daniel Bernoulli
läßt sich mit demjenigen vergleichen, das zwischen Koppernikus
und Aristarch besteht.

Mariottes Entdeckungen.

Unter den Zeitgenossen Newtons ragte neben Huygens der
Franzose Mariotte hervor, wenn er auch den beiden zuerst genannten
Forschern an Bedeutung erheblich nachstand. Mariotte wurde 1620
geboren und trat 1666, also im Jahre ihrer Gründung, in die
Pariser Akademie der Wissenschaften ein. Er starb in Paris am
12. Mai des Jahres 1684. Mariotte arbeitete besonders auf den
Gebieten der Mechanik, der Optik und der Wärmelehre567. Sein
Verdienst um die ihm und Boyle gelungene Auffindung des
Grundgesetzes der Aëromechanik haben wir schon an früherer
Stelle hervorgehoben. Mariotte veröffentlichte seine Entdeckung
dieses Grundgesetzes im Jahre 1676, sechzehn Jahre später als
Boyle, in einer »Essai sur la nature de l'air« betitelten Abhandlung568.
Wenn sein Verdienst auch dadurch, daß Boyle die
Priorität gebührt, verringert wird, so war doch Mariotte der erste,
der aus diesem Gesetz die Abhängigkeit des Luftdrucks von der
Höhe zu ermitteln suchte und so die barometrische Höhenmessung
begründete. Der Weg, den Mariotte hierbei einschlug, war zwar
der richtige, doch gelang es erst Deluc, eine brauchbare hypsometrische
Formel abzuleiten.

Die Hydromechanik bereicherte Mariotte durch seinen
»Traité du mouvement des eaux et des autres fluides«. Die Schrift
erschien 1686569 und handelt besonders von dem Ausfluß und der
dabei auftretenden Reibung, aus der Mariotte manchen Widerspruch
zwischen Theorie und Erfahrung erklärte. In dieser Abhandlung
hat er auch die bekannte, nach ihm Mariottesche
Flasche genannte Vorrichtung beschrieben, die es ermöglicht, eine
Flüssigkeit unter konstantem Druck ausfließen zu lassen. Ferner
gab er hier die erste Formel der Berechnung der Wandstärke für
zylindrische Röhren, die einen Druck von innen erfahren, erörterte
die Bewegung des Wassers in solchen Röhren, die Stoßwirkung
von Flüssigkeiten, die Springhöhe von Fontänen und manche andere
für Wissenschaft und Technik gleich wichtige Frage. Die Veranlassung
zu seinen Untersuchungen über Hydrostatik und Hydrodynamik
sollen ihm die prächtigen Wasserwerke zu Versailles gegeben
haben570. Auch mit der Mechanik der festen Körper hat
sich Mariotte beschäftigt. In einer Abhandlung571 vom Jahre
1677 untersuchte er den Stoß und beschrieb eine Vorrichtung, um
die von ihm und anderen (insbesondere von Wren) gefundenen
Gesetze experimentell nachzuweisen. Sie besteht aus einer Anzahl
Elfenbeinkugeln, die sich berühren und so aufgehängt sind, daß
ihre Mittelpunkte in einer horizontalen geraden Linie liegen572.

In der Optik ist Mariotte durch die Entdeckung des »blinden
Flecks« im Auge bekannt geworden. Er machte der Pariser Akademie
darüber im Jahre 1666 folgende Mitteilung: »Ich hatte
bei anatomischen Untersuchungen von Menschen und Tieren oft
beobachtet, daß der Sehnerv nicht genau der Pupille gegenüber
in den Augapfel eintritt, sondern etwas höher und mehr nach der
Nase hin. Um daher die von einem Gegenstande kommenden
Lichtstrahlen auf den Sehnerven meines Auges fallen zu lassen
und zu untersuchen, was dann geschähe, befestigte ich auf einem
dunklen Hintergrund, etwa in der Höhe meiner Augen, eine kleine
Scheibe aus weißem Papier, die mir zum Fixieren dienen sollte.
Ferner brachte ich eine zweite Scheibe rechts von der ersten, aber
etwas tiefer und etwa 2 Fuß davon entfernt an, so daß sie auf
den Sehnerven meines rechten Auges wirken konnte, während ich
das linke geschlossen hielt. Ich stellte mich der ersten Scheibe
gegenüber und entfernte mich allmählich, indem ich sie immer
im Auge behielt. Als ich mich etwa neun Fuß entfernt hatte,
verschwand die zweite Scheibe, die etwa 4 Zoll Durchmesser besaß,
vollständig. Dies ließ sich nicht etwa aus der seitlichen
Lage der zweiten Scheibe erklären, denn ich bemerkte andere
Gegenstände, die sich noch mehr seitlich befanden, so daß ich
hätte glauben können, man habe die zweite Scheibe entfernt.
Doch erblickte ich sie sofort wieder, sobald ich die Stellung
meines Auges ein wenig veränderte. Sobald ich dann wieder die
erste Scheibe ins Auge faßte, verschwand die zweite, zur Rechten
befindliche Scheibe sofort wieder. Ich machte dann denselben Versuch,
indem ich meine Entfernung von den Scheiben, gleichzeitig
aber, und zwar im selben Verhältnis, deren Abstand voneinander
änderte. Ich stellte ihn ferner mit dem linken Auge an, indem ich
das rechte geschlossen hielt. Zuvor hatte ich die zweite Scheibe,
links von meinem Fixierpunkte (der ersten Scheibe nämlich) anbringen
lassen. Auf solche Weise stellte ich fest, daß es sich
unzweifelhaft um einen Sehfehler handelt, der den Sehnerven
(richtiger seine Eintrittstelle) betrifft. Das Überraschende ist,
daß, wenn man auf diese Weise eine auf hellem Grunde befindliche
schwarze Papierscheibe verschwinden sieht, man nicht etwa
irgend welchen Schatten oder eine dunkle Stelle dort erblickt,
wo sich das Papier befindet. Der Hintergrund erscheint vielmehr
in seiner ganzen Ausdehnung weiß«573. Der Versuch erregte das
größte Aufsehen. Die Royal Society wiederholte ihn 1668 sogar
in Gegenwart des Königs. Mariotte kam zu dem unrichtigen
Schluß, daß nicht die Netzhaut, sondern die darunter liegende
Aderhaut der Sitz des Sehvermögens sei.

Ein Verdienst um die Optik erwarb sich Mariotte auch durch
seine Erklärung der um Mond und Sonne mitunter auftretenden
Höfe, sowie der Nebenmonde und der Nebensonnen. Seine Theorie
über die Entstehung der einen Durchmesser von 23 Graden besitzenden
Höfe gilt im wesentlichen auch heute noch. Er erklärt
die Erscheinung durch die Annahme, daß in den höheren Regionen
prismatische Eisnadeln schweben, in denen das Licht eine zweimalige
Brechung und eine Reflexion erleidet. Das Beweisverfahren
ist demjenigen ähnlich, das Descartes zur Erklärung des Regenbogens
aus der in den Wassertropfen stattfindenden Brechung
und Spiegelung anwendet. Da die Eisnadeln in allen denkbaren
Lagen die Luft zwischen dem Auge des Beobachters und der
Sonne oder dem Mond erfüllen, so muß auch immer eine genügende
Anzahl von Nadeln vorhanden sein, deren Achse senkrecht
zur Verbindungslinie des Auges mit dem Himmelskörper steht.
Für diese Stellung der Nadeln ergibt aber die Berechnung den
beobachteten Winkel von 23 Graden.

Auf dem Gebiet der Wärmelehre verdanken wir Mariotte
wichtige Beobachtungen, die Licht über die Wärmestrahlung verbreiten.
Er wies z. B. nach, daß die Sonnenstrahlen das Glas fast
ungeschwächt durchdringen, während die Wärme des Kaminfeuers
dadurch fast ganz zurückgehalten wird. Mariotte bediente sich
dazu eines Brennspiegels, der vor einem Kaminfeuer in seinem
Fokus eine unerträgliche Hitze erzeugte. Letztere verminderte
sich sehr, wenn eine Glasplatte zwischen den Kamin und den
Spiegel gebracht wurde. Berühmt ist ferner Mariottes Versuch,
Schießpulver mit einer aus Eis gebildeten Linse zu entzünden.
Er beschreibt ihn mit folgenden Worten574: »Mehrere Personen
haben versucht, Brennspiegel aus Eis herzustellen, indessen hat
dies seine Schwierigkeiten. Um vollkommen reines Eis herzustellen,
ließ ich klares Wasser eine halbe Stunde kochen und trieb so
alle Luft heraus. Dies Wasser ließ ich zu einer Platte gefrieren,
die einige Zoll dick war. Sie enthielt keine Blase und war vollkommen
durchsichtig. Ein Stück dieser Eisplatte brachte ich dann
in ein kleines, sphärisch ausgehöhltes Gefäß und ließ das Eis darin
unter wiederholtem Umwenden so lange schmelzen, bis es auf beiden
Seiten die sphärische Form des Gefäßes angenommen hatte. Dann
ergriff ich das Eisstück an den Rändern, wobei ich mich eines Handschuhes
bediente, und brachte es in die Sonne. In kurzer Zeit vermochte
ich mit Hilfe einer solchen, aus Eis verfertigten Linse Schießpulver
zu entzünden, das ich in ihren Brennpunkt gebracht hatte.«

Das Wesen der Wärme erblickten die meisten im 17. Jahrhundert
zumal nach der Wiederbelebung der atomistischen Lehre
durch Gassendi, in besonderen Wärmeatomen, wie man auch für
das Licht eigene Atome annahm. Wenn Gassendi sagt, daß die
Wärme eindringt, auflöst usw., so versteht er darunter, daß bestimmte
Atome, die nicht etwa selbst warm sind, in die Körper
eindringen, durch sie hindurchgehen, sie auseinandertreiben usw.
Die Wärmeatome betrachtete man als sehr klein, rund und mit
lebhafter Bewegung begabt. Diese Eigenschaften sollten sie befähigen,
in die Poren aller Körper einzudringen.

Daß man es in der Wärme mit einem Bewegungszustand zu
tun haben könne, wurde nur vereinzelt und ohne tiefere wissenschaftliche
Begründung ausgesprochen. Immerhin bestand ein
Gegensatz der Meinungen, zumal nachdem Daniel Bernoulli und
Euler zu Beginn des 18. Jahrhunderts Ansichten über die Natur
der Wärme entwickelt hatten, die von den herrschenden abwichen.
Auch eine Preisaufgabe, welche die Akademie der
Wissenschaften zu Paris im Jahre 1736 »über das Wesen des
Feuers und seine Fortpflanzung« gestellt hatte, wurde im Sinne
der Materialität der Wärme beantwortet. Im übrigen konnte die
Frage nach der Ausbreitung des Feuers bei dem damaligen Stande
der Physik und der Chemie keine Lösung finden. Wenig später
hat auch Kant zu dieser Frage Stellung genommen575. Nach ihm
ist »der Stoff des Feuers ein elastischer Stoff, der die Elemente
der Körper zusammenhält. Seine wellenförmige oder zitternde
Bewegung ist das, was man Wärme nennt«.

Was uns im 17. und 18. Jahrhundert auf dem Gebiet der
Wärmetheorie begegnet, bestand somit vorzugsweise aus Hypothesen
und Vergleichen. Dagegen fehlte es an der genügenden Stütze
durch Versuche und Messungen.

Im Zusammenhange mit der Wärmelehre wurde auch die
Meteorologie gefördert. So verglich Mariotte z. B. die Niederschlagsmenge
mit dem aus einem Stromgebiet abfließenden Wasserquantum.
Seine Berechnungen stellte er für die Seine an, deren
Gebiet er auf 3000 französische Quadratmeilen schätzte. Die jährliche
Regenhöhe betrug nach den damals angestellten Messungen
15 Zoll, was eine Wassermenge von mehr als 600 Millionen Kubikfuß
ergab, während die Seine nur etwa 100 Millionen Kubikfuß,
also 1/6 des gesamten Niederschlags, fortführt. Diese Berechnung
würde zwar heute keinen Anspruch auf Genauigkeit mehr
erheben können. Auch konnte Mariotte kaum ahnen, wie wichtig
solche Ermittlungen, zu denen er den Weg gewiesen, für spätere,
auf eine wirtschaftlichere Ausnutzung des Wasserreichtums gerichtete
Bestrebungen sein würden.

Halleys astronomische und physikalische
Forschungen.

Noch engere Beziehungen als zwischen Newton und Huygens
bestanden zwischen dem unvergleichlichen englischen Forscher
und seinem jüngeren Landsmann Halley, der zu Newton in
einem ähnlichen Verhältnis stand, wie ein halbes Jahrhundert
früher Torricelli zu Galilei.

Edmund Halley wurde 1656 in der Nähe von London
geboren. Seine Neigung für die Mathematik und die Physik zeigte
sich wie bei Newton sehr früh. Als 15jähriger Schüler widmete
er sich schon der Verfertigung von Apparaten und Beobachtungen
über den Erdmagnetismus. Halley studierte in Oxford und veröffentlichte
mit 20 Jahren seine erste Abhandlung in den Philosophical
Transactions. Sie betraf die Exzentrizität der Planetenbahnen.
Im selben Alter wußte er vornehme Gönner dafür zu gewinnen,
daß man ihn mit dem Auftrage, einen Fixsternkatalog des südlichen
Himmels herzustellen, nach St. Helena schickte. Die Kosten
für diese Expedition übernahm die Ostindische Kompagnie. Der
Katalog, der etwa 360, in Europa nicht sichtbare, Sterne enthielt,
erschien 1679576 und trug Halley die Mitgliedschaft der Royal
Society ein, in der er ein Jahr vor der Veröffentlichung seiner
Arbeit, als 22jähriger, aufgenommen wurde. Nach seiner Rückkehr
wurde Halley durch die Erscheinung der großen Kometen von
1680 und 1682 angeregt, sich der Erforschung dieser Himmelskörper
zu widmen. Zunächst galt es noch, eine Methode zu finden,
um aus einer Reihe von Beobachtungen die Bahn eines Kometen
zu bestimmen. Zu diesem Zwecke trat Halley im Jahre 1684
mit Newton in Verbindung. Letzterer setzte ihn von seinem,
später am Schlusse der Prinzipien veröffentlichten Konstruktionsverfahren
in Kenntnis. Dabei gewann Halley auch Einblick in
die übrigen Vorarbeiten zu Newtons großem Werke, das dieser,
wie Koppernikus seine »Kreisbewegungen«, jahrelang nicht zum
Abschluß und zur Kenntnis der Mitwelt brachte, um immer noch
kleine Unvollkommenheiten zu beseitigen. Dem Drängen Halleys,
der Newton das Werk förmlich abringen mußte und den Druck
besorgte, ist es zu danken, daß die »Prinzipien« endlich im Jahre
1688 erschienen.

Nach der von Newton geschaffenen Theorie berechnete Halley
aus den vorhandenen Beobachtungen die Bahnen von 24 Kometen,
die in den Jahren 1337 bis 1608 erschienen waren. Der früheren
Annahme entgegen, daß man es in diesen Weltkörpern durchweg
mit fremden Eindringlingen ganz unbekannter Herkunft zu tun
habe, die auf ihrem parabolischen Wege dem Sonnensystem einen
kurzen Besuch abstatteten, machte Halley die überraschende
Entdeckung, daß gewisse Kometen Glieder unseres Systems sind
und sich wie die Planeten in elliptischen, wenn auch sehr langgestreckten
Bahnen um die Sonne bewegen. Diese Entdeckung
machte er an dem Kometen des Jahres 1682. Die Berechnung
ergab nämlich für diesen und die 1607 und 1531 erschienenen
Kometen fast die gleichen Elemente577. War die Annahme Halleys,
daß es sich hier um dasselbe Gestirn handle, das sich innerhalb
75 Jahren in elliptischer Bahn um die Sonne bewege, zutreffend,
so war eine neue Wiederkehr im Jahre 1759 zu erwarten. Diese
einzigartige Vorhersage, der im 19. Jahrhundert die Entdeckung
des Neptun durch Leverrier an die Seite zu stellen ist, traf
auch ein. Der Komet erschien 1835 nach weiteren 75 Jahren
und wurde auch im Jahre 1910 beobachtet. Die Erscheinung des
Halleyschen Kometen ist später bis zu dem Beginn unserer
Zeitrechnung zurück verfolgt worden. Eine periodische Wiederkehr
hat Halley ferner für den Kometen von 1680, wohl den
größten der je beobachtet wurde – sein Schweif war 70 Grad
lang – wahrscheinlich gemacht. Die Umlaufszeit beträgt für
diesen Kometen nach Halleys Annahme 575 Jahre. Die Richtigkeit
dieser Annahme würde also erst durch eine Wiederkehr im
Jahre 2255 ihre Bestätigung finden können.

Halley hat auch zuerst die Meteore mit den Kometen in
Parallele gebracht, indem er für sie gleichfalls einen kosmischen
Ursprung annahm. Früher hatten sie für atmosphärische Erscheinungen
gegolten. Aus den Beobachtungsdaten, die für ein
1708 in England gesehenes Meteor vorlagen, ergab sich eine
solche Höhe für das Aufleuchten der Feuerkugel, daß Halley
zu der erwähnten Annahme geführt wurde. Er drang indessen
mit seiner Ansicht nicht durch, und es blieb Chladni vorbehalten,
endgültig die Lehre zur Anerkennung zu bringen, daß wir es in
den Meteoren und in den Sternschnuppen mit kosmischen Gebilden
zu tun haben578.

Halleys weitere astronomische Tätigkeit fällt vorzugsweise in
die erste Hälfte des 18. Jahrhunderts. Sie wird in einem späteren,
die Astronomie dieses Zeitraums behandelnden Abschnitt geschildert
werden. Als Physiker hat sich Halley auf dem Gebiete
der Optik, des Magnetismus und der Wärmelehre sehr verdient
gemacht.

Wir haben erfahren, mit welchen Schwierigkeiten Kepler
bei der Begründung der Dioptrik zu kämpfen hatte, weil ihm die
Kenntnis des Brechungsgesetzes und einer Formel für die Brenn-
und Vereinigungsweiten der Linsen noch fehlte. Die Feststellung
dieser Formel gelang, nachdem eine Regel für die Berechnung der
Brennweiten sphärischer Gläser von Cavalieri aufgefunden war579,
in allgemein gültiger Weise erst Halley im Jahre 1693580. Seine
dioptrische Fundamentalformel läßt sich auf die bekannte einfache
Form 1/f = 1/a + 1/b bringen, worin f die Brennweite, a und b
Gegenstands- und Bildweite bedeuten. Sie gilt nicht nur für
sphärische Linsen, sondern auch für sphärisch gekrümmte
Spiegel581.

Eine andere wichtige Formel, deren Ableitung wir Halley
verdanken582, ist die von Mariotte vergeblich gesuchte Formel für
die barometrische Höhenmessung. Der Weg, den Halley dabei
einschlug, ist der folgende: Nach dem Boyleschen Gesetze verhalten
sich die Volumina einer Luftmasse umgekehrt wie die Drucke
oder v : v1 = p1 : p. Ebenso verhalten sich aber auch die Koordinaten
einer Hyperbel, wenn wir ihre Asymptoten als Ordinaten- und
Abszissenachse wählen. Es ist nämlich (s. Abb. 102) OP : OQ
= QB : PA. Stellen somit OP, OQ und OR die Drucke vor,
so sind PA, QB und
RC die zugehörigen
Volumina der betreffenden
Luftmasse.
Für die Volumina
können wir die Höhen
setzen, da in einer
zylindrischen oder
prismatischen Luftschicht,
die sich von
der Erde bis zur
Grenze der Atmosphäre
erstreckt, die
Grundflächen für alle
Teilschichten dieselben
bleiben. Nun ist
aber die Gesamthöhe
aller Luftschichten
zwischen zwei Stellen,
denen der Barometerstand
OS und OR zukommt, gleich der Fläche RCDS. Ferner
verhalten sich bei der zugrunde gelegten Hyperbel die Flächen


RCDS : QBCR = log(OS/OR) : log(OR/OQ).


Daraus folgt, da die Flächenräume die Höhen und die Abszissen
die Barometerstände vorstellen,


H = A log(B/b).


A bedeutet eine Konstante, deren Wert Halley aus dem Verhältnis
der Dichten von Luft und Quecksilber bestimmte. Dies
ist die Barometerformel in ihrer einfachsten Form und ohne Berücksichtigung
der Temperatur. Der erste, der sich dieser logarithmischen
Formel bei Höhenmessungen bediente, war Bouguer
während seiner mit Condamine unternommenen Gradmessung
in Peru.


[image: Abb. 102]
Abb. 102. Halleys Ableitung der barometrischen
Höhenformel.



Halleys Verdienste um die Mathematik können hier nur ganz
kurz gestreift werden. Erwähnt seien einige Arbeiten, die eine
konstruktive Auflösung der kubischen und der biquadratischen
Gleichungen unter Anwendung der Kegelschnitte brachten583.
Wichtig ist auch Halleys etwas später (1695) erschienene Abhandlung
über die Berechnung der Logarithmen584. Sie enthält
unter anderem eine bis auf 60 Dezimalen durchgeführte Berechnung
des Moduls des Briggschen Logarithmensystems585. Auch
durch seine Apollonios-Ausgabe vom Jahre 1710 erwarb sich Halley
hervorragende Verdienste. Da nur die ersten vier Bücher, die
Apollonios über die Kegelschnitte geschrieben, in griechischer
Sprache auf uns gekommen sind, während vom fünften, sechsten
und siebenten Buche nur eine arabische Übersetzung zu Gebote
stand, so war Halley, um seine Aufgabe zu lösen, zur Erlernung
der arabischen Sprache gezwungen. Letztere beherrschte er bald
in solchem Maße, daß er Verbesserungsvorschläge zu arabischen
Texten machen konnte, welche die Bewunderung der Orientalisten
erregten.

Etwas eingehender betrachten müssen wir Halleys Anwendung
der Mathematik auf ein biologisches und sozialpolitisches
Problem, nämlich auf die Ermittlung der Lebenswahrscheinlichkeiten,
ein Problem, das für die gegen das Ende des 17. Jahrhunderts
in England und in Holland aufkommende Rentenversicherung
von größter Bedeutung war. Die betreffende Arbeit Halleys
erschien 1693586 unter dem Titel: Eine Schätzung des Sterblichkeitsgrades,
gegründet auf eine Statistik der Geburts- und Sterbefälle.
Halleys Schrift enthält für jene Zeit ganz neue, die Sterblichkeit
betreffende Entwicklungen und bringt eine solche Fülle
der fruchtbarsten Gedanken, daß man sie als grundlegend für
diesen Teil der Sozialwissenschaft betrachten muß587.

Erwähnt sei gleich an dieser Stelle, daß sich mit dem weiteren
Ausbau der von Halley gegebenen Grundzüge dieses Gebietes der
französische Mathematiker Moivre588 und in Deutschland besonders
Süßmilch beschäftigt haben. Süßmilchs Werk erschien 1741
unter dem Titel: Die göttliche Ordnung in den Veränderungen
des menschlichen Geschlechtes aus der Geburt, dem Tode und der
Fortpflanzung erwiesen. Die Schrift Süßmilchs ist gleichfalls
ein für die statistische Wissenschaft grundlegendes und unentbehrliches
Werk, da es die Vorarbeiten Halleys und andere Forschungen
dieses Gebietes vereinigt589.

Wir kehren nach dieser kurzen Abschweifung zu Halley
zurück, dessen wissenschaftlicher Werdegang, je weiter man ihn
verfolgt, um so mehr Bewunderung hervorruft. Halley hatte sich
seit frühester Jugend mit den Erscheinungen des Erdmagnetismus
befaßt, und es war sein Lieblingswunsch, diese Erscheinungen auch
in den Tropen eingehender zu erforschen. Sein Gedanke, von
dem man sich Vorteile für die Nautik versprach, fand Anklang,
und Halley wurde auf Kosten der Regierung zum Führer von
zwei Expeditionen ernannt, auf denen er während der Jahre 1698
bis 1700 das tropische Amerika, mehrere Inselgruppen und Küstenpunkte
Afrikas und Ostindiens besuchte. Das Ergebnis dieser
Reisen, die sich in südlicher Richtung bis zum 53. Breitengrad
erstreckten, war die erste Deklinationskarte. Sie ist das Muster für
alle späteren Deklinationskarten gewesen und ist noch heute für das
Studium der säkularen Schwankungen der Deklination von Wert.

Halleys Karte erschien 1701 unter dem Titel: A general
chart, showing at one view the variation of the compass590. Sein
Verfahren, die in zahlreichen Einzelbeobachtungen gewonnenen
Ergebnisse übersichtlich zu machen, bestand darin, daß er die
Punkte gleicher Deklination verband und dadurch eine graphische
Darstellungsweise einführte, die seitdem Gemeingut der Wissenschaft
geworden ist. Für die nach Halleys Verfahren entstehenden
Linien gleicher Abweichung kam die Bezeichnung Isogonen
in Aufnahme.

Daß die magnetische Deklination an einem und demselben
Orte säkularen Schwankungen unterliegt, war schon seit längerer
Zeit bekannt591. Einige Jahrzehnte nach dem Erscheinen der
Halleyschen Karte wurden auch die kleinen täglichen Schwankungen
entdeckt592.

Halley war auch der erste, der die Erscheinung des Nordlichts
mit dem Erdmagnetismus in Beziehung brachte. Er beobachtete
nämlich, daß die westliche Abweichung des Nordlichts
dieselbe Größe wie die westliche Abweichung der Magnetnadel
besitzt. Die Erkenntnis dieser Tatsache war von hervorragender
Wichtigkeit, wenn auch der von Halley daran geknüpfte Versuch,
das Nordlicht zu erklären, mißlang593.

Wie kaum anders zu erwarten, hat Halley als Leiter mehrerer
nautischer Unternehmungen sich auch Verdienste um die Meereskunde
erworben. Er verbesserte die Taucherglocke, beschrieb eine
Taucherkappe und machte, als er sich selbst bis zu einer beträchtlichen
Tiefe ins Meer hinabließ, die Beobachtung, daß das Meerwasser
grünes Licht zurückwirft, das komplementäre rote dagegen
durchläßt, so daß z. B. seine Hände ihm in größerer Meerestiefe
ganz rot erschienen. Auch die Regelmäßigkeit der Passat- und
der Monsunwinde regten das Nachdenken Halleys an, doch blieben
seine Erklärungen hier unzulänglich.

Da Halley die Entstehung der Winde auf die ungleichmäßige
Erwärmung der Luft zurückführte, kann es nicht wundernehmen,
daß er sich auch mit den Methoden der Wärmemessung befaßte.
Er kannte die Konstanz des Siedepunktes von Flüssigkeiten und
brachte als oberen Fixpunkt den Siedepunkt des Alkohols in Vorschlag.
Als unteren Fixpunkt empfahl er die Temperatur tiefer
Keller. Auch stellte er Messungen über die Ausdehnung an, die
Wasser und Quecksilber beim Erwärmen erfahren.

Nachdem Halley seine Expeditionen, die er als englischer
Flottenkapitän befehligte, vollendet hatte, wurde er zum Professor
der Geometrie in Oxford ernannt. Daneben bekleidete er die
Stelle des Sekretärs der Royal Society. Nach dem Tode Flamsteeds
übernahm er im Jahre 1721 die Leitung der Sternwarte
zu Greenwich. Auf diesem Posten blieb er bis zu seinem Tode
(1742). Auf die hervorragenden Verdienste, die Halley sich um
die Förderung der Astronomie erworben, kann erst in einem späteren
Abschnitt, der sich mit der Entwicklung dieser Wissenschaft während
des 18. Jahrhunderts beschäftigt, näher eingegangen werden594.

Die Entdeckungen Cassinis.

Wir haben an einer früheren Stelle erwähnt, daß sich Cassini
an der Streitfrage beteiligte, welches die genauere Gestalt der
Erde sei. Da uns in Cassini einer der hervorragendsten astronomischen
Beobachter des Newtonschen Zeitalters begegnet, wollen
wir auch bei seinen Lebensschicksalen und Verdiensten etwas verweilen.

Giovanni Domenico (Dominique) Cassini wurde 1625
in der Nähe von Nizza geboren. Im Alter von 25 Jahren wurde
er an Stelle Cavalieris zum Professor in Bologna ernannt.
Cassinis erste astronomische Entdeckung bestand darin, daß er
(1665) die Rotationszeit des Jupiter zu 9 Stunden und 56 Minuten
bestimmte. In den folgenden Jahren dehnte Cassini seine Untersuchungen
über die Rotation auf Mars und Venus aus. Er fand
für diese beiden Planeten die Zeit einer Umdrehung gleich 24h 37m,
beziehungsweise 23h 21m.

Um jene Zeit hatte Colbert die französische Akademie der
Wissenschaften ins Leben gerufen und die Pariser Sternwarte errichtet.
Gleich Huygens wurde nun auch Cassini zum Mitglied
der Akademie ernannt und 1669 nach Paris berufen, um
dort als königlicher Astronom die Leitung der Sternwarte zu übernehmen.
In dieser Stellung blieb er über 40 Jahre. Er starb im
Jahre 1712.

Die Berufung nach Paris hatte Cassini vor allem seiner Berechnung
von Tafeln für die Jupitermonde zu verdanken595. Er
löste damit eine Aufgabe, mit der sich, wie wir schon erfuhren,
Galilei während seiner letzten Lebensjahre beschäftigt hatte596.

Erheblich bereichert wurde unsere Kenntnis des Planetensystems
dadurch, daß Cassini dem ersten, von Huygens entdeckten
Saturnmonde die Entdeckung von vier weiteren Trabanten
des Saturns anreihte. Er nannte sie zu Ehren Ludwigs XIV.
Sidera Ludovicea597.



Die Beobachtungen über die Jupitermonde setzte Cassini,
um seine in Bologna erhaltenen Tafeln zu verbessern, in Paris
fort. Hierbei fand er in Olaf Römer einen Mitarbeiter. Römer
blieb es vorbehalten, bei dieser Tätigkeit auf eine der größten Entdeckungen
zu stoßen. Bei der Bewegung der Monde ergaben sich
nämlich gewisse Ungleichmäßigkeiten, die schon Cassini auf die
Vermutung brachten, »daß das Licht einige Zeit gebrauche, um
von einem der Jupitermonde zu uns zu gelangen«. Cassini gab
jedoch diese Ansicht wieder auf, während Römer an ihr festhielt
und, wie wir an anderer Stelle sahen598, den Nachweis für ihre
Richtigkeit erbrachte.

Cassini gebührt auch das Verdienst, in Gemeinschaft mit
einem jüngeren, ihm als Hilfsarbeiter zugewiesenen Astronomen599
die ersten umfassenderen Beobachtungen über das noch immer
rätselhafte Tierkreis- oder Zodiakallicht angestellt zu haben. Der
merkwürdige, während der Dämmerung mitunter sich zeigende
kegelförmige Lichtschimmer, den wir mit diesem Namen bezeichnen,
war schon den Arabern aufgefallen. In der europäischen
Literatur begegnet uns die erste deutliche Beschreibung
im Jahre 1661600.

Cassinis Beobachtungen über das Zodiakallicht wurden während
des Zeitraums von 1683–1688 angestellt. Aus ihnen ging
hervor, daß die Lichterscheinung der jährlichen Bewegung der
Sonne folgt. Den Ursprung der Erscheinung verlegten Cassini
und sein Mitarbeiter in einen Ring von kleinen, das Licht reflektierenden
Körpern, welche die Sonne umkreisen.

Den Erfolgen gegenüber, die Cassini als beobachtender
Astronom zu verzeichnen hatte, sind seine Leistungen um die
Fortbildung der Theorie nur unbedeutend. Cassini stand, indem
er in den Anschauungen von Descartes beharrte, den Neuerungen
auf diesem Gebiete sogar ablehnend gegenüber. Ein Sohn, ein
Enkel und ein Urenkel Cassinis haben sich gleichfalls als Astronomen
einen Namen gemacht601.



Deutschland während der Newton-Huygens-Periode.

Neben der Optik und der Mechanik, deren Fortschritte in
Verbindung mit einer Weiterentwicklung der mathematischen
Wissenschaft die Astronomie während der Newton-Huygens-Periode
ganz außerordentlich gefördert haben, wurden die übrigen
Zweige der Physik nicht in gleichem Maße berücksichtigt. Auf
dem Gebiete der Elektrizitätslehre ist kaum eine nennenswerte
Entdeckung zu verzeichnen; hier sollte der weitere Ausbau insbesondere
dem 18. Jahrhundert vorbehalten bleiben. Dazu kam,
daß das wissenschaftliche Streben in Italien nachließ, und Deutschland
in seiner Mitarbeit trotz der Entwicklung, welche die experimentelle
Technik durch die Arbeiten Guerickes erfahren hatte,
zurückblieb. Dieses Land litt unter den Folgen des dreißigjährigen
Krieges. Es war verarmt und zerrüttet, während die Wissenschaften
auf dem Punkte angelangt waren, wo sie zu ihrer Fortentwicklung
nicht nur der moralischen, sondern auch der materiellen
Unterstützung weiterer Kreise bedurften. Statt dessen wandten
die Machthaber Deutschlands in ihrer steten Geldbedürftigkeit
immer noch dem alchemistischen Problem ihr Interesse zu und
spendeten für dessen Lösung Mittel, die eines besseren Zweckes
würdig gewesen wären602.

Unter den wenigen Deutschen, die während der zweiten Hälfte
des 17. Jahrhunderts sich größere Verdienste um die Förderung
der Wissenschaften erwarben, sind vor allem Tschirnhausen und
Leibniz zu nennen. Ehrenfried Walter Graf von Tschirnhausen
(auch Tschirnhaus) wurde 1651 in der Nähe von Görlitz
geboren. Er gehört gleich Hevel und Guericke zur Klasse der
reichen Privatleute, die sich im 17. Jahrhundert, angeregt durch
die Erfolge der induktiven Forschungsweise, aus Liebhaberei den
exakten Wissenschaften zuwandten. Tschirnhausen studierte in
Leyden, wo Medizin und Naturwissenschaften im 17. Jahrhundert
eine ganz hervorragende Pflegstätte besaßen. Er machte dann
ausgedehnte Reisen, unterhielt persönliche Beziehungen zu Leibniz
und Spinoza, war auswärtiges Mitglied der französischen Akademie
der Wissenschaften und starb 1708 in Dresden. Tschirnhausen
verwandte wie Guericke bedeutende Summen auf die
Verfertigung physikalischer, insbesondere optischer Apparate. Seine
aus Kupfer hergestellten Hohlspiegel, deren größter noch heute
eine Sehenswürdigkeit bildet, erreichten einen Durchmesser von 3
und eine Brennweite von 2 Ellen. Sie waren imstande, einen Taler
innerhalb 5 Minuten zu schmelzen, brachten jedoch keine merkliche
Erwärmung hervor, als man mit ihrer Hilfe das Licht des
Mondes sammelte. Tschirnhausens Linsen besaßen bis 80 cm
Durchmesser603. Eine von ihnen gelangte nach Florenz und ward
zu den Versuchen benutzt, die man dort im Jahre 1695 über die
Verbrennlichkeit des Diamanten anstellte. Im Brennpunkt dieser
Linse, die Porzellan und Bimsstein zum Schmelzen brachte, verbrannte
ein Diamant von 140 Gran Gewicht innerhalb einer halben
Stunde.

Durch seine Experimente mit Brennspiegeln wurde Tschirnhausen
auch zu theoretischen Untersuchungen auf dem Gebiete
der Optik veranlaßt. Sie betrafen die katakaustische oder Brennlinie,
d. h. diejenige Kurve, welche durch die Reflexion der in den
Hohlspiegel fallenden Strahlen dadurch hervorgerufen wird, daß
diese Strahlen nicht denselben Punkt der optischen Achse treffen.
Die katakaustische Linie ist mit
anderen Worten der geometrische
Ort der Durchschnittspunkte je
zweier benachbarter, reflektierter
Strahlen. In der nebenstehenden
Abb. 103 finde in AFE die
Reflexion parallel einfallender
Strahlen statt. Der Strahl DF
werde in der Richtung FG zurückgeworfen.
Ein DF benachbarter
Strahl erzeugt einen von FG nur
wenig abweichenden reflektierten
Strahl. Beide schneiden sich in G.
Die Schnittpunkte sämtlicher reflektierten
Strahlen liegen auf der
Kurve EGB, der katakaustischen Linie, für welche die reflektierten
Strahlen somit eine einhüllende Schar von Tangenten bilden.


[image: Abb. 103]
Abb. 103. Tschirnhausens Satz über
die katakaustische Linie.



Tschirnhausens Satz über die Brennlinie besagt nun, daß
ihr Stück EG der Summe der beiden Strahlen DF und FG gleich
ist. Ausführlicher haben sich mit der Katakaustika und der infolge
der Brechung erzeugten Diakaustika Johann und Jakob
Bernoulli beschäftigt.

Tschirnhausen veröffentlichte seine Arbeiten größtenteils in
den »Acta Eruditorum«, einer Zeitschrift, die für Deutschland etwa
diejenige Bedeutung besaß, die den Philosophical Transactions der
Engländer zukommt. Die Acta Eruditorum sind die älteste gelehrte
Zeitschrift, die auf deutschem Boden entstand. Näheres über sie
enthält der einleitende Abschnitt dieses Bandes.

Aller Wahrscheinlichkeit nach gebührt Tschirnhausen auch
das Verdienst, als erster in Europa Porzellan hergestellt zu haben.
Als Erfinder des europäischen Porzellans wird zwar häufig der Alchemist
Böttger genannt, der Tschirnhausen bei seinen Versuchen
zur Hand ging und sich die Ehre der Erfindung beizulegen wußte.
Trotzdem galt während des 18. Jahrhunderts Tschirnhausen,
und zwar wohl mit Recht, als der eigentliche Erfinder des sächsischen
Porzellans. Erst als Böttgers Verdienste in einer umfangreichen
Biographie604 hervorgehoben wurden, geriet Tschirnhausen
in Vergessenheit. Die neuesten, quellenmäßigen Untersuchungen605
haben diesen »durch den Biographen Böttgers bewirkten, merkwürdigen
Personenwechsel in der Erfindungsgeschichte des Porzellans«
aufgeklärt606. Nach diesen Feststellungen hat Tschirnhausen
sich schon um die Darstellung des Porzellans bemüht,
als Böttger kaum 10 Jahre alt war. Bekanntlich hielt August
der Starke Böttger gefangen, weil dieser sein Versprechen, Gold
zu machen, nicht erfüllt hatte. Tschirnhausen hatte Zugang
zu Böttger und regte ihn an, anstatt der unfruchtbaren alchemistischen
Bemühungen unter seiner Leitung die Herstellung von
Porzellan zu versuchen. Diese Versuche glückten im Jahre 1707.
Ein Jahr später starb Tschirnhausen, und Böttger, der allein
um das Verfahren wußte, spielte sich als dessen Erfinder auf.

Ein Mann, den wir schon des öfteren erwähnten, dessen Bedeutung
für die Philosophie, die Mathematik und alle Zweige der
theoretischen und angewandten Naturwissenschaften sich in den
wenigen Zeilen, die wir ihm hier widmen können, nicht erschöpfend
darstellen läßt, war Leibniz. Man hat ihn als den Aristoteles
des 17. Jahrhunderts bezeichnet. Allerdings begegnet uns in
Leibniz eine polyhistorische Gelehrsamkeit verbunden mit einer
Selbständigkeit des Denkens, wie sie kaum wieder gefunden werden.
Während diese Geistesanlage Aristoteles zu einer systematischen
Bearbeitung der Philosophie und der Naturwissenschaften führte,
blieb die Tätigkeit, die Leibniz entfaltete, allzusehr zersplittert.
Selbst wichtige philosophische Schriften, wie die Theodicee und
die Monadologie, verfaßte er, um sich mit hohen Persönlichkeiten
über die Grundfragen der Philosophie auseinandersetzen. Und
noch mehr tragen die übrigen Veröffentlichungen, die sich auf alle
Gebiete menschlichen Denkens und Handelns erstrecken, den
Charakter unter sich in nur geringem inneren Zusammenhange
stehender Gelegenheitsschriften.

Gottfried Wilhelm Leibniz wurde am 21. Juni 1646 in
Leipzig geboren, wo sein Vater ein akademisches Lehramt bekleidete.
Über den Entwicklungsgang, den Leibniz während der
ersten Jahrzehnte seines Lebens nahm, hat er selbst ausführliche
Mitteilungen hinterlassen607. Er lernte als Knabe Lateinisch ohne
Mithilfe eines Lehrers. Überhaupt war er in den meisten Dingen
Autodidakt, dabei aber stets begierig, »alle Dinge tiefer zu durchdringen
und Neues zu finden«. Da ihm die Bibliothek seines Vaters
zur Verfügung stand, lernte er sehr früh die alten Schriftsteller,
besonders Aristoteles, kennen. Er las auch scholastische Schriften.
Durch das Studium der Cartesischen Werke fand in ihm die Wandlung
von der teleologischen Weltanschauung zur Erfassung des
Kausalitätsprinzips statt. Leibniz bekennt in einem späteren
Schreiben, erst als er die Schule verlassen habe, sei er mit den
Schriften der neueren Philosophen bekannt geworden. Er erinnere
sich, daß er damals als fünfzehnjähriger Knabe spazieren ging und
überlegte, ob er in der scholastischen Betrachtungsweise beharren
solle. »Endlich siegte die mechanische Theorie und brachte mich
dazu, die mathematischen Wissenschaften zu studieren.«

Mit fünfzehn Jahren bezog Leibniz die Universität seiner
Vaterstadt. Sein Fachstudium war die Rechtsgelehrsamkeit. Nach
dessen Beendigung wollte man ihn »seiner Jugend wegen« nicht
zur Promotion zulassen. Aus diesem Grunde erwarb er (1666)
die Doktorwürde in Altdorf, wo ihm seines hervorragenden Wissens
und seiner Beredtsamkeit wegen sofort eine Professur angeboten
wurde. Leibniz schlug sie aus und ging nach Nürnberg. Dort
trat er mit der alchemistischen Gesellschaft der Rosenkreuzer
in Beziehung. Er war ein Jahr im Dienste dieser Gesellschaft
tätig und hatte alchemistische Werke zu exzerpieren, die Korrespondenz
zu führen usw. Wenn sich auch Leibniz nicht an der
Lösung alchemistischer Probleme beteiligte, so bewahrte er ihnen
doch stets ein lebhaftes theoretisches Interesse608. Von den praktischen
Zielen der Alchemisten will er nichts wissen. Er wünscht
sogar in einer im späteren Alter abgefaßten Schrift609, daß die
künstliche Erzeugung von Gold und Silber, wenn sie gelingen
sollte, um des gemeinen Besten willen unterdrückt werden möge.
Erstrebenswert erschien ihm dagegen, »aus dem Golde die Quintessenz
herauszuziehen, wie aus dem Wein den Weingeist, und mit
dieser Quintessenz ein anderes Metall in Gold zu verwandeln.«
Das würde zwar nichts einbringen, sondern eher etwas kosten, es
würde aber die Naturerkenntnis fördern. Resigniert fügt er jedoch
hinzu, auch die Verwirklichung dieser letzten Aufgabe sei
nicht wahrscheinlich.

Nachdem Leibniz Nürnberg verlassen hatte, trat er in den
Dienst des Kurfürsten von Mainz, der sich für Guerickes Versuche
so lebhaft interessierte610. Von Mainz wurde Leibniz in
diplomatischer Sendung 1672 nach Paris geschickt. Es galt, Ludwig
XIV. zu einem Zuge nach Ägypten zu bewegen, um dadurch
Deutschland vor den Eroberungsgelüsten dieses Königs zu bewahren.
Der Gedanke einer solchen Expedition rührte von Leibniz
her und wurde dem Könige in einer von dem deutschen Philosophen
ausgearbeiteten Denkschrift unterbreitet. Blieben diese
diplomatischen Bemühungen auch ohne Erfolg, so war der Aufenthalt
in Paris für Leibniz doch von großer Bedeutung. Er wurde
hier mit vielen bedeutenden Männern, vor allem mit Huygens
bekannt. Durch den persönlichen Einfluß dieses Mannes und durch
das Studium des Huygensschen Werkes über die Pendeluhr wurde
das Interesse, das Leibniz der Mathematik und der Mechanik
schon früher entgegengebracht hatte, von neuem entfacht. Auf
die bereits in Nürnberg gemachte Erfindung der Rechenmaschine
folgte diejenige der Differentialrechnung. Beide Erfindungen, sowie
der sich an die zweite anknüpfende Prioritätsstreit mit Newton
haben uns an anderer Stelle beschäftigt.

Von Paris kehrte Leibniz 1676 über London nach Deutschland
zurück. Er wurde Bibliothekar in Hannover, wo er den
größten Teil seines Lebens zugebracht hat. Das von Leibniz
geschaffene philosophische System erregte das besondere Interesse
von Sophie Charlotte, der Großmutter Friedrichs des Großen,
der Leibniz nachrühmte, er habe allein eine ganze Akademie vorgestellt.
Sophie Charlotte bewog ihren Gemahl, den späteren
König Friedrich I., auf den von Leibniz ausgehenden Vorschlag
hin im Jahre 1700 in Berlin eine Akademie, die »Societät der
Wissenschaften«, zu errichten. Leibniz wurde deren erster Präsident.
Auch zur Errichtung der Petersburger Akademie hat Leibniz
durch seine persönliche Einwirkung auf Peter den Großen die
Anregung gegeben611. In gleichem Sinne hat er in Dresden und
in Wien gewirkt. Durch diese Veranstaltungen sollte nach seinem
Plane die Wissenschaft nicht nur gefördert, sondern auch zum
Gemeingut gemacht werden. Die Aufklärung der Mitwelt war
vor allem das Ziel des großen Philosophen, und auf diesem
Wege folgten ihm während des 18. Jahrhunderts Männer wie
Christian Wolf, der die Leibnizsche Philosophie popularisierte,
Basedow, dessen Verdienste auf dem Gebiete des Erziehungswesens
liegen, ja selbst ein Lessing und ein Herder.

Leibniz starb in Hannover am 14. November 1716. Es mag
bei der Erwähnung seines Todes ein bedauerlicher Zug früherer
deutscher Art nicht unberührt bleiben. Von Leibniz berichtet der
Chronist, »man habe ihn eher wie einen Wegelagerer begraben,
denn wie einen Mann, der eine Zierde seines Vaterlandes gewesen«.
Vom Hofe erschien niemand, kein Geistlicher geleitete den Sarg.
Als dagegen ein Jahrzehnt später Newton in der Westminsterabtei
beerdigt wurde, trugen der Lord-Oberkanzler und Herzöge
das Leichentuch. Solche Gegensätze verdienen zur Mahnung für
kommende Geschlechter erwähnt zu werden. Selbst die Pariser
Akademie ehrte Leibniz durch eine Gedenkfeier, während die
Berliner von dem Tode ihres Begründers und bedeutendsten Mitgliedes
keine Notiz nahm!




14. Unter dem Einfluß der chemischen und
der physikalischen Forschung entstehen die
Grundlagen der neueren Mineralogie und
Geologie.

Den Ausgangspunkt für die Darstellung der meisten chemischen
Verbindungen bilden die Mineralien. In dem Maße, wie
eine wissenschaftlichen Zielen zustrebende Chemie emporwuchs,
trat dem praktischen Interesse an den Mineralien, von dem Agricola
z. B.612 noch vorzugsweise geleitet wurde, das wissenschaftliche
an die Seite. Es erhob sich die Frage nach der Zusammensetzung
und der Entstehung nicht nur der Mineralien, sondern der
starren Erdrinde überhaupt. Um die Beantwortung dieser Frage
hat sich niemand während des 17. Jahrhunderts mit gleichem
Scharfsinn und mit gleichem Erfolge bemüht wie Steno.

Nikolaus Steno oder Stenon wurde 1631 in Kopenhagen
geboren. Er widmete sich in Paris dem Stadium der Medizin und
war in den sechziger Jahren des 17. Jahrhunderts Leibarzt am Hofe
in Florenz. Im Jahre 1672 kehrte Steno auf Wunsch seines Königs
nach Kopenhagen zurück, um dort eine Professur für Anatomie
zu übernehmen. Er verließ jedoch sein Vaterland bald wieder, da er
dort seiner religiösen Überzeugung wegen angefeindet wurde, und
starb, nachdem er sich an verschiedenen Orten Deutschlands aufgehalten,
im Jahre 1687 in Schwerin. Sein Leichnam wurde auf Wunsch
der Mediceer nach Florenz übergeführt und in St. Lorenzo beigesetzt.

Steno befaßte sich eingehend mit der Erforschung der Bodenverhältnisse
Toskanas. Die Frucht dieser Untersuchungen war
eine Arbeit, die zum erstenmal die Grundlagen der geologischen
Wissenschaft in klarer, durch Profile erläuterter Darstellung entwickelte,
während die Literatur vor Steno nur vereinzelt zutreffende
Bemerkungen über geologische Dinge enthält613.



Stenos kristallographische und geologische Untersuchungen.

Zunächst bemühte sich Steno darzutun, daß weder die Mineralien
noch die Schichten, welche die Gebirge zusammensetzen, erschaffene,
von Anbeginn vorhandene Naturkörper sind, als die sie
im Gegensatz zu der vergänglichen Tier- und Pflanzenwelt wohl der
naiven Betrachtung erscheinen. Wie sehr diese in geologischen
Dingen zur Zeit Stenos noch vorherrschte, erkennt man daraus,
daß er sich ausdrücklich gegen die Meinung wendet, die Berge
seien nach Art der Pflanzen gewachsen, oder sie seien mit dem
Knochengerüst der Tiere zu vergleichen.

Die Mineralien, deren am Bergkristall, Schwefelkies, Eisenglanz
und Diamant auftretende Formen Steno beschrieb, wachsen
nach ihm durch Ansatz von außen. Der Ansatz geschehe indessen
nicht auf allen Flächen gleichmäßig. Die Folge seien Verzerrungen
der mathematischen Form, während die Neigung der begrenzenden
Flächen stets dieselbe bleibe.


[image: Abb. 104]
Abb. 104. Stenos Zeichnungen von Längsschnitten durch Bergkristalle.



Steno machte diese Beobachtungen besonders am Bergkristall,
einem Mineral, das seit den ältesten Zeiten der auffallenden Form
und der Größe seiner Kristalle, sowie seiner Durchsichtigkeit wegen
die Aufmerksamkeit auf sich gelenkt hatte. Steno tritt der Meinung
entgegen, daß der Bergkristall durch Kälte oder im Feuer entstanden
oder gar im Anbeginn der Welt geschaffen sei. Kristalle
sind nach seiner Meinung aus Lösungen hervorgegangen und können
durch geeignete Mittel wieder in Lösung übergeführt werden.
Darauf weisen, wie er ausführt, auch die verschiedenfarbigen
Schichten hin, aus denen die Kristalle mitunter zusammengesetzt
sind. Zum Beweise seiner Ansicht läßt Steno verschiedene Salze,
wie Vitriol und Alaun, aus einer Lösung kristallisieren und findet
hierbei ähnliche Erscheinungen, wie sie an Mineralien auftreten.
Nicht nur die Schichtung und die Verzerrungen der Form, sondern
auch die treppenförmigen Absätze, die Einschlüsse von Flüssigkeiten
usw. erklärt Steno aus der Bildungsweise der Kristalle. Die verschiedene
Ausdehnung der Flächen unter Beibehaltung der Winkel
erläutert er durch die hier wiedergegebenen, sehr lehrreichen Abbildungen
der Quer- und Längsschnitte durch verschiedenartig
ausgebildete Bergkristalle (Abb. 104 u. 105). Steno hat also schon
das Grundgesetz der Mineralogie, das Gesetz von der Konstanz
der Kantenwinkel, klar ausgesprochen, wenn es auch in seiner
Allgemeingültigkeit erst in dem nachfolgenden Jahrhundert von
Romé de l'Isle erkannt wurde.


[image: Abb. 105]
Abb. 105. Stenos Zeichnungen von Querschnitten durch Bergkristalle.



Die Erscheinung, daß die Prismenflächen des Bergkristalls
quergestreift sind, erklärt Steno durch die Annahme, daß solche
Flächen durch Aggregation zahlreicher Pyramiden entständen,
die sich in der Längsrichtung des Kristalles aneinander gereiht
hätten.

Während die Mineralien aus wässerigen Lösungen auskristallisieren,
ein Vorgang, den Steno aus einer Art magnetischer Kraft
erklären wollte, sind die Felsschichten nach ihm durch Absatz vorher
im Wasser schwebender Teilchen entstanden. Letztere haben,
dem Gesetz der Schwere zufolge, Schichten von ursprünglich horizontaler
Lage gebildet. Für den Absatz aus dem Wasser spricht
nach Steno auch die Tatsache, daß die niedersinkenden Teilchen
sich den Körpern, die sie einschließen, genau angepaßt haben und
ihre kleinsten Höhlungen ausfüllen.

Jeder Wechsel in der Beschaffenheit des Gesteinsmaterials,
das die Schichten zusammensetzt, weist nach ihm auf eine Änderung
der Entstehungsbedingungen hin. Sei es, daß die Flüssigkeit, aus
der die Schichten sich bildeten, dem periodischen Wechsel der
Jahreszeiten unterworfen war, oder daß sich ihre Zusammensetzung
änderte.

Enthält eine Schicht Seesalz, sowie Überreste von Meeresbewohnern,
so muß man annehmen, daß sich das Meer einst dort
befand, wo wir die Schicht jetzt antreffen. Entweder stand das
Meer einst höher, oder das Land hat sich gesenkt. Aus Abdrücken
von Gräsern und Binsen, Versteinerungen von Baumstämmen
usw. ist auf den terrestrischen Ursprung derjenigen
Schicht, in der solche Überreste enthalten sind, zu schließen.
Derartige Bildungen rühren von der Überschwemmung eines Flusses
oder dem Hereinbrechen eines Bergstromes her.

Mit außerordentlicher Klarheit entwickelt Steno ferner eine
allgemeine Schichtenlehre (Stratigraphie), deren Grundzüge wir hier
nach seinen Angaben gleichfalls kurz skizzieren wollen. Die
Bildung jeder Schicht setzt eine feste Unterlage voraus. Die
oberen Schichten sind daher ihrer Entstehung nach jünger als die
unteren. Jede Schicht wird von zwei parallelen Ebenen eingeschlossen
und besaß ursprünglich, weil sie sich aus einer Flüssigkeit
niederschlug, eine horizontale Lage. Jede Schicht muß aber
auch seitlich begrenzt sein, wenn man nicht Grund zu der Annahme
hat, daß sie sich über die ganze Erdkugel erstreckt. Wo
man einer Schicht begegnet, muß man daher entweder ihre Fortsetzung
finden, oder andere feste Körper, die ihre weitere Ausdehnung
verhinderten614.

Wenn man heute senkrechte oder geneigte, ja selbst gebogene
Schichten antrifft, führt Steno weiter aus, so sind sie erst nachträglich
durch die gebirgsbildenden Kräfte aus der ursprünglich
horizontalen Lage in ihre jetzige gebracht worden. Auf eine gewaltsame
Unterbrechung einer ursprünglich ein Ganzes bildenden
Schicht weise auch der Umstand hin, daß man an den einander
gegenüber befindlichen Anhängen der Gebirge häufig abgebrochene
Schichten finde, die in ihrer Substanz und in ihrem Aussehen
völlige Übereinstimmung zeigen.

Die Gebirgsbildung selbst wird auf zwei Kräfte zurückgeführt,
die aus dem Erdinnern heraus wirkende vulkanische Kraft und
die Tätigkeit des Wassers, das in Gestalt des Regens und der
Flüsse die durch den Wechsel von Wärme und Kälte zerbrochenen
Schichten durchziehe und die Oberfläche der Erde gestalten helfe.

Nicht richtig gedeutet werden die Kohlenlager. Sie werden
nämlich auf durch Wasser gelöschte Waldbrände zurückgeführt.

Steno unterschied, wie ihm A. v. Humboldt615 nachrühmt,
zum erstenmal diejenigen Felsschichten, die schon vor der Tier- und
Pflanzenwelt vorhanden waren und infolgedessen keine organischen
Überreste einschließen, von den späteren Schichten, die
jenen aufgelagert und mit organischen Resten angefüllt sind. »Er
ließ für den Boden Toskanas nach Art unserer heutigen Geologen
sechs große Naturepochen zu, innerhalb deren das Meer periodisch
das feste Land überschwemmte oder sich in seine alten Grenzen
zurückzog«616.

In der ältesten Zeit habe das Meer die gesamte Erde bedeckt
und diejenigen Schichten gebildet, die heute den Kern und
die höchsten Kämme der Gebirge bilden. Daß diese Schichten
keine Versteinerungen führen, beweise, daß das Urmeer noch keine
Bewohner gehabt habe. Dann erfolgte die Bildung von Festland,
und in der dritten Periode setzte die Gebirgsbildung ein.

Daß die Schichten nur selten ihre ursprünglich horizontale
Lage beibehielten, sondern in der Regel in geneigter, ja selbst in
senkrechter Stellung angetroffen werden, führt Steno auf zwei
Ursachen zurück. Entweder wurden die Schichten durch Stöße
zertrümmert, die aus der Tiefe kamen, oder es erfolgte ein Einsturz,
indem die unteren Schichten durch die Tätigkeit des
Wassers fortgeführt, und so die oberen ihrer Stütze beraubt wurden.

In der vierten Periode fand eine neue Überflutung statt, und
es bildeten sich infolgedessen die Versteinerungen führenden
Schichten. Dann trat der Boden wieder aus der Wasserbedeckung
hervor, und in der letzten (sechsten) Periode erhielten die Gebirge
durch die erodierende Tätigkeit des Wassers und infolge vulkanischer
Ausbrüche ihre heutige Gestalt, während sich an den Flußmündungen
und im Meere neue Sedimente bildeten. Infolge der
mannigfachen durch vulkanische Hebung oder durch Einsturz hervorgerufenen
Schichtenstörungen hatten sich Spalten gebildet, in
denen sich Mineralien absetzten. Diese Darstellung der Erdgeschichte
wußte Steno durch schematische, die Bodenverhältnisse
Toskanas betreffende Zeichnungen zu erläutern, in denen uns die
ersten geologischen Profile begegnen.

Steno hat seine Ansichten über die Entwicklung der Erde
mit der biblischen Schöpfungsgeschichte möglichst in Einklang zu
bringen gesucht. Wäre er gänzlich frei von allen Nebenrücksichten
an seinen Gegenstand herangetreten, so würden die Ergebnisse
seiner Forschungen das Wesen der geologischen Veränderungen
noch klarer widergespiegelt haben. Nichtsdestoweniger verdient
Steno den schönen Ruhmestitel, daß er seiner Zeit weit vorauseilte
und Entdeckungen machte, die erst Jahrhunderte nach seinem
Tode ihren Platz unter den anerkannten wissenschaftlichen Wahrheiten
finden sollten.

Die Entwicklung von Ansichten über das Erdinnere.

Zu den ersten Schriften, die sich mit dem inneren Bau und
der Entstehung der Erde befaßten, gehört Kirchers »Unterirdische
Welt«617, ein Werk, dessen Bedeutung darin besteht, daß es die
erste, allerdings noch mit vielen Mängeln behaftete physikalische
Erdbeschreibung ist.

Kirchers Buch entsprang weniger dem Forschungstriebe als
der polyhistorischen, oft mit Kritiklosigkeit verbundenen Gelehrsamkeit
seines Verfassers. Die vulkanischen Erscheinungen wurden
jedoch auf Grund eigener, in Mittelitalien, Sizilien und auf
den liparischen Inseln angestellter Beobachtungen geschildert.
Von besonderem Wert sind die den Vulkanismus betreffenden
Abschnitte dadurch, daß Kircher es unternimmt, alle geschichtlich
bekannt gewordenen Ausbrüche der südeuropäischen Vulkane,
sowie die historisch verbürgten Umgestaltungen der Meeresküsten
aufzuzählen. Ein phantastisches Gemälde ist Kirchers Schilderung
des Erdinnern. Er stellt sich letzteres als von zwei Systemen
verzweigter Kanäle durchzogen vor. In dem einen System bewegt
sich eine glutflüssige Masse, die in den Vulkanen zutage tritt;
das andere System wird dagegen vom Meere aus mit Wasser versorgt
und speist die Quellen. Eingehender werden die Bodenbestandteile
beschrieben. Die Versteinerungen, die sich in den
Schichten der Erdrinde finden, werden nur zum Teil auf frühere
Lebewesen zurückgeführt, manches wird aus einer plastischen
Kraft der unorganischen Materie erklärt. Erwähnenswert ist noch,
daß sich bei Kircher die ersten Angaben über die mit dem Eindringen
in das Erdinnere verknüpfte stetige Zunahme der Temperatur
finden. Er verdankte diese Angaben den Bergleuten.

Auch Descartes und Leibniz beschäftigten sich mit der
Frage nach der Natur und der Entstehung unseres Planeten.
Descartes entwickelt seine Anschauungen über das Weltsystem
und die Physik der Erde im zweiten Teile seines Hauptwerkes618,
nachdem er zuvor die Prinzipien der Erkenntnistheorie und der
Mechanik dargestellt. Die Erde und die übrigen Planeten waren
nach ihm ursprünglich glühende Sonnen. Infolge der Abkühlung
bildete sich eine starre Rinde. Diese enthält die leichteren
Bestandteile des Erdkörpers, während sich die schwereren Stoffe
um den Mittelpunkt sammelten619. Infolge des Zerbrechens der
Rinde entstanden Meere und Festländer, Berge und Täler.

Die Erdbeben führte Descartes auf die Wirkung einer noch
im Innern vorhandenen flüssigen Masse zurück. Er gelangte also
schon zu ähnlichen Anschauungen, wie sie die moderne Geologie
auf Grund eines viel eingehenderen Studiums der geologischen
Vorgänge entwickelt hat. Dieses Verdienst des Descartes um
die Begründung der Kosmologie und der Geologie ist neuerdings
in Frankreich besonders gewürdigt worden620.

Ähnliche Ansichten, wie die soeben entwickelten, äußerte
einige Jahrzehnte später der große deutsche Philosoph Leibniz
in seiner »Protogaea«. Neben mancher phantastischen Vorstellung
enthält diese Schrift zahlreiche treffende Bemerkungen. Leibniz
nimmt an, die Planeten seien aus der Sonne hervorgegangen und
daher ursprünglich glühend flüssig gewesen. Durch Abkühlung
hätten sich zuerst auf der geschmolzenen Masse schwimmende
Schlacken gebildet, wie sie noch heute auf der Sonne entständen
und unseren Augen als Sonnenflecken sich bemerkbar machten.
Endlich sei eine zusammenhängende, erkaltete Rinde entstanden,
während die Hitze im Innern aufgespeichert blieb. Infolge der
Abkühlung verdichtete sich auch das Wasser, das im Urzustande
der Erde Dampfform besaß. Auf diese Weise entstand das Urmeer
als eine Lösung der an der erkalteten Oberfläche befindlichen
Salze. Die glasartige Grundmasse der Erde wurde in der folgenden
Periode teils durch die lösende Kraft und die Bewegung des
Wassers, teils durch die vereinte Wirkung von Salzen und Hitze
auf mancherlei Art zerfressen und zerstört, so daß sich die obere
Schicht dieser Grundmasse in Schlamm verwandelte. Indem sich
die erkaltete Rinde zusammenzog, entstanden Sprünge, Erhöhungen
und Vertiefungen. Die von den bergigen Erhöhungen abfließenden
Gewässer führten Schlamm mit sich und bildeten neue Gesteinsschichten.
Die Gesteine haben nach Leibniz also einen
doppelten Ursprung; teils entstanden sie aus dem Schmelzfluß,
teils wuchsen sie, nach der Zerteilung im Wasser, wieder zusammen.
Durch die Spalten der Rinde drang das Wasser auch in das
noch jetzt glutflüssige Erdinnere und rief dort einen Kampf hervor,
der sich noch heute in den Vulkanausbrüchen und den Erdbeben
äußert.

Anfänge der Palaeontologie.

Die Versteinerungen führt Leibniz auf frühere Lebewesen
zurück621. Ausführlich bespricht er die Fischabdrücke des
Mansfelder Kupferschiefers, wie denn überhaupt die »Protogaea«
wohl als die Frucht seiner Beschäftigung mit dem Bergbau des
Harzes zu betrachten ist, zu der ihm seine amtliche Stellung in
Hannover den Anlaß bot. Die Erklärung, die Leibniz über die
Entstehung der Mansfelder Fischabdrücke gab, kann auch heute
noch als im wesentlichen zutreffend gelten.

»Die meisten«, sagt er, »nehmen behufs Erklärung ihre Zuflucht
zu dem Spiele der Natur, einem leeren Worte. Sie nehmen
an, die große Baumeisterin Natur ahme gleichsam im Scherze Zähne
und Knochen der Tiere nach. Die Übereinstimmung jener Fischzeichnungen
mit wirklichen Fischen ist indessen so groß, daß die
Flossen und Schuppen haarscharf abgedruckt sind. Ja, man sieht
an einem Orte so viel Abdrücke, daß man hier eine andere Ursache
vermuten muß als das Spiel des Zufalls. Wie wäre es zum
Beispiel, wenn wir annähmen, es sei ein großer See mit seinen
Fischen entweder durch ein Erdbeben oder durch die Wirkung
des Wassers mit Erde gefüllt worden? Diese Erde wird, als sie
zu Stein wurde, in die weiche Masse eingedrückte Spuren behalten
haben, die später, als die tierischen Überreste längst vergangen
waren, mit Erz622 ausgefüllt sind. Es ist möglich, daß
diese metallische Materie, die in dem ganzen Schlamm verteilt
war, durch die Wärme verflüchtigt wurde und in die Höhlungen
eindrang, die der Fisch zurückließ. Wir finden etwas ähnliches
bei den Goldschmieden. Sie überziehen eine Spinne oder ein
anderes Tier mit einem Stoff, der am Feuer hart wird. Alsdann
schaffen sie die Asche des Tieres aus diesem Gerüst durch
hineingelassenes Quecksilber heraus. Anstelle des letzteren gießen
sie endlich durch dieselbe Öffnung Silber hinein. So erhält man
ein silbernes Tier, dessen Ähnlichkeit mit dem lebenden Geschöpf
erstaunlich ist.«

Überzeugt von der Neuheit und der Wichtigkeit seines Gegenstandes,
sagt Leibniz, seine Ausführungen wären zwar nur ein
Versuch; doch sei in ihnen der Same zu einer neuen Wissenschaft
enthalten. Die Nachwelt werde alles besser feststellen
können, wenn sie die Arten der Erdschichten und ihren Verlauf
erforschen werde. Die bisherige Vernachlässigung dieser so
wichtigen Aufgabe entlockt ihm den unwilligen Ausruf: »Oft
ärgere ich mich über die menschliche Faulheit, welche die Augen
nicht öffnet, noch die offenkundige Wissenschaft in Besitz nehmen
mag.« Das 17. Jahrhundert war eben das Zeitalter, in dem die
Menschheit erst eifriger in dem Buche der Natur zu lesen begann.

Zu bemerkenswerten Ansichten gelangte auch Hooke623. Er
lehrte, daß die Versteinerungen, die man in früheren Jahrhunderten
für Naturspiele oder für bloße Ansätze einer in der Erde waltenden
schöpferischen Kraft gehalten hatte, aus dem Tier- und
Pflanzenreiche stammen. Hooke erklärte, die Versteinerungen
seien wertvollere Dokumente als Manuskripte und Münzen, da
sie nicht gefälscht werden könnten, und fordert, aus dem Auftreten
der Versteinerungen die Geschichte der Erde zu enträtseln.
Auch über den Versteinerungsprozeß selbst äußerte Hooke manche
zutreffende Ansicht.

Er suchte ferner darzutun, daß die Petrefakten Englands
zum größten Teile ausgestorbenen Gattungen angehören und am
meisten mit noch heute lebenden exotischen Formen übereinstimmen.
Daraus zog er den Schluß, England müsse sich in früheren Zeiträumen
der geologischen Entwicklung unter dem Meere einer
heißen Zone befunden haben. Ferner wurden die Knochen großer
Vierfüßer, die man vorher als Beweise für das frühere Vorhandensein
von Riesen angesehen hatte, als Überreste von Individuen
der Gattung Elephas gedeutet624.

Weitere geologische und mineralogische Fortschritte.

An die Beobachtungen schlossen sich auch schon geologische
Versuche an. So bemühte man sich, die unterirdische Wärme als
eine Folge chemischer Vorgänge nachzuweisen, eine Auffassung, die
in unseren Tagen wieder ihre Verfechter gefunden hat. Ein französischer
Forscher625 ahmte z. B. einen Vulkan dadurch nach, daß
er ein feuchtes Gemenge von Schwefel und Eisen vergrub. Diese
Masse erhitzte sich unter dem Einflusse des aus der Luft hinzutretenden
Sauerstoffs so sehr, daß eruptionsartige Erscheinungen
unter Zerbersten der Bedeckung vor sich gingen.

Für die Begründung der neueren Mineralogie im 17. Jahrhundert
ist es bezeichnend, daß genauere Beobachtungen an einzelnen,
besonders auffallenden Mineralien gemacht wurden, ohne
daß man dazu überging, die gewonnenen Ergebnisse auf die
übrigen auszudehnen. Ein vergleichendes mineralogisches Studium
blieb einem späteren Zeitalter vorbehalten. Steno hatte seine
Forschungen insbesondere am Bergkristall angestellt. Ein anderes
Mineral, das im 17. Jahrhundert die Aufmerksamkeit der Naturkundigen
in hohem Grade auf sich lenkte, war der isländische
Doppelspat. Durch dänische Kaufleute gelangte dieses Mineral
in die Hände Bartholins, der ihm die eingehendste Untersuchung
widmete.

Erasmus Bartholinus, der Entdecker der Doppelbrechung,
wurde 1625 in Dänemark geboren. Er studierte Medizin, bereiste
das westliche Europa und Italien und wurde 1656 Professor der
Mathematik in Kopenhagen. Er starb 1698.

Bartholin schrieb einige mathematische und astronomische
Werke; er ist aber besonders durch seine Schrift über den isländischen
Doppelspat und dessen optische Eigenschaften bekannt
geworden626. Die Schrift enthält eine Monographie über das erwähnte
Mineral, die so eingehend und genau ist, daß man in Anbetracht
der Bartholin zu Gebote stehenden Hilfsmittel und Vorarbeiten
nicht mehr erwarten kann. Bartholin beschränkt sich
nicht auf eine bloße Beschreibung der Kristallform, sondern er
mißt die an den begrenzenden Flächen auftretenden Winkel, deren
Werte er gleich 101° und 79° ermittelt. Er zeigt, daß von den
beiden Bildern, die man durch den Doppelspat erblickt, das eine
sich beim Drehen des Kristalls bewegt, während das andere still
steht; daß man aber in gewisser Richtung nur ein Bild wahrnimmt.
Bartholin weist ferner nach, daß das Auftreten von
zwei Bildern nicht etwa durch eine Spiegelung, sondern durch ein
ganz ungewöhnliches Verhalten hervorgerufen werde, indem das
feste Bild durch eine gewöhnliche, das bewegliche dagegen durch
eine außergewöhnliche Brechung entstehe. Das Gesetz der letzteren
vermochte Bartholin nicht zu ermitteln, auch entging ihm die
Polarisation des durch den Kalkspat gegangenen Lichtes. Ihre
Entdeckung blieb Huygens vorbehalten627.

Die weitere Untersuchung Bartholins betraf die physikalische
und die chemische Natur des Doppelspats. Es zeigte sich, daß der
Kristall, mit Tuch gerieben, wie der Bernstein, Strohhalme und
andere leichte Körper anzieht, daß er unter Wasser seine Glätte
allmählich verliert, mit Scheidewasser aufbraust, durch starke
Hitze in Kalk verwandelt wird. Kurz, der Doppelspat wurde
genauer untersucht, als es bis dahin mit irgend einem anderen
Mineral geschehen war. Daß die Arbeit Bartholins den großen
Physiker Huygens zu einer Nachuntersuchung des Doppelspats
und zu wichtigen Betrachtungen über die Natur des Lichtes anregte,
ist der Gegenstand eines früheren Abschnitts gewesen.
Huygens hat auch seinen Landsmann Leeuwenhoek veranlaßt,
eine monographische Abhandlung über ein anderes Mineral, den
Gips, zu liefern628. Leeuwenhoek machte durch diese Arbeit auf
mehrere wichtige mineralogische Tatsachen aufmerksam. Er wies
darauf hin, daß die Spaltbarkeit gewissen Gesetzen folgt, und daß
beispielsweise die Winkel der durch Spaltung aus dem Gips erhaltenen
rhomboidischen Tafeln 112° und 68° (genauer 113° 46ʹ
und 66° 14ʹ) betragen. Ferner zeigte er, daß das beim Glühen
aus dem Gips entweichende Wasser ein Fünftel vom Gewicht des
Minerals ausmacht. Er brachte ferner Gips in Lösung, indem
er das gebrannte Mineral mit Wasser übergoß und nachwies,
daß sich aus dieser Lösung beim Verdunsten des Wassers Kristalle
ausscheiden. Diese Versuche veranlaßten ihn auch, über die
Bildung der Mineralien im Innern der Erde Betrachtungen anzustellen.
Sie enthalten indessen wenig Zutreffendes.

Eine größere Summe von Erfahrungen und Beobachtungen
lag bezüglich der Edelsteine vor. Auch ihnen wurde eine monographische
Bearbeitung zuteil. Und zwar geschah dies durch den
in erster Linie als Physiker bekannten Robert Boyle629. Auch
er gelangte zu dem Ergebnis, daß die Mineralien sich aus dem
flüssigen Zustande gebildet hätten, und zwar in derselben Weise, wie
Salze in Kristallform aus der Lösung ausgeschieden würden. Für
diese Ansicht führt Boyle einige bemerkenswerte Gründe an630.
So habe man Bergkristall und andere Mineralien mit flüssigen
Einschlüssen gefunden. Ferner sei die Farbe der meisten Edelsteine
durch Beimengungen hervorgerufen, die in der Regel durch
die ganze Masse gleichmäßig verteilt seien, mitunter aber stellenweise
oder gänzlich fehlten. Auch daß die Mineralien, wie die
aus wässeriger Lösung entstandenen Salze, spaltbar seien, spreche
für die gleiche Art der Entstehung.

Boyle wies ferner darauf hin, daß es auch eine Kristallisation
aus dem Schmelzfluß gebe; er untersuchte diesen Vorgang genauer,
und zwar am Wismut, prüfte auch den Einfluß der durch rasche
Abkühlung beschleunigten Kristallisation auf die Beschaffenheit
der Kristalle, wies im Granat durch die Analyse und durch die
Wirkung des Magneten einen Eisengehalt nach, und bestimmte
das spezifische Gewicht vieler Mineralien. Kurz, er bereicherte die
mineralogische Wissenschaft um eine nennenswerte Summe von
Einzelkenntnissen, sodaß er neben Steno und Bartholin als
einer ihrer Begründer genannt werden kann.

Die Chemie im Zeitalter der Phlogistontheorie.

Zu der Zeit, als Boyle sich bemühte, die Mineralogie und
die Chemie auf eine wissenschaftliche Grundlage zu erheben, waren
die deutschen Chemiker Kunkel und Becher noch in alchemistischen
Vorstellungen befangen. Kunkel (1630 bis 1702) hat indes,
trotz der Irrigkeit seiner Ansichten, die Chemie durch zahlreiche
Beobachtungen bereichert.



Eine der wichtigsten chemischen Entdeckungen des 17. Jahrhunderts
war diejenige des Phosphors631. Sie erfolgte durch
Brand (1669). Dieser hielt sein Verfahren zuerst geheim. Auf
Grund einiger Andeutungen gelang Kunkel jedoch gleichfalls die
Darstellung, so daß er einige Jahre nach der Entdeckung des
Phosphors das neue Element dem Großen Kurfürsten zeigen
konnte. Letzterer ernannte ihn zum Leiter eines alchemistischen
Laboratoriums, das er gleich manchen anderen Fürsten des
17. Jahrhunderts unterhielt.

Becher (1635–1682) hielt sich wie Kunkel zeitweilig auch
als Alchemist an deutschen Höfen auf. Er und der etwas später
lebende Stahl632 sind die Begründer der Phlogistontheorie, die
trotz ihrer damals schon von manchem als irrig erkannten Voraussetzungen
die Chemie fast des gesamten 18. Jahrhunderts beherrscht
hat.

Daß die Aufstellung eines den Tatsachen entsprechenden Systems
der Chemie soviel später als die Begründung der Mechanik
erfolgte, ist darauf zurückzuleiten, daß die Chemie eine vorwiegend
induktiv verfahrende Wissenschaft ist, und sich der deduktiven
Behandlung erst in unseren Tagen zu erschließen beginnt. Was
den Fortschritt der physikalischen Zweige, insbesondere der Optik
und der Mechanik, so ungemein gefördert hat, war die innige Verbindung
und die gegenseitige Unterstützung der induktiven und der
deduktiven Forschungsweise von den ersten Schritten auf diesen
Gebieten an. Die Grundlagen einer chemischen Theorie zu
schaffen, war bei weitem schwieriger, weil die chemischen Vorgänge
nicht unmittelbar in die Sinne treten, sondern erst durch
eine lange, mühevolle Verknüpfung der Ergebnisse experimenteller
Forschung erschlossen werden müssen. Die Chemie hatte indes
seit Boyle, Becher und Stahl ihre wahre Aufgabe darin
erkannt, die stofflichen Veränderungen auf dem Wege des Experiments
zu erforschen. Insbesondere galt es, die so mannigfachen
Wandlungen der Materie, die mit der Verbrennung Hand in Hand
gehen, auf ein einziges Prinzip zurückzuführen. Als solches
glaubten Becher und Stahl eine in den brennbaren Körpern
angenommene Materie, die Stahl als Phlogiston bezeichnete, erkannt
zu haben. Der Verbrennungsprozeß sollte in dem Entweichen
dieses Phlogistons bestehen. Der brennbare Körper mußte
folglich eine Verbindung von Phlogiston mit dem gleichfalls schon
in der Substanz enthaltenen Verbrennungsprodukt sein. Je weniger
Verbrennungsprodukt, desto reicher war der ursprüngliche Körper
an Phlogiston. Kohle, die nur eine geringe Menge Asche hinterläßt,
war demnach nahezu reines Phlogiston. Wurde Zink verbrannt,
so zerfiel es in seine Bestandteile Zinkweiß und Phlogiston.
Die Wiedergewinnung des Zinks aus dem Zinkoxyd durch Erhitzen
mit Kohle bestand in einer Zuführung des in der letzteren
enthaltenen Phlogistons. So gelang es in leichtfaßlicher Weise,
nicht nur die Vorgänge der Oxydation und der Reduktion, sondern
auch die der Atmung und der Verwesung auf ein Prinzip zurückzuführen.
Die mit der Phlogistontheorie unvereinbare, für manche
Fälle schon bekannte Tatsache, daß das Gewicht des Verbrennungsproduktes
dasjenige der unverbrannten Substanz übertrifft, wurde
nicht weiter beachtet. Obgleich von einem unrichtigen Grundsatz
geleitet, haben die Phlogistiker des 18. Jahrhunderts, unter denen
sich Experimentatoren ersten Ranges wie Scheele, Priestley und
Marggraf befanden, die Chemie in hohem Grade gefördert. Durch
ihr Bemühen, in dem sie Baustein auf Baustein zusammentrugen,
zwar ohne sie in richtiger Weise ordnen zu können, haben sie
selbst den Sturz der Phlogistontheorie herbeigeführt und dem
Manne, dessen Scharfsinn wir die logische Verknüpfung der zahllosen
chemischen Einzelbeobachtungen verdanken, dem Franzosen
Lavoisier, erst sein Werk ermöglicht.

Insbesondere wollen wir hier Marggrafs gedenken, der um
die Mitte des 18. Jahrhunderts in Berlin als eine Zierde der
dortigen Akademie der Wissenschaften wirkte. Diese Gesellschaft
besaß um jene Zeit eine Reihe vortrefflicher Chemiker in
ihrer Mitte, so daß ihr Präsident Maupertuis Friedrich dem
Großen mit Recht sagen konnte: »Unsere Chemiker stechen alle
Chemiker Europas aus«633.

Andreas Sigismund Marggraf wurde 1709 in Berlin
geboren. Durch seinen Vater, der eine Apotheke besaß, wurde
er der Pharmazie zugeführt. Von den Hilfswissenschaften dieses
Gebietes fesselte ihn die Chemie in solchem Grade, daß er sich
ihr ausschließlich widmete. Nach Beendigung seiner Studien, denen
er auf der Universität Halle und auf der Bergschule zu Freiberg
oblag, kehrte er nach Berlin zurück, um sich ausschließlich mit chemischen
und mineralogischen Forschungen zu befassen. Er wurde
Mitglied der Akademie und später Direktor der naturwissenschaftlichen
Abteilung dieses Instituts, in dessen Abhandlungen während
der Jahre 1747–1779 die Arbeiten Marggrafs veröffentlicht
wurden. Diese haben zahlreiche Punkte der anorganischen und
der organischen Chemie, sowie der Mineralogie aufgehellt. Die
von Marggraf gewonnenen Ergebnisse wurden dadurch erzielt,
daß er die Analyse besonders auf nassem Wege ausübte und dies
Verfahren durch manche Hilfsmittel ausbaute. Auch wird ihm
nachgerühmt, daß er der erste war, der sich bei chemischen Untersuchungen
des Mikroskops bediente.

Auf die Ergebnisse seiner analytischen Forschungen werden
wir zum Teil noch bei der Besprechung der mineralogischen Fortschritte
zurückkommen. Hier sei nur hervorgehoben, daß er die
Bittererde634 und die Tonerde635 als besondere von der Kalkerde
durchaus verschiedene Substanzen erkannte. Marggraf zeigte
ferner, daß der Gips eine Verbindung von Kalkerde, Schwefelsäure
und Wasser ist; er erkannte die Zusammensetzung von Alaun und
von Urinsalz, in welchem er Phosphorsäure und flüchtiges Alkali
entdeckte. Zahlreiche Untersuchungen über den Phosphor, seine
Darstellung und seine Verbindungen rühren von Marggraf und
seinen Schülern her. Vor allem wurde die Phosphorsäure genauer
untersucht636. Marggraf stellte sie entweder durch Kochen von
Phosphor mit Salpetersäure oder durch Verbrennen des Phosphors
her. Dabei entging ihm nicht, daß die entstandene Phosphorsäure
mehr wog als der in die Verbindung eingehende Phosphor, eine
Tatsache, die eigentlich Marggrafs Anschauungen hätte erschüttern
müssen, da sie der phlogistischen Theorie, nach der die
Verbrennung in dem Entweichen einer Materie bestehen sollte,
durchaus widersprach. Es zeigte sich indessen an ihm die so
häufige Erscheinung, daß gerade der Fachmann oft am wenigsten
geneigt ist, liebgewordene Theorien, auf denen er das ganze System
seines Wissens aufgebaut hat, einer umwälzenden, neuen Anschauung
zu opfern.

Marggraf hat noch die Anfänge der antiphlogistischen
Lehre miterlebt, ist aber trotzdem Phlogistiker geblieben. Dieses
hartnäckige Festhalten an einem Irrtum schmälert Marggrafs
Verdienste um die Wissenschaft indessen nicht wesentlich, da sie
sich bis zu einem gewissen Grade unabhängig von dem Wechsel
der Theorien, aus festgefügten Tatsachen aufbaut. Marggraf
hat übrigens nicht nur das Mikroskop, sondern auch die Wage
in die Chemie eingeführt, ein Verdienst, das man gewöhnlich ausschließlich
Lavoisier zuschreibt. Er fällte z. B. Silberlösung mit
Kochsalz und verglich das Gewicht des gelösten Silbers mit demjenigen
des Silberchloridniederschlages. In solchen und in ähnlichen
Versuchen, die gleichzeitig in Schweden Bergman637 anstellte,
begegnen uns die Anfänge der quantitativen Analyse, d. h.
des Verfahrens, die Stoffe nicht nur isoliert zu wägen, sondern
sie in Form von unlöslichen Verbindungen bekannter Zusammensetzung
abzuscheiden und deren Gewicht zu ermitteln.

Groß ist auch die Förderung, welche die technische Chemie
durch Marggraf erfuhr. Er lehrte neue Metallegierungen kennen,
verbesserte die hüttenmännische Gewinnung des Zinks, das seitdem
in größerer Menge der Industrie zu Gebote stand, vor allem
aber lehrte er, den Zucker aus einheimischen Pflanzen darstellen.
Über diese Entdeckung, deren Tragweite Marggraf wohl geahnt
hat, berichtet er in den Abhandlungen der Akademie vom Jahre
1747638 unter der Überschrift: »Chemische Versuche angestellt in
der Absicht, wirklichen Zucker aus verschiedenen, in unseren
Gegenden wachsenden Pflanzen herzustellen«. Unter den Pflanzen,
aus deren Wurzeln er reinen Zucker dargestellt hat, hebt er besonders
die Runkelrübe hervor. »Man erkennt«, schließt er seine
Abhandlung, »welche praktischen Anwendungen man von diesen
Versuchen machen kann. Man wird sich anstatt des teuren Rohrzuckers
oder eines schlechten Sirups in Zukunft des Zuckers
unserer Pflanzen bedienen können.« Marggraf war sich darüber
vollkommen klar, daß es sich hier nicht um einen dem Rohrzucker
nur ähnlichen Stoff, sondern um das Vorkommen des Rohrzuckers
selbst in dem Saft der Runkelrübe handelte.

Technisch ausgestaltet wurde die Gewinnung des Zuckers
aus Rüben durch Marggrafs Schüler Achard. Eigentlich lebensfähig
wurde das Verfahren aber erst, nachdem Napoleon durch
seine Zollschranken die Einfuhr von Kolonialzucker nach dem
europäischen Kontinent unterbunden hatte. Dadurch sah die
chemische Industrie sich gezwungen, an die Beschaffung eines
Ersatzmittels zu denken. Der große Aufschwung der Rübenzuckerfabrikation
datiert indessen erst seit etwa dem Jahre 1825.




15. Das Emporblühen der Anatomie und der
Physiologie.

Schon im 16. Jahrhundert hatten sich die Zoologen nicht mehr
auf die bloße Beschreibung der äußeren Form und eine im wesentlichen
hierauf begründete Systematik beschränkt, sondern begonnen,
auch das Innere des tierischen Organismus, sowie seine Entwicklung
zu erforschen. In weit höherem Maße gilt dies von dem
17. Jahrhundert, dem Zeitalter, in dem sich durch das Mikroskop
nicht nur die feineren Formverhältnisse des Tierkörpers erschlossen,
sondern in dem auch die ohne eine Verschärfung der Sinnesorgane
gar nicht mögliche Anatomie der Pflanzen begründet wurde. Der
Richtung jener Zeit entsprechend, die auf ein Zurückführen der
in der Natur obwaltenden Vorgänge auf physikalische Grundsätze
abzielte, regte sich auch das Bestreben, die Funktionen des
lebenden Organismus aus der Mechanik zu erklären. Kurz, es
begegnen uns in diesem Zeitalter die Anfänge desjenigen, mehr
durch seine Methode als durch den Gegenstand gekennzeichneten
Wissenszweiges, den wir als Biologie im weiteren Sinne bezeichnen.

Die Lehre vom Kreislauf des Blutes.

Die größte Errungenschaft auf diesem Gebiete ist die von
dem Engländer Harvey (1578–1658) begründete Lehre von dem
Kreislauf des Blutes. Die seit Vesal emporblühende Anatomie
hatte eine Reihe von Tatsachen zutage gefördert, die sich mit den
herrschenden Ansichten Galens639 nicht vereinigen ließen. So
waren die für Galens Lehre so wichtigen Annahmen, daß die
Herzscheidewand porös sei und die Arterien Luft führten, endgültig
widerlegt worden. Auch hatte man die Klappen des
Herzens gründlich untersucht und ferner die Klappen in den
Venen gefunden, von denen Galen noch keine Kenntnis besaß.
Fabricio, der 1570 die Venenklappen entdeckte, hatte schon
über ihren Zweck nachgedacht und war zu der Ansicht gelangt,
sie hätten die Aufgabe, Unregelmäßigkeiten auszugleichen, welche
die Blutbewegung durch die Bewegung der Gliedmaßen erleiden
könnte. Die wahre Bedeutung der Klappen erkannte er also noch
nicht. Dazu bedurfte es erst der großen Tat eines Harvey.
Endlich hat noch ein gelehrter Arzt, Serveto, der als ein Opfer
Calvins in Genf verbrannt wurde, schon im Jahre 1540 darauf
hingewiesen, daß das Blut durch die Lungenschlagader vom Herzen
nach der Lunge geführt werde. Hier ändere es durch die Vermischung
mit der Luft seine Farbe und komme durch die Lungenvenen
zum linken Herzen zurück. Damit war das Prinzip des
Lungen- oder des kleinen Kreislaufs erkannt. Bestätigt wurde
Servetos Lehre, wenn auch nicht von ihm selbst, durch Experimente
an Tieren, mit denen sich auch Vesal befaßt hat640. All
diese Entdeckungen hatten indessen nur bei einigen aufgeklärten
Forschern Zweifel an Galens Lehre hervorgerufen. Richtige Anschauungen
konnten nämlich kaum aufkommen, so lange man an
dem mystischen Pneuma des griechischen Arztes festhielt.

Erst durch Harveys über 20 Jahre sich erstreckende Bemühungen
wurde über das bisher so dunkle, von Widersprüchen
beherrschte Gebiet volles Licht verbreitet. Dies war nur dadurch
möglich, daß Harvey, der nicht umsonst bei den Italienern in
die Schule ging, zwei Grundsätze in sich verkörperte, die durch
Galilei und seine Jünger als die Leitsterne alles naturwissenschaftlichen
Forschens zur Geltung gekommen waren, nämlich
die Befreiung von hergebrachten, durch die Autorität des Altertums
gestützten Meinungen und die Befolgung des experimentellen
Verfahrens. Darin, daß Harvey diese Grundsätze der neueren
Naturwissenschaft in die Physiologie einführte, liegt eine nicht
geringere Bedeutung als in den Ergebnissen seiner Forschung
selbst.

Zwar dürfen wir nicht erwarten, daß die Befreiung von den
Anschauungen, die bis dahin gegolten, und das Einlenken in neue
Bahnen mit einem Male und völlig gelungen wäre. Auch die
größten Neuerer bleiben in mancher Hinsicht, wie wir es auch
bei Galilei, Gilbert und Kepler gesehen haben, Kinder ihrer
Zeit. So war das Ansehen, das Galen genoß, selbst bei Harvey
noch so groß, daß er fast ein Jahrzehnt nach seiner Entdeckung
verstreichen ließ, ehe er sie in seinem »anatomischen Übungsstück
über die Bewegung des Herzens und des Blutes« bekannt zu geben
wagte641.

William Harvey wurde 1578 geboren. Er studierte in
Cambridge Medizin und ging 1598 nach Padua, wo er Schüler
des soeben genannten bedeutenden Anatomen Fabricio ab
Aquapendente wurde. Nach seiner Rückkehr wirkte er zunächst
als Arzt und später als Professor der Anatomie in London.
Seine Lehre vom Kreislauf des Blutes begründete er schon 1619.
Veröffentlicht wurde sie indessen erst ein Jahrzehnt später (1628),
nachdem Harvey durch Vivisektionen ein umfangreiches Beweismaterial
gesammelt hatte. Bald darauf ernannte ihn Karl I. zu
seinem Leibarzt. Als solcher war er gezwungen, während des
Bürgerkrieges den König auf seinen Zügen zu begleiten642. Harvey
starb im Jahre 1658.

Als neu enthält die Lehre Harveys folgende Punkte: Das
Herz verhält sich wie ein Muskel. Es wird beim Zusammenziehen
härter und blässer und stößt das Blut, das passiv aufgenommen
wird, von sich. Das bei der Systole (Zusammenziehung) des
Herzens fortgetriebene Blut gelangt in die Arterien, die sich also
in der Diastole (im Zustande der Ausdehnung) befinden, wenn sich
das Herz zusammenzieht. Aus den Verzweigungen der Arterien
tritt das Blut in die Venen über und strömt in diesen zum Herzen
zurück, so daß dieses in einer bestimmten Zeit von der ganzen
Masse des Blutes durchflossen wird.

Um die Mitte des 17. Jahrhunderts wurde auch der alte
Irrtum beseitigt, daß sich das Blut in der Leber bilde. Dies
geschah durch die Entdeckung des in das Venensystem einmündenden
Ductus thoracicus643, dessen Zusammenhang mit den
Lymphgefäßen des Darmes man fast gleichzeitig auffand. Erst
hierdurch wurde der »Kreis der die Lehre Harveys ergänzenden
Entdeckungen geschlossen«644.

Da die Klappen auch in den horizontal verlaufenden Venen
der Vierfüßler vorhanden sind, so können sie nicht den von
Fabricio behaupteten Zweck haben, den Sturz des Blutes zu
mäßigen, sondern es liegt ihnen ob, den Rückfluß aus den Ästen,
die das venöse Blut zum Herzen führen, in die Verzweigungen,
in denen das Blut sich sammelt, zu verhindern. Während das
arterielle System von der linken Herzkammer gespeist wird, befördert
die Kontraktion der rechten Kammer das venöse Blut durch
den schon von Serveto gelehrten kleinen Kreislauf zunächst in
die Lungen. Dort erleidet es durch die atmosphärische Luft eine
Farbenveränderung, über deren Natur Harvey nicht ins klare
kommen konnte, weil ihm die Einsicht in die chemische Rolle der
Luft noch fehlte. Der kleine Kreislauf findet dadurch seinen
Abschluß, daß das Blut von der Lunge zum Herzen zurückströmt.
All diese Feststellungen erfolgten, aus genauer anatomischer
Untersuchung, gestützt durch Experimente an höheren und niederen
Tieren. Trotz aller Gründlichkeit und Klarheit fand Harveys
Arbeit, wie alles, was den eingewurzelten Meinungen widerspricht,
zunächst lebhafte Anfeindung. Einer der ersten, welcher der neuen
Lehre Geltung verschaffte, war Descartes. Dieser wurde mit
dem Inhalt der Harvey'schen Schrift durch den vielgeschäftigen
Mersenne bekannt und gab in seinem »Discours de la méthode«,
auf Grund der Harvey'schen Entdeckungen, selbst eine ausführliche
Darstellung der Lehre vom Blutkreislauf645.

Nachdem diese Lehre Anerkennung gefunden, galt es, eine
Reihe von Einzelfragen zu entscheiden. Der Verlauf der gröberen
Äste des Gefäßsystems wurde durch das bald aufkommende Verfahren
der Injektion eingehender festgestellt, als dies durch bloßes
Zerschneiden der Leichen möglich war. In seinen Anfängen reicht
dies Verfahren freilich viel weiter zurück. Seine Erfindung wird
Sylvius zugeschrieben, der während der ersten Hälfte des 16. Jahrhunderts
lebte und auch schon auf die Venenklappen hinwies. Zur
Erforschung der feinsten Verzweigungen der Gefäße wandten zuerst
Malpighi (1661) und später Leeuwenhoek das Mikroskop an.
Die anfangs bestehende Meinung, daß die feineren Äste der
Arterien das Blut in die Gewebe ergössen, und die Venen es
mit ihren äußersten Enden wieder aufsögen, wurde durch den
Nachweis eines zarten, die Arterien mit den Venen verbindenden
Netzes von Kapillargefäßen wesentlich berichtigt. Gleichzeitig
entdeckten beide Forscher die in dem Blute schwimmenden, roten
Körperchen.



Des weiteren erhob sich die Frage nach der Entstehung des
Blutes. Galen hatte angenommen, daß das Blut in der Leber
bereitet werde und von dort in die obere Hohlvene gelange, die
mit der Leber durch eine Abzweigung in Verbindung steht. Das
Material für die Blutbereitung mußte aber doch in letzter Linie
aus dem Nahrungssaft stammen. Die anatomischen Elemente,
welche den Darm mit dem Blutgefäßsystem in Verbindung setzen,
vermochte man indessen erst um die Mitte des 17. Jahrhunderts
zu erkennen. Es erfolgte646 der Nachweis, daß die schon vor
Harvey in der Wand des Darmes entdeckten Chylusgefäße
sämtlich in einen gemeinsamen Gang, den Ductus thoracicus, eintreten
und ihren Inhalt durch diesen in die linke Schlüsselbeinvene
ergießen647. An die Entdeckung und die richtige Deutung
der Chylusgefäße reihte sich diejenige des Lymphgefäßsystems648.
Erst jetzt ließ sich auf die Frage, welche Rolle die einzelnen
Organe und Organsysteme bei der Blutbereitung spielen, eine zunächst
wohl befriedigende, die chemisch-physiologische Seite indes
noch gar nicht berührende Antwort geben.

Ähnliche Schwierigkeiten erhoben sich, als man nach einer
Erklärung für die sich stets und rhythmisch wiederholende Herzbewegung
suchte. Nach Galen wurden die Herzkammern passiv
ausgedehnt, indem das Blut unter dem Einfluß der Wärme, deren
Sitz Galen und Aristoteles ins Herz verlegten, sich ausdehnen
und gleichsam aufbrausen sollte. Die neue Lehre erblickte dagegen
die Ursache der Blutbewegung in der Zusammenziehung
des muskulösen Herzens. Was veranlaßte aber diese Zusammenziehung?
Descartes glaubte, das einströmende Blut wirke als
Reiz auf den Herzmuskel. Diese Ansicht wurde durch Experimente
widerlegt. Entfernte man z. B. das Herz aus der Brust eines
lebenden Tieres, so dauerten die Kontraktionen noch lange fort.
Sie ließen sich sogar, nachdem sie gänzlich aufgehört hatten, durch
leichte Reize wieder anregen. Um die Frage nach dem Impuls
des Herzens beantworten zu können, mußten spätere Zeitalter erst
eingehende Untersuchungen über die Herzinnervation und deren
Zusammenhang mit dem übrigen Nervensystem anstellen.



Tieferes Eindringen in den Bau der Organe.

Nachdem Harvey und schon vor ihm Serveto nachgewiesen
hatten, daß das Blut in einem zweiten, kleineren Kreislauf durch
die Lungen geführt wird, wandte man sich der Erforschung auch
dieser Organe mit erhöhtem Eifer zu. Wieder war es Malpighi,
dessen Untersuchungen auch hier die Grundlage geschaffen haben.
Er wies (1661) nach, daß die Lungen ein doppeltes Röhrenwerk
darstellen, indem die Verästelungen der Luftröhren in feinen
Bläschen endigen, die von den Blutgefäßen umsponnen werden.

Aus den erwähnten Untersuchungen Malpighis über den
Bau der Lunge und über die Kapillargefäße geht zur Genüge
hervor, daß für die Physiologie das Mikroskop etwa dieselbe Bedeutung
besitzt, die für die Astronomie dem Fernrohr zukommt.
Dem Mikroskop hatte man, obgleich es früher erfunden wurde
als das Fernrohr, zunächst ein weit geringeres Interesse entgegengebracht.
Selbst Leeuwenhoek, der in der zweiten Hälfte
des 17. Jahrhunderts die Erforschung kleinster Lebewesen außerordentlich
förderte, verwandte dazu einfache, bikonvexe Linsen
aus besonders feinem Glase. Er erzielte mit ihnen eine 160fache
lineare Vergrößerung. Solche Linsen, deren sich auch Huygens
bediente, waren nur stecknadelkopfgroß. Ihr Gebrauch erforderte
große Geschicklichkeit und ein hervorragendes Sehvermögen.
Letzteres, sowie die Sorgfalt im Beobachten, wurden durch die Verwendung
des Mikroskops in solchem Maße gesteigert, daß auch
das unbewaffnete Auge Dinge wahrnehmen lernte, die sich früher
der Beobachtung entzogen hatten.

Erst verhältnismäßig spät erhielt das Instrument denjenigen
Grad der Vollendung, der es zu wissenschaftlichen Untersuchungen
geeignet machte. Man suchte eine stärkere Vergrößerung und eine
geringere Farbenzerstreuung dadurch herbeizuführen, daß man das
Objektiv und das Okular, die bisher nur aus je einer Linse bestanden,
aus zwei Linsen zusammensetzte. Ferner ersann man
Beleuchtungsvorrichtungen, wofür uns die Abbildung Hookes ein
Beispiel gibt. (Siehe Abb. 106.)

Um den Zeitgenossen die Brauchbarkeit seines Mikroskops
zu beweisen, veröffentlichte Hooke im Jahre 1667 seine »Micrographie
oder Beschreibung kleiner Gegenstände«. Eine Beteiligung
an der Lösung biologischer Probleme lag weniger in der Absicht
dieses Forschers; trotzdem machte er eine Entdeckung von der
weitgehendsten Bedeutung, indem er die Aufmerksamkeit auf den
zelligen Bau der Pflanzen richtete. Hooke bildete ferner den
Stachel der Biene ab, dessen Widerhaken deutlich zu erkennen
sind. Auch die Häkchen, welche die feinsten Äste der Federn
verbinden, sind in der Mikrographie dargestellt; wie sich denn
überhaupt der Verfasser dieses Werkes mit einer fast kindlich zu
nennenden Wißbegierde mit allem beschäftigt, was sich ihm zufällig
darbot.


[image: Abb. 106]
Abb. 106. Hookes zusammengesetztes Mikroskop649.



Anatomie und Mechanik.

Auch die Mitglieder der Accademia del Cimento befaßten
sich nicht ausschließlich mit rein physikalischen Problemen. Sie
zeigten sich vielmehr bestrebt, in Galileis Sinne die Methode des
großen Meisters auf alle Gebiete der Naturwissenschaften auszudehnen.
In dieser Hinsicht ist vor allem Borelli zu nennen.

Giovanni Alfonso Borelli wurde 1608 in Neapel geboren.
Er studierte Mathematik und Philosophie und war an verschiedenen
Orten Italiens als Lehrer und vielseitiger Forscher tätig. Malpighi
zählte zu seinen Schülern. In Florenz war Borelli als eins der
eifrigsten Mitglieder der Accademia del Cimento an physikalischen
Untersuchungen beteiligt650. Nach der Auflösung der Florentiner
Akademie hielt er sich in Rom auf. Seine bedeutendste Arbeit
handelt von der Bewegung der Tiere.

Borelli hat durch diese Schrift651 der Physiologie die wertvollsten
Dienste geleistet, indem er die Grundsätze der Mechanik
auf die Physiologie anwenden
lehrte. Er zeigte z. B., daß
beim Zusammenwirken der Muskeln
und der Knochen letztere
als Wurfhebel dienen, d. h. als
einarmige Hebel, bei denen die
in den Muskeln tätige Kraft
an dem kleineren Hebelarm angreift.
In der durch Abb. 107
erläuterten Stellung des Armes
wird sich z. B. der Muskelzug,
welcher der Last R das Gleichgewicht
hält, zu dieser Last
entsprechend dem Hebelgesetz
wie die Strecke OK zur Strecke
OJ verhalten. Der von dem
zweiköpfigen Armmuskel CF,
dem Biceps, ausgeübte Zug
muß also die in B wirkende
Last bedeutend übertreffen.
Borelli berechnete, daß sämtliche
Muskeln des Armes, wenn er horizontal gehalten und an den
Fingern mit 10 Pfund belastet wird, einen Zug ausüben, der viele
Male größer ist als das Gewicht.


[image: Abb. 107]
Abb. 107. Borelli erläutert die Wirkung
des zweiköpfigen Armmuskels652.



Auch die Mechanik des Gehens, Laufens, Springens, Schwimmens
und Fliegens wurde durch Borelli einer solch vortrefflichen
physikalischen Untersuchung unterworfen, daß erst die neueste
Zeit durch die Gebrüder Weber Besseres geleistet hat. Abb. 108
zeigt uns das Verfahren, das Borelli zur Ermittlung des Schwerpunktes
einschlug653. Welche Bedeutung gerade die Lage dieses
Punktes und die Art, wie er unterstützt wird, bei dem Zustandekommen
der einzelnen Bewegung besitzt, wurde von Borelli
besonders eingehend untersucht. Wie groß der Fortschritt in der
richtigen Auffassung der Mechanik des Körpers war, läßt sich ermessen,
wenn man berücksichtigt, daß das Fleisch bis zum Beginn
des 17. Jahrhunderts entweder
als bloßes Füllmaterial
oder als Organ
des Gefühls und des
Tastens betrachtet wurde.
Erst jetzt begann man
auf die Verkürzung der
Muskeln beim Zustandekommen
der Bewegungen
zu achten. Borelli suchte
diese Verkürzung aus einer Art von Elastizität des Muskels begreiflich
zu machen. Vor allem aber hob er hervor, daß dieser Vorgang
wieder von der Tätigkeit der Nerven abhängig sei. Manches von
dem, was die Neuzeit hier wieder kennen lernte, war schon dem
Altertum, besonders Galen, bekannt (siehe z. B. Bd. I S. 235).


[image: Abb. 108]
Abb. 108. Borelli ermittelt den Schwerpunkt
eines Menschen.



Auch die Atembewegung untersuchte Borelli. Er erkannte,
welche Rolle die Zwischenrippenmuskeln bei der das Einatmen
bedingenden Erweiterung des Brustkastens spielen, daß das Ausatmen
mehr passiv durch ein Erschlaffen jener Muskeln vor sich
geht, und daß vor allem die Lunge selbst bei diesem ganzen Vorgang
sich durchaus passiv verhält, indem sie der Bewegung der Muskulatur
nur folgt. Auf die Bedeutung, die das Zwerchfell neben der
Rippenmuskulatur für die Atembewegung besitzt, wurde erst von
einem Schüler Borellis hingewiesen654.

Für die Anatomie und für die Physiologie der höheren Tiere
waren Malpighis Forschungen über die Drüsengewebe von Bedeutung.
Während z. B. manche seiner Zeitgenossen die Galle noch in
der Gallenblase entstehen ließen, verlegte Malpighi mit aller Bestimmtheit
die Absonderung dieses Sekretes in die Leber. Seine
Untersuchung der äußeren Haut als wichtigstem Tastorgan lehrte
die unter der Oberhaut befindliche Schleimschicht kennen, die noch
heute Malpighis Namen führt.



Der anatomische Bau und die Funktion der Drüsen wurde
von Malpighi zum ersten Male richtig gedeutet. Er erkannte,
daß diese Organe der Hauptsache nach aus kleinen Bläschen
(Zellen) bestehen, die in die Ausführungsgänge eine Flüssigkeit
von besonderer Art und Wirkung ergießen.

Es gibt kaum einen Teil der Anatomie oder der Physiologie,
den Malpighi nicht durch grundlegende Lehren bereichert hätte.
Wie über den Bau der Lunge, so verdanken wir ihm auch über
den Bau der Nieren655 und der Körperhaut die wichtigsten Entdeckungen.
Malpighi verfolgte die Harnkanälchen und zeigte,
wie sie in der Niere zu pyramidenförmigen Bündeln zusammentreten.
Er untersuchte ferner den Verlauf der Gefäße innerhalb
der Niere, entdeckte die nach ihm benannten Nierenkörperchen und
wies nach, daß sie mit den Harnkanälchen in Verbindung stehen.
An diese anatomischen Befunde schlossen sich Versuche an, durch
die Malpighi feststellte, daß der Urin aus dem Nierenbecken
durch die Harnleiter in die Harnblase geleitet wird.

Malpighis Forschungen über die Körperhaut gipfelten in der
Entdeckung, daß der Tastsinn in gewissen, unter der Epidermis
liegenden Papillen lokalisiert ist.




16. Die ersten Ergebnisse der mikroskopischen
Erforschung der niederen Tiere.

Eine ganz wesentliche Bereicherung erfuhr die Zoologie im
17. Jahrhundert durch die Erschließung der Welt des Kleinen mit
Hilfe des einfachen und des zusammengesetzten Mikroskops.

Man wird jetzt mit Lebewesen näher bekannt, denen man
bisher ihrer geringen Körpergröße wegen kaum oder gar nicht Beachtung
geschenkt hat. Mit Erstaunen und Bewunderung erkennt
man, daß ihr Inneres, das dem unbewaffneten Auge als eine gleichartige
Masse erscheint, einen Bau aufweist, der in seiner Art
demjenigen der höheren Tiere durchaus nicht nachsteht. Der Ausspruch
des Plinius »Natura in minimis maxima« wird jetzt erst
als wahr erkannt. Geleitet von dem Zweckmäßigkeitsbegriff sucht
man nach einem Verständnis für das Geschaute.

Der Bau und die Entwicklung der Insekten.

In der Überzeugung, daß der Schöpfer alles planvoll eingerichtet
habe und in seinen Werken zu erkennen sei, sehen wir
Swammerdam seine mühevollen Untersuchungen über den Bau
und die Entwicklung der Insekten vollbringen.

Jan Swammerdam wurde am 12. Februar 1637 in Amsterdam
geboren. Sein Vater war Apotheker und besaß ein hervorragendes
Interesse für Naturalien. Er hatte in einem Zeitraum
von 50 Jahren eine reiche Sammlung zusammengebracht. Der
heranwachsende Sohn wurde mit ihrer Instandhaltung betraut und
gewann infolgedessen einen unbezwinglichen Hang zur Naturforschung.
Boerhaave erzählt, der Knabe sei allen Tierchen seiner
Umgebung nachgegangen und habe Luft und Wasser, Felder,
Wiesen, Sandberge, Kräuter usw. nach ihnen durchsucht, um Eier,
Nahrung, Wohnung und Krankheiten kennen zu lernen. Als er
später (von 1661 ab) in Leyden sich dem Studium der Medizin
hingab, schloß Swammerdam sich besonders eng an seinen Lehrer
der Anatomie656 an. Nach Beendigung seiner Studien ging er jedoch
nicht dem ärztlichen Berufe nach, sondern verwendete die erworbenen
anatomischen Kenntnisse auf die Zergliederung der kleinsten
Lebewesen, deren äußere Form und Lebensgewohnheiten ihn während
seiner Knabenzeit schon in solch hohem Grade gefesselt hatten.

In Leyden lernte Swammerdam auch den hervorragenden
dänischen Forscher Nicolaus Steno kennen, der später in Toskana
weilte und dort die Grundlagen der Geologie schuf657. Der
Großherzog von Toskana, der sich 1668 in Holland aufhielt, wurde
damals auch mit Swammerdam bekannt und besichtigte dessen
Sammlungen. »Nichts verwunderte den Großherzog so sehr«, erzählt
Boerhaave in seiner Schilderung des Lebens Swammerdams,
»als daß letzterer zeigte, wie ein Falter zusammengerollt in
einer Puppe steckt. Aus dieser nahm ihn Swammerdam mit unglaublicher
Geschicklichkeit und mit unbegreiflich feinen Werkzeugen
heraus, um dem Fürsten die verwickelten Teile des Insekts
auf das deutlichste auseinanderzusetzen«. Der Großherzog bot
Swammerdam für seine Sammlung 12000 Gulden und knüpfte
an dieses Anerbieten die Bedingung, daß der Forscher an den
toskanischen Hof kommen und dort die Sammlung verwalten und
bereichern sollte. Leider schlug Swammerdam dieses Anerbieten,
sowie jede andere Anstellung aus. Er starb, kränklich und verarmt,
im Jahre 1680.

Seinen Fleiß im Nachspüren nennt Boerhaave658 mehr als
menschlich. Sobald ihm die Sonne hinreichendes Licht spendete,
begann er unter freiem Himmel seine feinen Präparate zu betrachten.
Während der Abend- und der Nachtstunden wurde beschrieben
und gezeichnet. Bei der Untersuchung benutzte er Gläser
von sehr verschiedener Schärfe. Der betreffende Gegenstand wurde
zuerst bei schwacher Vergrößerung untersucht, dann betrachtete er
ihn mit immer kleineren Linsen. Die Scheren, Messer und Lanzetten,
deren sich Swammerdam bediente, waren so klein, daß
er sie unter dem Vergrößerungsglase schleifen mußte. Um den
Verlauf der zarten Gefäße zu verfolgen, blies er sie mit Hilfe
feiner gläserner Röhren auf, oder er füllte sie mit gefärbten Flüssigkeiten.
Auf solche Weise pflegte er die Gedärme einer Biene so
deutlich zu zeigen, wie man es bisher nur an größeren Tieren zu
tun vermochte. Swammerdams zootomische Arbeiten erstreckten
sich auch auf die Weichtiere (z. B. die Weinbergsschnecke und
die Sepie), sowie die Amphibien. Der Bau und die Entwicklung
des Frosches wurden von ihm mit einer so weitgehenden Genauigkeit
untersucht, daß Swammerdams Befunde über den Bau der
Urogenitalorgane erst durch Arbeiten des 19. Jahrhunderts ihre
Bestätigung gefunden haben659.

Unter den zahlreichen Kunstgriffen, die Swammerdam in die
Anatomie einführte, seien noch folgende erwähnt. Er benutzte
saure Flüssigkeiten, welche den zarten Teilen bei längerer Einwirkung
größere Festigkeit und Härte verliehen. Um das, manche
Organsysteme einhüllende, den Einblick in die Form und den Zusammenhang
der Teile hindernde Fett zu entfernen, wandte er als
Lösungsmittel Terpentinöl an. Mitunter verwandte er ganze Tage
darauf, das Fett aus einer Raupe zu entfernen. Zum Injizieren
bediente er sich nicht nur gefärbter Flüssigkeiten, sondern er benutzte
zu diesem Zwecke auch geschmolzenes Wachs. Auch den
Kunstgriff, kleinere Tiere unter Wasser zu zerlegen, so daß die
voneinander gelösten Teile ins Flottieren kamen und sich so leichter
trennen und verfolgen ließen, hat Swammerdam in die anatomische
Technik eingeführt.

Wenden wir uns Swammerdams Untersuchungen der niederen
Tierwelt im einzelnen zu, so ist vor allem seine Abhandlung über
den Bau und die Entwicklung der Bienen zu nennen. Nach einem
Ausspruch Boerhaaves, der Swammerdams Schriften unter dem
Titel »Bibel der Natur« herausgab, ist das Buch über die Bienen
ein Werk, das bis auf jene Zeiten nicht seinesgleichen gefunden
hatte. Nach Boerhaave ist es im Anfange der 70er Jahre des
17. Jahrhunderts entstanden. Swammerdam, dessen Augen durch
die unermüdliche Anstrengung schließlich »ganz stumpf« geworden
seien, habe sich daran »zu schanden« gearbeitet.

Um von der Forschungsweise Swammerdams und den Ergebnissen
seiner Untersuchungen einen Begriff zu geben, sei einiges
aus dieser, für die Entwicklung der Zootomie so wichtigen Abhandlung
über die Biene mitgeteilt.

Zunächst werden die drei Formen, die Männchen, die Weibchen
und die Arbeitsbienen, genau beschrieben und ihre Lebensweise geschildert.
Dann folgt die Beschreibung der inneren Organe. Das
obere und das untere Schlundganglion werden als Gehirn und
kleines Gehirn unterschieden. Von letzterem geht nach Swammerdams
Entdeckung das Mark aus. Es zieht sich durch den ganzen
Körper, indem es in gewissen Abständen knotige Verdickungen
bildet, aus denen die feineren Nerven hervorsprießen.

In der Brust erblickt Swammerdam die Muskeln der Flügel
und der Beine, sowie die Luftröhren. Im Hinterleibe findet er
die Speiseröhre, die sich durch die Brust erstreckt, den Magen,
die dünnen und die dicken Gedärme, sowie besondere, zum Darm
gehörende Drüsen und die Atmungswerkzeuge mit ihren Bläschen
und Luftröhren. Das Herz erblickt er gleichfalls, sowie eine
Menge Fett und die Muskeln, die unter den Ringen liegen und
sie bewegen.

Sehr genau wird die Entwicklung der Biene von dem Verlassen
des Eies an beschrieben. Und zwar beschränkt sich Swammerdam
nicht etwa auf die Veränderungen, welche die äußere
Form erleidet, sondern er geht auf das Wachstum der inneren
Organe ein und gelangt dadurch als erster zu einer klaren Auffassung
der bis dahin in ihrem Wesen so sehr verkannten Metamorphose
der Insekten.

Vor der Zergliederung brachte er die zu untersuchenden Tiere
in farbige Flüssigkeiten. Auf die Weise bekam er Teile zu sehen,
die sonst nicht oder nicht deutlich genug hervortreten. Öffnete
er die Bienenlarve auf der Rückenseite, so quoll ihm nach seiner
Schilderung eine Flüssigkeit entgegen, die aus den verletzten Adern
und dem Herzen kam. Unter der Haut traf er die Muskeln,
welche die Ringe des Leibes bewegen; darauf kam das Fett zum
Vorschein und in dem Fett, mitten auf dem Rücken, das Herz
als eine lange, den ganzen Rücken bis zum Kopf durchziehende
und Gefäße nach allen Richtungen aussendende Röhre. Im weiteren
Verlaufe der Zergliederung erblickte er unter dem Herzen den mit
unzählig vielen Luftröhren umflochtenen Magen (s. Abb. 109). Er
fand ihn fleischig und mit einer gelben Substanz gefüllt. Hinten am
Magen (d) zeigten sich vier Gefäßchen (e). Es waren die Malpighischen
Gefäße, die später in weit größerer Zahl auftreten und für
harnabsondernde Organe gelten, während ihnen früher wohl die
Funktion der Leber, also eine Art Gallenbereitung, zugeschrieben
wurde. Swammerdam selbst sagt von ihnen, er habe ihre Aufgabe
nicht erraten können, doch nach langer, unverdrossener Mühe
festgestellt, daß diese Gefäße an den Enden geschlossen sind.



Auf jeder Seite der Bienenlarve wies Swammerdam zehn
Atmungsöffnungen nach. Er erkannte auch, daß sämtliche Luftröhren,
die in den Körper führen, unter sich verbunden sind, und
zwar geschehe dies durch eine Röhre, die von der einen Öffnung
zur nächsten, von dieser zur
dritten und so fort durch den
ganzen Körper ziehe. »Der
Bau dieser Luftröhren«, ruft
er aus, »ist wunderbar, ja sehr
wunderbar; sie bestehen insgesamt
aus dicht nebeneinander
befindlichen Ringen, welche
durch sehr dünne Häutchen
miteinander verbunden sind.
Die Luftröhren stehen immer
offen, wie bei uns Menschen
und den höheren Tieren. Auch
ist bezüglich der Luftröhren
noch zu bemerken, daß sie alle
Teile des Körpers, selbst das
Gehirn und das Auge durchsetzen,
wie ich noch näher bei
der Zergliederung dieses unergründlichen
Kunst- und Meisterstückes
des großen Baumeisters
zeigen werde.«


[image: Abb. 109]
Abb. 109. Swammerdams Zeichnung
des Darmkanals der Biene.

b Saugmagen; d Magen; e Malpighi'sche
Gefäße; p Giftblase; q Giftdrüsen; i Mastdarm;
m Teile des letzten Bauchringes.




Swammerdam beobachtete
auch, daß die Häutung
sich bis auf diese zarten Luftröhren
erstreckt. Es würden
nämlich bei diesem Vorgange
ganze Adern und Röhren ausgestoßen,
so daß die im Innern abgestreiften Luftröhren in
der ihnen eigentümlichen Lage und Gestalt zum Leibe hervordrängen.
Desgleichen häute sich auch der Magen, der Mund
und das Ende des Darmes; doch sei dies schwierig zu beobachten.
Auffällig sei auch, daß, nachdem der Wurm zum Püppchen geworden,
alle Gliedmaßen, Flügel, Fühler und Freßwerkzeuge
Luftröhren besäßen, die beim Ausstrecken dieser Teile mit
Luft gefüllt würden und zur Ausdehnung der Glieder das Ihrige
beitrügen.



Urzeugung oder Entwicklung.

Mit der Schärfe und Sorgfalt der Beobachtung, die sich in
den mitgeteilten Ergebnissen der Untersuchungen Swammerdams
ausspricht, steht die klare, vorurteilsfreie Auffassung, welche dieser
Forscher den Naturerscheinungen entgegenbringt, im Einklang.
Durch Swammerdam, sowie den gleichzeitig lebenden Italiener
Redi wurde die seit jeher in den Köpfen der Gelehrten wie
der Ungelehrten spukende Ansicht von der Urzeugung niederer
Tiere, wenn auch nicht gänzlich beseitigt, so doch für zahlreiche
Fälle widerlegt. Wie in früheren Jahrhunderten verschanzte sich
nämlich auch im 18. die Unwissenheit stets wieder hinter dieser Irrlehre.
Harvey, der in seiner Schrift über die Erzeugung der
Tiere660 Hervorragendes geleistet und das Wort »Ex ovo omnia«
an ihre Spitze gestellt hatte, besaß durchaus keine klaren Vorstellungen
über die Entwicklung der Insekten und der übrigen
niederen Tiere. »Einige Geschöpfe«, sagt er, »werden aus einem
schon fertigen Stoffe vollends gebildet und aus einer Gestalt in
die andere verändert. Alle Teile werden zugleich durch eine Verwandlung
geboren und unterschieden. So geschieht die Zeugung
der Insekten661.« Harvey zeigte sich in der Behandlung dieser
Frage also noch ganz von der Überlieferung, sowie der landläufigen
Auffassung beeinflußt, für die schon mit dem Worte »Verwandlung«
der Irrtum eng verknüpft war. Welch sonderbare Vorstellungen
man mit diesem Worte verband, geht auch aus folgenden
Ausführungen Harveys hervor: »Durch die Verwandlung erhalten
die Tiere eine Gestalt wie durch ein eingedrücktes Siegel.
Bei solchen Tieren aber, welche durch Wachstum entstehen, bringt
die Bildungskraft andere und anders geordnete Teile nacheinander
hervor662.« Wenn man bedenkt, daß einer der hervorragendsten
Anatomen des 17. Jahrhunderts solche Anschauungen hegte, ein
Mann, der selbst heute wohl noch auf Grund des oben erwähnten
Wortes als ein Bekämpfer der Lehre von der Urzeugung betrachtet
wird663, so erscheint die Bedeutung Swammerdams erst in vollem
Lichte. Wo der letztere das Wort Verwandlung gebraucht, will
er darunter nichts anderes verstanden wissen, als eine langsame,
auf natürliche Weise vor sich gehende Gestaltung der Gliedmaßen,
die unter der ursprünglichen Hülle stattfindet und sich daher der
unmittelbaren Beobachtung entzieht, bis die neue Form die alte
Haut plötzlich zersprengt.

Swammerdam hält es für ausgemacht, daß in der ganzen
Natur keine Urzeugung, sondern nur Fortpflanzung stattfindet,
und daß jedes wirbellose Tier aus einem Ei hervorkommt, das ein
anderes Tier derselben Art gelegt hat. Zwar ist es ihm nicht
möglich, für alle Fälle diese Ansicht durch die Beobachtung zu
erweisen. Das von ihm beigebrachte Material ist indes umfangreich
genug, um diese Verallgemeinerung zu rechtfertigen. Dazu
tritt der von ihm geführte Analogiebeweis durch die Aufdeckung
einer von den Anhängern der Urzeugung nicht vermuteten Feinheit
im inneren Bau der niederen Tiere. »Alle Züge des Apelles«,
sagt Swammerdam in seiner Anatomie des Nashornkäfers664, »sind
gegen die zarten Striche der Natur nur grobe Balken. Alles
künstliche Gewebe der Menschen muß sich vor einer einzigen
Trachee verkriechen. Wer will sie abbilden? Welcher Witz vermag
sie zu beschreiben? Welcher Fleiß kann sie hinlänglich
untersuchen?« Da also die Organe der Insekten sich als ebenso
vollendet, zweckmäßig und kunstvoll gearbeitet erweisen wie diejenigen
der allergrößten Geschöpfe, so konnten jene Wesen auch
unmöglich, wie die Anhänger der Urzeugung wollten, durch einen
zufälligen Zusammenfluß von Stoffen entstanden sein, sondern sie
mußten sich gleich den höheren Tieren durch elterliche Zeugung
gebildet haben.

Indem Swammerdam bei den Insekten die Verschiedenheiten
in der Entwicklung hervorhob, schuf er zugleich die Grundlage
für die heutige Systematik dieser Tierklasse. Der erste Fall besteht
nach ihm darin, daß das Tier, in allen seinen Gliedmaßen
vollkommen ausgebildet, das Ei verläßt. Als ein Beispiel dieser
Gruppe wird die Laus genauer untersucht. Bei dem zweiten Typus
findet nach dem Verlassen des Eies nur noch ein allmähliches
Heranwachsen der Flügel statt, ein Ruhezustand (Puppenstadium)
tritt nicht ein. Swammerdam schildert diesen Fall bei der Libelle.
Bienen, Ameisen und Käfer kommen unentwickelt aus dem Ei
hervor und erhalten die vollkommene Gestalt durch allmähliche
Ausbildung der Gliedmaßen unter der Haut. »Endlich«, sagt
Swammerdam, »treten alle Glieder, nachdem die Haut abgestreift
ist, hervor. Der Vorhang, der soviel Irrungen unter den Gelehrten
angestiftet hat, wird sozusagen fortgezogen.«

Wie erstaunte aber unser Forscher, als einmal aus vier
Puppen eines Tagschmetterlings anstatt des erwarteten Falters
zahlreiche, kleine, geflügelte Insekten hervorbrachen! Eine Erklärung
dieser merkwürdigen Erscheinung konnte erst später erfolgen,
als man das geheimnisvolle Treiben der Schlupfwespen
kennen gelernt hatte. Diese legen bekanntlich ihre Eier in die
Larven anderer Kerbtiere, so daß die Puppe von der sich entwickelnden
jungen Brut, die endlich die Haut durchbricht, aufgezehrt
wird.

Einen Bundesgenossen, der auf dem Wege des planmäßigen
Versuches gleichfalls zur Erschütterung der Lehre von der Urzeugung
beitrug, fand Swammerdam in dem Italiener Redi665.
Dieser lieferte in einer 1668 erschienenen Schrift, die er »Versuche
betreffend die Erzeugung der Insekten« betitelte, den Nachweis,
daß in den von ihm untersuchten Fällen vermeintlicher Urzeugung
die Insekten nicht aus faulenden Stoffen, sondern aus
Eiern entstanden, welche Tiere derselben Art vorher in jene Stoffe
gelegt hatten. In richtiger Vorahnung der Erkenntnis einer
späteren Zeit bemerkt Swammerdam hierzu, kein Tier werde
durch Fäulnis erzeugt, sondern es werde umgekehrt die Fäulnis
erst durch die Tiere verursacht.

Am bekanntesten ist Redis Versuch, durch den er die Entstehung
der Fleischmaden auf Fliegeneier zurückführte. Wurde
nämlich das Fleisch mit einem feinen Netz bedeckt, das die
Fliegen an der Ablage der Eier hinderte, so traten auch keine
Maden auf.

Auch für einige parasitische Würmer lieferte Redi den Nachweis,
daß sie durch Zeugung entstehen. Trotzdem fand die Lehre
von der Urzeugung immer wieder der Forschung noch zu sehr verschlossene
Gebiete, wo sie ihr Dasein bis in die neueste Zeit hinein
weiter fristen konnte. Über Redi sei noch erwähnt, daß er sich
auch um die Anatomie der Schlangen, des Zitterrochens und der
Vögel Verdienste erworben hat. Seine Untersuchung des Vogelkörpers
erstreckte sich besonders auf die Luftsäcke, die von
der Lunge aus der Luft einen Zutritt bis in die Knochen
gestatten.



Der hervorragendste Forscher auf den Gebieten der Anatomie,
der Physiologie und der Entwicklungsgeschichte, den das Italien
des 17. Jahrhunderts hervorbrachte, war
Marcello Malpighi666 (1628 bis 1694),
ein Schüler und Freund Borellis.
Seine Verdienste um die Einführung
des Mikroskops in das naturwissenschaftliche
Studium, sowie um die Begründung
der Anatomie der Pflanzen
wurden schon gewürdigt. Malpighi
machte von Swammerdams Erfindung
der Injektion, d. h. der Erfüllung
feiner Gefäße mit gefärbten Flüssigkeiten
oder erstarrenden Massen (z. B.
geschmolzenem Wachs) ausgedehnten
Gebrauch. Gleich dem niederländischen
Forscher, der die Hoffnung aussprach,
daß man durch das Studium der Insekten
zu den Gründen der Zeugung
anderer Tiere gleichsam hinaufsteigen
werde, läßt Malpighi sich von dem
richtigen Gedanken leiten, durch die
Erforschung der niederen Formen ein
tieferes Verständnis des Baues der
höheren Tiere anzubahnen, ein Gedanke,
der ihn zur Beschäftigung mit
den Pflanzen, als den einfachsten Organismen,
geführt hatte. So lieferte
Malpighi eine für jene Zeit mustergültige
Arbeit über den Seidenschmetterling667,
dessen Anatomie und
Entwicklung er eingehend untersuchte.
Diese Arbeit enthält die erste Beschreibung
des Rückengefäßes und des
Nervensystems der Insekten, sowie
der Spinndrüsen und der nach ihrem
Entdecker genannten Blindsäcke, die
Swammerdam später auch in der Biene nachwies668.


[image: Abb. 110]
Abb. 110. Malpighis Darstellung
des Nervensystems beim
Seidenschmetterling669.





Die Abb. 110 (s. vorige Seite) gibt uns Malpighis Zeichnung
des bauchständigen zentralen Nervenstranges wieder. Malpighi
unterschied an ihnen 13 Nervenknoten. Von diesen aus verfolgte er
die Nervenstränge bis in ihre einzelnen Verzweigungen. Er zeigte
z. B., daß von den Knoten I, I aus Nerven nach den Augen und nach
den Freßwerkzeugen geschickt werden. Die Knoten GG befinden
sich nach seiner Schilderung zwischen den beiden vordersten Öffnungen
des Tracheensystems.
Dann treten
die beiden Nervenstränge
in O weit auseinander
und bilden
auf diese Weise den
Schlundring. M endlich
bezeichnet die
letzten feinen Verzweigungen
des ganzen
Stranges.


[image: Abb. 111]
Abb. 111. Malpighi untersucht die Verbindung
eines Nervenknotens mit dem Tracheensystem.



Die erste Figur
der Tafel II (siehe
Abb. 111) zeigt uns,
mit welcher Genauigkeit
Malpighi den
Lauf der von den
paarweis sich gegenüberstehenden
Öffnungen
(Stigmen) 1–9
(Abb. 110) ausgehenden
Tracheen verfolgt
hat. Die Figur stellt
die feinsten Tracheenverzweigungen
dar, die einen Nervenknoten versorgen. Wenn man
sich vergegenwärtigt, welch winziges Gebilde ein solcher Knoten ist,
so muß man nicht nur die Sorgfalt des Forschers anerkennen, sondern
auch die Güte, die das Mikroskop innerhalb eines verhältnismäßig
so kurzen Zeitraums erreicht hatte. Die große, obere Trachee PD,
deren Spiralwindungen zu erkennen sind, verbindet zwei einander
gegenüber befindliche Stigmen. Sie sendet Äste, die in die feinsten
Verzweigungen auslaufen, nach dem benachbarten Nervenknoten.
Den übrigen Knoten und dem sie verbindenden Mark, sowie allen
übrigen Geweben wird in entsprechender Weise Luft zugeführt.



In Malpighis Arbeit über den Seidenschmetterling werden
auch die Verdauungsorgane und der Fortpflanzungsapparat beschrieben.
Ferner sucht Malpighi die Veränderungen festzustellen,
welche die einzelnen Organsysteme während der verschiedenen
Entwicklungsstufen des Insekts durchlaufen.

Anfänge der Embryologie.

Ein Gegenstück zur Entwicklungsgeschichte des Seidenschmetterlings
lieferte Malpighis Untersuchung der Entstehung eines Wirbeltieres,
nämlich des Hühnchens im Ei. Es wird damit ein Problem
wieder aufgenommen, das schon Aristoteles und den der vorigen
Periode angehörenden Fabricio beschäftigt hatte. Auch zur Bewältigung
dieser Aufgabe, die erst im 19. Jahrhundert, seitdem
v. Baer die Embryologie zur wichtigsten Grundlage der zoologischen
Forschung erhob, einer befriedigenden Lösung entgegengeführt
wurde, hat Malpighi zum erstenmal die Hilfe des Mikroskops
in Anspruch genommen. Insbesondere wurde die Entstehung
der Wirbelsäule, sowie der Gehirnabteilungen am Hühnchen verfolgt.

Wir wollen auch bei dieser Abhandlung, die Malpighi »Über
das bebrütete Ei« betitelte und 1672 herausgab, einen Augenblick
verweilen, da sie die Grundlage für alle weiteren entwicklungsgeschichtlichen
Arbeiten geworden ist. Der Wert der Abhandlung
wird dadurch noch erhöht, daß Malpighi ihr eine größere Zahl (59)
vortrefflicher Abbildungen beigegeben hat. Die zweite Tafel, welche
die Entstehung der Wirbelsäule und der Gehirnanlagen erkennen
läßt, ist in nachstehender Abbildung 112 wiedergegeben. In
Fig. VIII erblicken wir eine Furche, die Primitivrinne oder nach
Malpighis Bezeichnung die Carina. A ist als Kopfende, dem
sich die erste Andeutung des Halses ansetzt, und D, D sind als
die Wirbelanlagen zu erkennen.

In Fig. XI zeigt uns Malpighi, daß am Grunde der Rinne
sich das Rückenmark (C) bildet, dem in der Kopfgegend einige
blasenartige Auftreibungen (Vesiculae cerebri nennt sie Malpighi)
anhängen. Wie sich die Rinne allmählich schließt und mit ihren
Rändern verwächst, zeigt Fig. XVII. Die untere Abbildung stellt
die Umgebung der embryonalen Anlagen dar. Wir erkennen aus
Malpighis Zeichnung den Sack F und mehrere Zonen, von denen
er die Zone H Area umbilicalis nennt.

In Fig. XVII erscheint zuerst die Anlage des Herzens (D) als
ein einfaches Rohr. Gleichzeitig bemerkt man (Fig. XVIII) auf
der als Area umbilicalis bezeichneten Zone zahlreiche Gefäße, die
bei B dargestellt sind (Abb. 113). Diese Gefäße sehen, wie Malpighi
beobachtete, zuerst gelblich aus, nehmen aber bald eine
rötliche Farbe an.
Fig. XIX (siehe Abbildung
112) stellt
das Erscheinen der
Augen (A) zu beiden
Seiten der Hirnanlage
dar.


[image: Abb. 112]
Abb. 112. Malpighis Darstellung der Entwicklung eines Wirbeltieres.



Man muß Malpighi
das große
Verdienst zuerkennen,
daß er eine
fast den ganzen
Gang der Entwicklung
des Embryos
umfassende Darstellung
gegeben hat, die
in vielen Punkten
durch spätere Untersuchungen
vollste
Bestätigung fand,
und grundlegend für
die weitere Bearbeitung
der Embryologie
geworden ist670.


[image: Abb. 113]
Abb. 113. Malpighis Darstellung der Entwicklung
eines Wirbeltieres.



Zu einer genaueren Untersuchung des Nervensystems, insbesondere
des Gehirns, erwiesen sich die Mikroskope, mit denen
Malpighi seine Forschungen anstellte, noch nicht als ausreichend.
So faßte er z. B. die Nerven als hohle Röhren und das Gehirn
als ein drüsenartiges Organ auf. Diese Sinnestäuschungen führten
auf dem Gebiete der Physiologie und der so eng mit ihr verknüpften
Psychologie zu sonderbaren Irrlehren. Man nahm z. B.
an, daß feine, flüssige Absonderungen im Gehirne abgeschieden
und als Lebensgeister (Spiritus animales) durch die Nerven in
einer dem Kreislauf des Blutes ähnlichen Bewegung, dem ganzen
Körper zugeführt würden.



Die Entdeckung mikroskopisch kleiner Organismen.

Während die zuletzt genannten Mikroskopiker dieses Zeitraumes
bei ihren Forschungen planmäßig zu Werke gingen, entsprangen
die Untersuchungen Leeuwenhoeks mehr der Liebhaberei
als einem Streben nach Vertiefung in den Gegenstand.
Leeuwenhoek eröffnet die Reihe jener Männer, die insbesondere
während des 18. Jahrhunderts eifrig mikroskopierten, um »ihr
Gemüt und ihre Augen zu ergötzen«671. Doch ist ihm eine Fülle
mikroskopischer Funde zu verdanken. Seine sich über 50 Jahre
erstreckenden Beobachtungen hat er in einer Reihe von Briefen
mitgeteilt, die später zu einem Werke vereinigt wurden672.

Anton van Leeuwenhoek wurde 1632 in Delft geboren.
Er wurde zum Kaufmannsstande bestimmt, wandte sich aber, ohne
eine wissenschaftliche Ausbildung erlangt zu haben, der Verfertigung
von Linsen und der Erschließung der gesamten bisher
unsichtbaren Welt des Kleinen zu. Seine Abhandlungen über die
entdeckten Naturwunder sandte er an die Royal Society, die sie in
den Philosophical Transactions veröffentlichte. Die erste dieser
Abhandlungen datiert vom Jahre 1673. Das Werk, in dem er
sämtliche Abhandlungen vereinigte, erschien zuerst in holländischer
Sprache. Leeuwenhoek verstand nämlich kein Latein. Von
1695–1719 wurde es unter dem Titel »Arcana naturae ope microscopiorum
detecta« (Geheimnisse der Natur mit Hilfe der Mikroskope
entdeckt), in vier starken Bänden und durch viele Abbildungen
erläutert, herausgegeben. Die Royal Society machte Leeuwenhoek
zu ihrem Mitgliede. Er starb im Alter von 90 Jahren (1723)
zu Delft, wo ihm ein prächtiges Denkmal errichtet wurde.

Am bekanntesten ist Leeuwenhoek durch seine 1675 erfolgte
Entdeckung der Aufgußtierchen geworden, von denen er
eine Anzahl Formen beschrieb. Er sah und beschrieb auch die
Rädertiere. Die Mängel, die seinen Hilfsmitteln noch anhaften,
verleiteten ihn, den Infusorien Organe und Verrichtungen (wie die
Begattung) zuzuschreiben, die bei ihnen nicht vorkommen. Leeuwenhoek
entdeckte die Infusorien nach seiner Schilderung in
Aufgüssen und im Schleime des Mundes. Über letzteren berichtet
er folgendes673: »Ich untersuchte die weiße Masse, die sich zwischen
den Zähnen bildet und mischte sie mit Regenwasser, in dem sich
keine Tierchen befanden. Ich nahm dann zu meiner großen Verwunderung
wahr, daß sich in der erwähnten Masse viele, sehr
kleine Geschöpfe befanden, die sich in der ergötzlichsten Weise
bewegten.« Zur Erläuterung des Gesagten
diene nebenstehende Abbildung
114 Leeuwenhoeks, die
offenbar Bazillen und Aufgußtierchen
darstellt.


[image: Abb. 114]
Abb. 114. Leeuwenhoeks Abbildung
von im Schleime des
Mundes vorkommenden Infusorien
und Bazillen674.



Im Zusammenhang mit diesem
Nachweis mikroskopisch kleiner Organismen
im lebenden Körper entstand
schon im 17. Jahrhundert eine,
allerdings noch sehr phantastische
und den Kausalzusammenhang noch
kaum berücksichtigende, Lehre von
den organisierten Krankheitserregern
(dem Contagium animatum)675. Während
des 18. Jahrhunderts gewann
durch die weitere Ausdehnung der
mikroskopischen Forschung die Vermutung,
daß ein ursächlicher Zusammenhang zwischen gewissen
Krankheiten und niederen Organismen besteht, mehr und mehr
festen Boden, bis dann im 19. Jahrhundert die Lehre vom Contagium
animatum zu einem fest begründeten Bestandteil der Pathologie
nicht nur des Menschen, sondern auch der höheren Tiere
und Pflanzen wurde.

Auch die Zellen der Hefe hat Leeuwenhoek (1680) wahrgenommen,
ohne sie jedoch als Organismen zu deuten.

Er bemerkte ferner die Blutkörperchen und das bekannte
wunderbare Schauspiel der Zirkulation des Blutes in dem Körper
der Froschlarven. »Als ich den Schwanz dieses Würmchens untersuchte«,
so berichtet er, »nahm ich ein Schauspiel wahr, das alles
übertraf, was ich bisher beobachtet habe. Ich sah nicht nur das Blut
durch die feinsten Gefäße von der Mitte des Schwanzes zu den
äußeren Teilen strömen, sondern jedes Gefäß machte eine Biegung
und beförderte das Blut wieder zur Mitte des Schwanzes zurück,
damit es von neuem zum Herzen ströme«676. Leeuwenhoek bemerkte
auch die Knospung der Süßwasserpolypen, sowie die parthenogenetische
Fortpflanzung der Blattläuse, die er mit folgenden
Worten schildert: »Die von mir entdeckte Art der Fortpflanzung
dieser Geschöpfe erschien mir merkwürdiger als irgend eine der
bisher bekannt gewordenen. Vergebens suchte ich nach Eiern oder
Männchen. Endlich beschloß ich, die größeren von ihnen aufzuschneiden,
damit ich Eier aus ihrem Körper erhielt. An Stelle
der Eier zog ich jedoch voll Verwunderung kleine Tierchen hervor,
die in ihrem Aussehen den Muttertieren so ähnlich waren wie
ein Ei dem andern. Nicht nur eins, sondern wohl vier zog ich
vollkommen ausgebildet aus demselben Körper677 hervor.«

Leeuwenhoek beobachtete auch, daß die Ameisen gern die
Blattläuse aufsuchen, glaubte aber, daß letztere von den Ameisen
verzehrt würden, während diese ja nur den von den Blattläusen
ausgeschiedenen, als Honigtau bezeichneten Saft genießen. Für
den Honigtau, von dem man bisher annahm, daß er aus der Luft
auf die Blätter gelange, wies Leeuwenhoek den tierischen Ursprung
nach.

Mikroskopie und Anatomie.

Die grundlegenden Entdeckungen, die Leeuwenhoek über
den mikroskopischen Bau des Menschen und der höheren Tiere
machte, sind so zahlreich, daß sie hier nicht alle erwähnt werden
können. Er erkannte den faserigen Bau der Nerven, beging allerdings
den Irrtum, die Nervenfaser für hohl zu halten. Ferner erfuhr
die Anatomie des Auges die größte Erweiterung durch
Leeuwenhoeks mikroskopische Untersuchung dieses so oft schon
vor ihm durchforschten Organs. Er fand, daß die Linse aus
elastischen Fasern zusammengesetzt ist, die mehrere Schichten
bilden, so daß dieser Teil des Auges in drei Teile gespalten werden
kann. Auch für die Hornhaut wies Leeuwenhoek die faserige
Beschaffenheit und das Vorhandensein eines epithelialen Überzugs
nach. Ferner machte er am Auge noch die wichtige Beobachtung,
daß die Netzhaut, der er eine genauere Beschreibung widmet, eine
Stäbchenschicht enthält, wenigstens finden wir bei ihm die erste
Andeutung einer solchen678. Am Insektenauge wies Leeuwenhoek
die Zusammensetzung aus zahlreichen Facetten nach. Er entdeckte
ferner die Schuppen der Oberhaut, die Röhrchen in der
Zahnsubstanz und zahllose andere Einzelheiten.


[image: Abb. 115]
Abb. 115. Leeuwenhoeks Darstellung der Muskelfasern des Herzens.



Nachdem im Jahre 1677 der in Leyden studierende Deutsche
Ludwig Ham die wunderbare Entdeckung gemacht hatte, daß
der menschliche Samen selbständig sich bewegende Gebilde enthält,
die man Samentierchen nannte, bestätigte Leeuwenhoek
diese Beobachtung. Er beschränkte sich aber nicht auf diesen
einzelnen Fall, sondern dehnte die Frage nach dem Vorkommen
ähnlicher Gebilde über das gesamte Tierreich aus und vermochte
bei allen Klassen das Vorhandensein von Samenfäden nachzuweisen.
Dadurch erhielt die von Harvey begründete Lehre von der Evolution
eine wesentliche Umgestaltung. Leeuwenhoek glaubte
nämlich, daß in den Samenfäden die Anlage des Embryos enthalten
sei, und daß den weiblichen Geschlechtsorganen etwa die
Rolle von Brutbehältern zukäme.

Endlich sei hervorgehoben, daß Leeuwenhoek als erster
die Querstreifung der willkürlichen Muskeln bemerkte. Die obenstehende
Abb. 115 zeigt seine Darstellung einiger Muskelfasern
des Herzens, welche die Eigentümlichkeit besitzen, sich netzartig
zu verzweigen, während die gewöhnlichen Fasern parallel
laufen679.

Die größte Bewunderung hat es erregt, daß Leeuwenhoek
eine gewaltige Summe verhältnismäßig oft recht schwieriger Beobachtungen
nicht mit dem zusammengesetzten, sondern mit dem
einfachen Mikroskop gemacht hat, obgleich Robert Hooke dem
erstgenannten Hilfsmittel schon um 1660 eine für wissenschaftliche
Arbeiten ganz geeignete Form gegeben hatte. Mit seinen
einfachen bikonvexen Linsen, die Leeuwenhoek mit unübertrefflicher
Geschicklichkeit anzufertigen wußte, erreichte er eine 160fache
lineare Vergrößerung. Nach seinem Tode gelangten diese Vergrößerungsgläser
in den Besitz der Royal Society. Mit solch einfachen
Hilfsmitteln ließen sich die erwähnten Funde nur machen,
wenn das Auge des Beobachters von außergewöhnlicher Schärfe
und gut geschult war, und wenn sich dazu noch eine ganz außerordentliche
Geschicklichkeit und Ausdauer gesellten. Bezüglich
der Abbildungen Leeuwenhoeks ist allerdings mit Recht bemerkt
worden, daß sie mit den von Malpighi und anderen Forschern
jener Zeit herrührenden Abbildungen den Vergleich nicht aushalten.

Diese Musterung der Erfolge eines Steno, Grew, Malpighi,
Swammerdam und Leeuwenhoek lehrt, daß in der zweiten
Hälfte des 17. Jahrhunderts der gewaltige Anstoß, der mit der
Begründung der Dynamik anhob und darauf die gesamte Physik
und Astronomie ergriff, auch auf die übrigen Gebiete der Naturwissenschaften
seine Wirkung übte, so daß überall neue Grundlagen
geschaffen wurden. Auf diesen hat das nachfolgende 18. Jahrhundert
während des größten Teiles seines Verlaufes in ruhiger Entwicklung
weiter gebaut. Erst gegen das Ende des 18. Jahrhunderts
trat von neuem ein Umschwung auf fast allen Gebieten ein. Er
kennzeichnet den Beginn der neuesten und letzten Periode in der
Entwicklung der Wissenschaften, die uns nicht nur unmittelbar in
die Geschehnisse des Tages hinüberleitet, sondern auch zahlreiche
Keime künftiger Verallgemeinerungen, Entdeckungen und Erfindungen
in sich birgt.




17. Die Begründung der Pflanzenanatomie und
der Lehre von der Sexualität der Pflanzen.


[image: Abb. 116]
Abb. 116. Die älteste Abbildung, welche den
zelligen Bau der Korksubstanz erläutert680.



Hooke, dessen Verdienst um die Verbesserung des Mikroskops
wir kennen gelernt haben, war der erste, der den zelligen Bau der
Pflanzen entdeckte, ohne indes im entferntesten die Bedeutung des
Gesehenen zu ahnen. Als er den dünnen Schnitt eines Flaschenkorkes
betrachtete, erblickte er zahlreiche, durch Wände getrennte
Räume, denen er die
bis auf den heutigen
Tag für die Elementarorgane
des Tier-
und Pflanzenkörpers
gebliebene Bezeichnung
»Zellen« gab.
Er berechnete, daß
1200 Millionen solcher
Zellen auf einen
Kubikzoll Kork kommen.
Die nebenstehende
Abb. 116 ist
eine Wiedergabe des
ältesten Bildes, das
den zelligen Bau einer
pflanzlichen Substanz
darstellt681. Die gleiche
Art des inneren Gefüges
wies Hooke
für das Mark des
Hollunders, sowie für das Holz verschiedener Pflanzen nach. Dabei
entging es ihm nicht, daß die Zellen oft langgestreckt und im
frischen Zustande mit Saft gefüllt sind. Hooke bemerkte manche
weitere Einzelheit. So beschreibt er die Spiralgefäße des Holzes,
die Brennhaare der Nesseln, deren Saft er als die Ursache des
Brennens erkannte682, den Bau der Schimmelpilze usw.

Nur gelegentliche Entdeckungen über den inneren Bau der
Pflanzen machte Leeuwenhoek, dessen Verdienste um die mikroskopische
Erforschung des
Tierleibes wir im vorigen
Abschnitt kennen gelernt
haben. So entdeckte Leeuwenhoek
die Tüpfel auf
den im Holz verlaufenden
Gefäßen. Die merkwürdige
Erscheinung richtig zu deuten,
gelang erst im 19. Jahrhundert.
Leeuwenhoek
war auch der erste, der auf
das Vorkommen von Kristallen
im Innern der
Pflanze hinwies.


[image: Abb. 117]
Abb. 117. Leeuwenhoek bildet die einfachen
und die gehöften Tüpfel der Holzfasern einer
Kiefer ab683.



Seine nebenstehend
wiedergegebene Abbildung
(Abb. 117) stellt die Tüpfel
der Holzfasern und der
Markstrahlen einer Kiefer
dar. Die Tüpfel der Markstrahlen
hielt er für Öffnungen.
Auch die Natur
der gehöften Tüpfel verkannte
er gänzlich. Er
sagt darüber folgendes684:
»Die Abbildung zeigt uns etwas vom Holz der Kiefer, das ich
so fein wie möglich der Länge nach spaltete. Infolge der
Feinheit des Splitterchens nahm das Auge deutlich zahlreiche
Kügelchen wahr, die in den Zellen des Holzes (in tubis ligneis)
lagen. Der Anblick ist sehr überraschend, nicht nur wegen der
vollkommenen Rundung dieser Kügelchen, sondern auch weil in
ihnen mitunter ein heller Fleck erscheint. Diese Kügelchen sind
meiner Ansicht derjenige Stoff, den wir als Harz bezeichnen.«

Die Begründung der Anatomie der Pflanzen.

Die ersten planmäßigen, pflanzenanatomischen Untersuchungen
sollten nicht lange auf sich warten lassen. Sie erfolgten durch
Nehemia Grew, einen Landsmann Hookes, und den als Anatomen
und Physiologen hervorragenden Italiener Malpighi. Beide
Männer legten die Ergebnisse ihrer Forschungen fast gleichzeitig
(im Jahre 1671) der Royal Society vor. Eine ausführliche Darstellung
gaben sie in zwei umfangreichen, erst mehrere Jahre
später veröffentlichten Werken685.

Die von Grew und Malpighi unabhängig voneinander angestellten
Untersuchungen verfolgen nicht etwa schon das Ziel,
die Zelle, deren Inhalt man erst viel später seinem Wesen nach
verstehen lernte, als das Grundorgan aller Pflanzenteile nachzuweisen.
Neben der Beschreibung der mit bloßem Auge nur unvollkommen
sichtbaren, äußeren Pflanzenteile, insbesondere der
Blütenorgane, Knospenanlagen, Früchte, Samen usw., beschränken
sie sich vielmehr auf die Darstellung grob anatomischer Verhältnisse.
Die ganze Untersuchung läuft mehr auf eine Zergliederung
der Organe in die einzelnen Gewebe hinaus, als auf den Nachweis
der Gewebselemente und deren gesetzmäßige Verknüpfung. Das
Verfahren ist also das analytische. Als Elemente der Gewebe
werden Fasern und Zellen unterschieden.

Nehemia Grew wurde 1628 als der Sohn eines Geistlichen
in England geboren. Er widmete sich dem ärztlichen Beruf,
daneben aber pflanzenanatomischen Untersuchungen. Grew bekleidete
als Mitglied der Royal Society das Amt ihres Sekretärs.
Er starb im Jahre 1711.

Grews »Anatomie der Pflanzen« zeugt von einer hervorragenden
Geschicklichkeit im Mikroskopieren und von einem ganz
außerordentlichen Beobachtungsvermögen. Will man die Bedeutung
dieses Buches würdigen, so muß man erwägen, daß Grew keinen
Vorgänger auf dem von ihm durchforschten Gebiete hatte, sondern
nur vereinzelte, dazu meist unrichtig gedeutete Beobachtungen vorfand.
Daher konnte sein Buch noch in neuerer Zeit wegen der
klaren Anschauung, die es vermittelt, Anfängern zur ersten Orientierung
von berufenster Seite empfohlen werden686. Die folgenden
Abschnitte mögen aus dem Inhalt des großen, unsterblichen Werkes
einiges wiedergeben.

Neben dem Grund- oder Füllgewebe, für das Grew das noch
jetzt gebräuchliche Wort »Parenchym« einführte, unterschied er
drei Arten von Fasern, die Spiralröhren, die Faserzellen und die
Saftgänge (milk vessels). Nicht verdickte Teile der Zellwände
hatten die ersten Beobachter wohl für Löcher gehalten, durch
welche die Saftbewegung vor sich gehe. Grew widerlegte diese
Ansicht und zeigte, daß es sich hier nicht um Öffnungen handle,
sondern daß das Parenchym am besten mit dem Schaum auf
Flüssigkeiten verglichen werden könne. Der von Grew herstammende
Ausdruck »Gewebe« für alle aus gleichartigen Elementen
bestehenden Zellvereinigungen ist wie der Ausdruck »Parenchym«
in die heutige Terminologie übergegangen. Die zuerst damit verknüpfte
Vorstellung, daß das Innere der Pflanze mit einem künstlichen
Gewebe, einem Spitzengewebe etwa, verglichen werden könne,
hat sich allerdings als unzutreffend erwiesen.

Grew bemerkte auch die Spaltöffnungen der Blattoberhaut.
Diese wichtige Entdeckung leitete ihn auf die Vorstellung, daß
die Blätter den Verkehr des Pflanzeninnern mit der Außenwelt,
also das Ein- und Ausatmen, besorgen. Allerdings war die Chemie
im 17. Jahrhundert noch zu wenig entwickelt, um den Verlauf
dieses Stoffaustausches näher festzustellen.

Da Grew sich stets bemühte, das Gesehene physiologisch zu
deuten, so kann es nicht Wunder nehmen, daß er bei der mikroskopischen
Untersuchung der Blütenteile auch auf die Frage nach
der Sexualität der Pflanze geführt wurde. Er bejahte diese
wichtige Frage, die zehn Jahre nach ihm in Deutschland durch
Camerarius687 gleichfalls im bejahenden Sinne entschieden wurde.
Grews Ausführungen über diesen Punkt lauten etwa folgendermaßen.
In der Blume befinde sich ein Samen erzeugender Teil,
die Staubgefäße, und ein dem Eierstock entsprechender Teil.
Letzterer werde durch die Kügelchen, die sich in den Staubgefäßen
befänden und dem Samen der Tiere gleichwertig seien, befruchtet.
Die Pflanze sei also ein Zwitter688. Trotz dieser, dem Wesen der
Sache nahekommenden Vorstellung gebührt die Priorität der Entdeckung
Camerarius, weil dieser die Notwendigkeit des Zusammenwirkens
von Staubgefäß und Stempel zum Zwecke der Befruchtung
zuerst durch einwandfreie Versuche erhärtete.

Neben Grew ist vor allem der Italiener Malpighi unter den
Begründern der Phytotomie zu nennen. Marcello Malpighi
wurde am 10. März des Jahres 1628 in der Nähe von Bologna
geboren. Er studierte in Pisa, wo er mit dem zwanzig Jahre
älteren Borelli, der ihn unterrichtete, ein enges Freundschaftsbündnis
einging. Borelli war eins der hervorragendsten Mitglieder
der Accademia del Cimento, die im Geiste Galileis die
Erforschung der Natur durch ausgedehnte Anwendung des Experiments
erstrebte. Borelli war es, der die neue Forschungsweise
auf das Gebiet des organischen Lebens ausdehnte, und auf
diesem Wege folgte ihm in Italien Malpighi. Nach Beendigung
seiner medizinischen Studien beschäftigte sich dieser besonders
mit anatomischen Untersuchungen. Im Jahre 1656 wurde er
Professor der Medizin in Bologna. Mit wenigen Unterbrechungen
lehrte er dort bis 1691. In diesem Jahre ernannte ihn der Papst
zu seinem Leibarzt. Infolgedessen siedelte Malpighi nach Rom
über, wo er im Jahre 1694 starb.

Malpighi689 weist insbesondere auf die große Verbreitung der
Spiralröhren hin (Abb. 118). Überall wird die Frage nach der
Funktion der beschriebenen Elemente mit den anatomischen Befunden
verknüpft. Die Physik und insbesondere die Chemie waren
indes noch nicht imstande, der Pflanzenphysiologie ihre unentbehrliche
Hilfe zu gewähren, so daß die Fragen nach der Saftbewegung
und der Ernährung, obwohl sie im Mittelpunkte des Forschens
standen, keine Lösung finden konnten. Malpighi, der sogar eine
derjenigen des Darmes ähnliche Bewegung der Spiralröhren690 wahrgenommen
haben wollte, gelangte immerhin zu der für die weitere
Entwicklung der Ernährungsphysiologie grundlegenden Erkenntnis,
daß die Blätter diejenigen Organe sind, welche die Nahrung der
Pflanzen bereiten. Auch zeigte er, daß das Produkt der Assimilation
von hier aus in die übrigen Teile des Organismus gelangt
und dort entweder zunächst aufgespeichert oder sofort zum Wachstum
gebraucht wird.

Malpighis Werk beginnt mit einer genial entworfenen Skizze
über den Bau und die Verrichtungen der pflanzlichen Organe.
Er nennt diesen Abschnitt Anatomes
plantarum idea. Was er bringt, ist im
wesentlichen dasjenige, was er schon
im Jahre 1671, um sich die Priorität
zu sichern, der Royal Society unterbreitet
hatte, welcher der italienische
Forscher seit 1669 als auswärtiges Mitglied
angehörte. Dann folgt die durch
nicht weniger als 93 Tafeln unterstützte
ausführliche Darstellung.


[image: Abb. 118]
Abb. 118. Malpighis Darstellung
eines Längsschnittes
durch das Holz der Rebe. Man
erkennt die Spiralgefäße (K),
die Holzfasern (M) und horizontal
verlaufende Zellreihen (N).



Von besonderem Werte ist es, zu
erfahren, wie bei Malpighi und denjenigen
seiner Zeitgenossen, in denen
der Geist der neueren Naturwissenschaft
lebte, der Bruch mit der bisherigen
Art der Forschung zum Ausdruck
kam. Die Kriege und die staatlichen
Veränderungen haben nach Malpighis
Ansicht die Entwicklung der
Wissenschaften nicht so ungünstig beeinflußt
wie die verkehrte Art des Studiums.
Bisher habe man nämlich die
Wissenschaften stets in ihrem ganzen
Umfang durchmessen und sie als etwas Fertiges betrachtet, anstatt
sich der andauernden und genauen Durchforschung eines begrenzten
Gebietes zu widmen. Auch er habe sich in der Begeisterung seiner
Jugend gleich an die Anatomie der höheren Tiere gewagt. Da ihm
indessen vieles dunkel geblieben sei, so sei er auf den Gedanken
gekommen, das Wesen der Dinge durch Analogien zu erschließen
und die schwierigeren Erscheinungen durch Vermittlung der einfacheren,
leichter verständlichen zu erforschen. So sei er zur Untersuchung
der Insekten geschritten, um den Körperbau der vollkommneren
Tiere zu begreifen. Aber auch auf diesem Gebiete seien ihm
die Schwierigkeiten noch zu groß erschienen; deshalb habe er sich
zunächst an die Erforschung der Pflanzen begeben, um nach eingehender
Beschäftigung mit ihnen seine Schritte wieder zurück zu
wenden und über die Stufe der Pflanzenwelt den Weg zu den
früheren Problemen zu finden. Eigentlich, meint er mit Recht,
hätte er zur Erklärung des Organischen von der Erforschung der
Mineralien oder gar der Elemente ausgehen müssen. Ein solches
Unternehmen würde jedoch seine Kräfte überstiegen haben.

Malpighi untersucht dann besonders die Anatomie des
Stammes, während er sich bezüglich der Blätter und der Blüten
mehr auf die makroskopischen oder grob anatomischen Verhältnisse
beschränkt. Der äußerste Teil der Pflanze ist eine Haut,
die aus Säckchen (Zellen) besteht. Sie werden im Alter entleert
und stellen eine trockne Oberschicht dar. Darunter kommen netzartig
verschlungene Fasern zum Vorschein, zwischen denen jedoch
wieder längliche Säckchen auftreten, die in horizontaler Richtung
gegen das Holz verlaufen. Ähnlich fand er das Holz aus längs
verlaufenden Fasern und Spiralröhren zusammengesetzt, deren
Maschen von horizontal verlaufenden Schlauchbündeln durchsetzt
sind. Unklar blieb ihm der Ursprung der Holz- und
Rindenschichten aus dem zwischen beiden liegenden Bildungsgewebe,
dem Cambium. Malpighi läßt die Holzlagen aus den
innersten Schichten der Rinde hervorgehen, ein Irrtum, der sich
in der Pflanzenanatomie bis in die ersten Jahrzehnte des 19. Jahrhunderts
hinein erhalten hat. Häufig war ihm der Gedanke gekommen,
daß in der faserigen Rinde die Anlagen, aus denen
jedes Jahr der Holzzylinder vergrößert werde, zusammengedrängt
schon vorher existieren, wie es bei den Schmetterlingen für mehrere
Teile vorkomme, die an der Raupe und der Puppe noch nicht
sichtbar seien. Es begegnet uns also schon hier ein Anklang an
die später soviel umstrittene Lehre von der Evolution in der Anlage
präexistierender, für die Beobachtung aber noch nicht vorhandener
Organe, eine Lehre, die, wie wir sehen werden, zu den
ungereimtesten Konsequenzen führte. Sehr wertvoll war es, daß
Malpighi den ununterbrochenen Zusammenhang der Gewebeschichten
gleich bei der Begründung der Anatomie der Pflanzen
erkannte und in solch treffender Weise hervorhob, daß einige seiner
zusammenfassenden Ausführungen hier Platz finden mögen: »Die
Wurzeln«, sagt Malpighi, »sind bei den Bäumen ein Teil des
Stammes, der sich in der Erde verzweigt und endlich sich in haarfeine
Fäden auflöst. Die feinen Röhren, die im Boden getrennt
verlaufen, sammeln sich nach und nach zu Bündeln und treten
endlich zu einem einzigen großen Zylinder, dem Stamm, zusammen.
Dieser streckt dann infolge der wieder eintretenden Trennung der
Röhren am anderen Ende seine Äste aus, bis die Röhrenbündel
durch immer weitere Teilung in den Blättern ihre letzte Begrenzung
finden.«

Die ausführliche Darstellung Malpighis ist nur in ihren ersten
Abschnitten, die von der Rinde und dem Stamme handeln, anatomischen
Inhalts. In den späteren Abschnitten werden morphologische
Dinge wie die Knospenlage, die Teile der Blüten, Haare, Stacheln,
Ranken usw. beschrieben. Das Hauptinteresse Malpighis wendet
sich der Fortpflanzung und ihren Organen zu. Hier zeigt sich
besonders sein Bemühen eine Analogie zwischen den tierischen
und pflanzlichen Erscheinungen nachzuweisen. Er gelangt zu dem
Ergebnis, daß der Samen der Pflanzen ein Ei ist, das den aus den
wesentlichen Teilen der Pflanze bestehenden Embryo einschließt
und jahrelang entwicklungsfähig bleibt. Unter dem Drucke der
eindringenden Feuchtigkeit entfalten sich die Teile, und das
Pflänzchen wird zum Keimling. Die Keimblätter haben, wie
Malpighi gleichfalls erkannte, die Aufgabe, dem Keimling seine
erste Nahrung zu liefern. Borelli bestritt dies; und durch diesen
Widerspruch wurde Malpighi dazu veranlaßt, den Keimlingsvorgang
einiger Pflanzen, wie des Lorbeers und der Dattelpalme,
recht genau zu untersuchen und durch Abbildungen zu erläutern.
Schon früher hatte er die Keimungsgeschichte von Ricinus verfolgt
und in 20 Abbildungen dargestellt. Über den Vorgang der Befruchtung
und das Wesen des Blütenstaubs blieb Malpighi indessen
noch völlig im Dunkeln. Staubgefäße und Blütenblätter haben
seiner Ansicht nach die Aufgabe, eine Art Reinigung und Läuterung
des Saftes vorzunehmen, aus dem sich der Samen bilden soll.
Die Tatsache, daß sich an den Blütenblättern oft Sekrete absondern,
deren Bedeutung für den Bestäubungsvorgang Malpighi
noch nicht kannte, hat ihn auf jene ganz unzutreffende Ansicht
geführt. Ja, er geht soweit, in der Absonderung des Nektars einen
Vorgang zu erblicken, welcher der Menstruation der höheren Tiere
analog sei. Diese habe nämlich auch die Aufgabe, alle Substanzen,
die das Empfängnisorgan irgendwie beeinträchtigen könnten, fortzuschaffen,
damit der Rest des gereinigten Blutes, das im Uterus
verbleibe, leichter befruchtet und dem Wesen des Tieres angepaßt
werden könne. Man erkennt, auf wie verkehrte Vorstellungen das
Bestreben führen kann, überall Analogien aufzuweisen und hierin
die Hauptaufgabe der Naturerklärung zu erblicken. Es ist in
dieser Hinsicht auch auf späteren Stufen der Wissenschaft oft gefehlt
und weit über das Ziel hinausgeschossen worden. Selbst heute
spielen die falschen Analogien noch eine verhängnisvolle Rolle.
Es ist gerade die Geschichte der Wissenschaften, die uns immer
wieder zu äußerster Vorsicht in dieser Beziehung mahnt.

Die Sexualität der Pflanzen.

Die von Malpighi und Grew begründete Anatomie der
Pflanzen wurde zunächst nicht weiter ausgebaut. Die Physiologen
und vor allem die Systematiker der nachfolgenden Periode glaubten
dieses Zweiges der botanischen Wissenschaft entraten zu können.
Auch besaß das Mikroskop noch nicht diejenige Vollendung, die
es zur Aufhellung feinerer anatomischer Einzelheiten befähigt hätte.
So kam es, daß der Ausbau des in der zweiten Hälfte des 17. Jahrhunderts
erschlossenen Gebietes erst zu Beginn des 19. Jahrhunderts
anhub, um dann in rascher Folge zu Ergebnissen zu
führen, die das Gesamtbild der Botanik wesentlich verändert und
dazu beigetragen haben, daß sie auf den Rang einer induktiven
Wissenschaft erhoben worden ist.

Die hervorragendste Entdeckung, die das 17. Jahrhundert auf
dem Gebiete der Pflanzenphysiologie zeitigte, war der Nachweis
der Sexualität der Pflanzen. Eine Vorahnung treffen wir schon
im Altertum. So berichtet Theophrast über ein beim Feigenbaum
angewandtes, als Kaprifikation bezeichnetes Verfahren, das
auf die Erzielung besserer Früchte hinausläuft. Man hatte seit
alters beobachtet, daß auf der wilden Feige (Caprificus) eine Gallwespe
(Cynips psenes, L.) lebt, durch deren Stich die Früchte an
Saft, an Zuckergehalt und Größe zunehmen. Aus diesem Grunde
hing man angestochene wilde Feigen an die in den Gärten gezogenen
Feigenbäume, damit die ausschlüpfenden Insekten deren
Früchte in der gleichen günstigen Weise beeinflussen sollten691.
Theophrast wies darauf hin, daß die Insekten hier nicht den
Ansatz der Früchte hervorrufen, sondern nur ihr Reifen befördern.
Der Vorgang besaß also mit dem an der Dattelpalme beobachteten692
eine nur äußerliche Ähnlichkeit.

Die Unterscheidung zwischen weiblichen und männlichen
Pflanzen, d. h. in fruchttragende und solche, die keine Früchte
hervorbringen, lag zur Zeit des Aristoteles und Theophrast
wohl schon im Sprachgebrauch. Auf eine Kenntnis des Befruchtungsvorganges
darf man daraus jedoch nicht schließen. Als
besondere Arten der Vermehrung berücksichtigte Theophrast
auch das Aussetzen von Ablegern, das Pfropfen und das Okulieren,
wobei die Pflanze dem Pfropfreis sozusagen als Boden diene693.
Die Sexualität der Pflanzen auf dem Wege des Versuches sicher
nachgewiesen zu haben, ist das Verdienst des Tübinger Professors
Camerarius.

Rudolf Jakob Camerarius wurde 1665 in Tübingen geboren
und starb dort 1721. Im Jahre 1688 wurde er Professor
und Direktor des botanischen Gartens in Tübingen.

Wenn die Botaniker des 16. und 17. Jahrhunderts von männlichen
und weiblichen Pflanzen redeten, so geschah es nur in bildlichem
Sinne, um dadurch eine oft nicht verkennbare Verschiedenheit
im ganzen Aussehen zu bezeichnen. Caesalpin und Malpighi
nahmen an, daß die Entstehung des Samens ein der Knospenbildung
entsprechender Vorgang sei. Den Staubgefäßen und den
Blumenblättern fiel nach ihrer Meinung die Aufgabe zu, einen
Teil der Feuchtigkeit an sich zu ziehen, damit in den übrigen
Teilen der Blüte ein umso reinerer Saft zur Bildung des Samens
zurück bleibe.

Camerarius ging dagegen von der Beobachtung aus, daß ein
nur Früchte tragender Maulbeerbaum, in dessen Nähe sich kein
Blütenstaub erzeugendes Exemplar befindet, taube, hohle, zur Keimung
unfähige Samen hervorbringt. Er entschloß sich darauf, das
Verhältnis, in dem die verschiedenartig gestalteten Individuen derselben
Pflanzenart zueinander stehen, auf dem einzig Erfolg versprechenden
Wege des Versuches zu erkunden. Camerarius
wählte dazu eine der gemeinsten zweihäusigen Pflanzen, das jährige
Bingelkraut (Mercurialis annua). Brachte er von diesem die reifen,
keimfähigen Samen in den Boden, so sah er zweierlei Pflanzen
aus ihnen hervorgehen, die im allgemeinen einander ähnlich
waren und auch gleich benannt werden. Doch bemerkte er, daß
die einen nur Staubgefäße hervorbringen und gänzlich ohne Frucht
und Samen bleiben, während die anderen Früchte tragen, dafür
aber der Blumenblätter und der Staubbeutel entbehren. Sonderte
er nun die fruchtbringenden Exemplare des Bingelkrauts von den
Blütenstaub erzeugenden völlig ab, so entstanden zwar Samen, sie
waren aber nicht keimfähig. Darauf ging er zu Versuchen mit
solchen Pflanzen über, die Staubgefäß- und Stempelblüten auf
demselben Individuum erzeugen. Wurden z. B. bei Ricinus und
Mais die Staubgefäßblüten entfernt, bevor die Antheren zur Entwicklung
gelangt waren, so erhielt er in keinem Falle reife Samen.
Camerarius beschreibt diese Versuche mit folgenden Worten: »Als
ich beim Ricinus die runden, Blütenstaub erzeugenden Knospen
vor der Entfaltung der Staubbeutel entfernt und das Auftreten
neuer derartiger Knospen sorgfältig verhindert hatte, erhielt ich
aus den vorhandenen unverletzten Samenanlagen niemals Samen,
sondern ich sah die tauben Samenhäute herabhängen und schließlich
verwelkt und verschrumpft untergehen. Ähnlich verhielt es
sich beim Mais. Nachdem ich den Schopf (der die Staubgefäßblüten
enthält) rechtzeitig abgeschnitten hatte, erschienen zwei
Kolben, die gänzlich des Samens entbehren, so daß eine große
Zahl leerer Samenhäute vorhanden war«. »Es erscheint daher
gerechtfertigt«, schließt Camerarius, »den Antheren die Bedeutung
von männlichen Geschlechtsorganen beizulegen, in denen
der Same, jenes Pulver nämlich, ausgeschieden wird. Ebenso ist
einleuchtend, daß der Fruchtknoten mit seinem Griffel das weibliche
Geschlechtsorgan der Pflanze darstellt«694.

Camerarius verhehlte sich durchaus nicht die Schwierigkeiten,
die damals noch dieser Theorie anhafteten. So mußten ihm die
Schachtelhalme und die Bärlappgewächse als Pflanzen erscheinen,
welche Staubbeutel besitzen und dennoch keine Samen erzeugen.
Bei diesen Pflanzen, meint Camerarius, sei der männliche Samen
reichlich vorhanden. Aber, fährt er fort, es entspricht ihm kein
weibliches Geschlecht, denn es fehlen die Griffel, die Samenbehälter,
die Samen. Eine Lösung dieses scheinbaren Widerspruchs brachte
erst das 19. Jahrhundert durch die Aufhellung der Keimungsvorgänge
der beiden, heute als Equiseten und Lykopodien bezeichneten
Pflanzengruppen. Camerarius zieht sich damit aus
der ihm sich bietenden Schwierigkeit, daß er die erwähnten Pflanzengruppen
zu den unvollkommenen (kryptogamen) Pflanzen rechnet,
deren Ursprung und Vermehrung noch dunkel sei.



Mißlungene Versuche mit dem Hanf brachten Camerarius
dazu, die Frage aufzuwerfen, ob nicht die Griffel einer Pflanze
durch den Pollen einer anderen bestäubt werden könnten, kurz,
ob auch im Pflanzenreiche eine Bastardbildung möglich sei. Er
erzählte, er habe drei junge Pflanzen des weiblichen Hanfes vom
Felde in den Garten verpflanzt und darauf geachtet, daß sie von
keiner Blüte einer benachbarten männlichen Pflanze ihrer Art bestäubt
werden konnten. Trotzdem brachten die weiblichen Hanfpflanzen
viele fruchtbare Körner hervor, ein unerwarteter Ausgang,
der Camerarius zunächst sehr verdroß, dann aber auf folgende
Überlegung brachte. Entweder seien die weiblichen Pflanzen zu
spät aus dem Bereiche der männlichen entfernt worden, von denen
einige vielleicht schon ihren Staub verstreut hätten. Es sei aber
auch möglich, daß in dem Garten Pflanzen anderer Art, die dort
in Menge vorhanden gewesen, die befruchtungsbedürftigen, weiblichen
Hanfpflanzen bestäubt hätten. Zweifle doch niemand daran,
daß im Tierreich ein Weibchen von dem Männchen einer anderen
Art befruchtet werden könne. Neu sei allerdings die Frage, ob
eine weibliche Pflanze von der männlichen einer anderen Art befruchtet
werden könne, der weibliche Hanf z. B. von dem männlichen
Hopfen. Die Entscheidung, die der Lehre von der Sexualität
der Pflanzen eine wertvolle Stütze verliehen hätte, blieb allerdings
einer späteren Zeit und einem anderen Forscher vorbehalten695.

Ließ sich auch die geschlechtliche Differenzierung der Pflanzen
nachweisen, so war eine Einsicht in die Art des Befruchtungsvorganges
damit noch nicht gewonnen. Zur Lösung dieser Frage,
meint Camerarius, wäre es sehr zu wünschen, daß man von den
Mikroskopikern erführe, was die Körnchen der Staubbeutel enthalten,
wie weit sie in den weiblichen Apparat eindringen, ob sie
unversehrt an den Ort kommen, wo ihre Vereinigung mit den
Samenknospen stattfindet, und was dabei aus ihnen austritt.

Die Aufhellung dieser Verhältnisse sollte, wie wir später sehen
werden, erst im 19. Jahrhundert gelingen. Camerarius hielt es
noch für selbstverständlich, daß in jenem häufigsten Falle, in dem
Staubgefäße und Stempel in einer Blüte vereinigt sind, die Befruchtung
zwischen diesen, nahe benachbarten Teilen stattfinde,
während doch in der Tat in der Natur, wie spätere Untersuchungen
gezeigt haben, alle erdenklichen Veranstaltungen vorhanden sind, um
eine Selbstbefruchtung der Zwitterblüten zu verhindern. Einen der
Vereinigung der Geschlechter in den Zwitterblüten entsprechenden
Hermaphroditismus hatte der zur Zeit des Camerarius lebende
Swammerdam im Tierreich, und zwar an den Schnecken, aufgefunden.
Camerarius erwähnt diese Beobachtung und bemerkt
dazu, daß dieser Fall, der im Tierreich eine Seltenheit bedeute,
bei den Pflanzen eben die Regel sei. Gleichzeitig wundert er sich
darüber, daß die Schnecken sich nicht selbst befruchten, während
dies doch, wie er annimmt, bei den Pflanzen der Fall sei.

Den Schluß der Schrift des Camerarius bildet eine, mit
Goethes Metamorphose der Pflanze in Parallele zu stellende, lateinische
Ode, deren Verfasser nicht bekannt ist. Sie enthält die
Grundzüge der neuen Lehre und schließt mit den Worten:



Bestätigt seh'n wir jetzt mit Verwunderung

Für Tier' und Pflanzen gleiche Geschlechtlichkeit!

Was lebt, was Nachkommen hervorbringt,

Alles entsteht auf dieselbe Weise.




O mächt'ge Kraft des Geistes, die Du entdeckt

Zuerst so Großes, was durch Jahrhunderte

Verborgen war; wer der Natur sich

Weihte, ihn möge Dein Ruhm begeistern.




O hehre Allmacht, die Du die Welt erschufst,

Du sorgst, die Ordnung, welche Du eingesetzt,

In der Natur stets zu erhalten,

Liebst zu verjüngen die alte Schöpfung.





Linné, der bald darauf die Systematik durch die Errichtung
seines auf die Sexualität gegründeten Systems zu einem vorläufigen
Abschluß brachte, fußte, was diese Grundlage anbetraf, wesentlich
auf Camerarius, wenn dessen Lehre durch ihn auch keine
nennenswerte Fortbildung erfuhr. Letzteres geschah erst durch
die Untersuchungen Koelreuters, die späterer Besprechung vorbehalten
bleiben.




18. Der weitere Ausbau der Mechanik,
Optik und Akustik.

Die von Galilei, Newton, Huygens und anderen ausgeübte
Methode, welche durch die Verknüpfung des Versuchs mit dem
mathematischen Beweisverfahren zum Auffinden der Naturgesetze
führt, blieb während des 18. Jahrhunderts, wie zur Zeit ihrer
Schöpfer, im wesentlichen auf die Astronomie und die Mechanik
beschränkt. Auch galt es, während dieses Zeitraumes die von
Newton696 und Leibniz697 ins Leben gerufene höhere Analysis
zur Bewältigung derjenigen großen Aufgaben geeignet zu machen,
die zunächst auf den Gebieten der Mechanik, der Optik und der
Akustik einer Lösung harrten.

Naturwissenschaft und Mathematik.

Daß die höhere Mathematik im Verlauf des 18. Jahrhunderts
zu dem »Riesenschwerte« des Astronomen und Physikers und
später des modernen Naturforschers überhaupt wurde, ist vor allem
den Mitgliedern der Familie Bernoulli und Leonhard Euler zu
verdanken. Der älteste und zugleich einer der bedeutendsten unter
den zahlreichen großen Mathematikern dieser Familie ist Jakob
Bernoulli (1654–1705). Er ist als einer der wichtigsten Bahnbrecher
auf den Gebieten der Infinitesimalrechnung, der Reihenlehre,
Kombinationslehre und Wahrscheinlichkeitsrechnung zu nennen698.
Jacob Bernoulli beschäftigte sich mit den beiden zuletzt genannten
Gegenständen seit etwa 1680. Sein großes Werk, in dem er die
eigenen und die Forschungen anderer Mathematiker über Kombinatorik
und Wahrscheinlichkeitsrechnung zusammenfaßte, erschien
jedoch erst einige Jahrzehnte später699. Es enthält auf dem Gebiete
der ersteren, und zwar in der noch heute üblichen Form, so ziemlich
alles, was den Bestand dieser Disziplin ausmacht700. Bei weitem
der wichtigste Abschnitt des Werkes ist der letzte701. Bernoulli
stellte sich darin die Aufgabe, die Wahrscheinlichkeitsrechnung auf
»bürgerliche, sittliche und wirtschaftliche Verhältnisse« anzuwenden.
Im Hinblick auf die ganz neuen Bahnen, welche damit diesem
Zweige der Mathematik gewiesen werden, ist es doppelt bedauerlich,
daß dieser Abschnitt unvollendet geblieben ist. Die Wahrscheinlichkeit
wird als ein Grad der Gewißheit erklärt, der sich von der Gewißheit
selbst wie ein Teil vom Ganzen unterscheidet. Besteht die
absolute Gewißheit (a oder 1) aus 5 Wahrscheinlichkeiten (oder
Teilen), von denen 3 für das Eintreten eines Ereignisses und zwei
dagegen sprechen, so besitzt das Ereignis 3/5a oder 3/5 der Gewißheit.

Die Untersuchung gipfelt in dem Bernoullischen Theorem702,
das man auch das Gesetz der großen Zahlen genannt hat. Das
Theorem betrifft die Frage, ob durch Vermehrung der Beobachtungen,
oder durch fortgesetzte Häufung der Einzelfälle, die Wahrscheinlichkeit
dafür wächst, daß die Zahl der günstigen zur Zahl
der ungünstigen Fälle schließlich das wahre Verhältnis erreicht.
Bernoulli formuliert das Problem und bejaht es auf Grund eines
mathematischen Beweisverfahrens. Sehr treffend bemerkt er, die
Aufgabe habe sozusagen ihre Asymptote, indem, auch bei beliebiger
Vermehrung der Beobachtungen, ein bestimmter Grad von
Wahrscheinlichkeit, das wahre Verhältnis der Fälle gefunden zu
haben, nicht überschritten werden könne.

Als Beispiel wählt Bernoulli eine zugedeckte Urne, in der
sich ohne unser Vorwissen 3000 weiße und 2000 schwarze Steine
befinden. Durch häufiges Ziehen und jedesmaliges Zurücklegen der
Steinchen in die Urne wird man mit immer größerer, schließlich mit
an Gewißheit grenzender Wahrscheinlichkeit das Verhältnis 3 : 2 ermitteln,
indem dieser Wert mit der Häufung der Fälle in immer
engere Grenzen eingeschlossen wird. Wir sind daher, sagt Bernoulli,
gezwungen, bei allen Geschehnissen eine gewisse Notwendigkeit
anzuerkennen. Würde man nämlich alle Ereignisse durch alle
Ewigkeit hindurch beobachten, so würde schließlich die Wahrscheinlichkeit
in volle Gewißheit übergehen. Man müsse also bei
noch so zufällig erscheinenden Dingen doch eine Notwendigkeit
annehmen und zu dem Schlüsse kommen, daß alles in der Welt
in bestimmter Gesetzmäßigkeit vor sich gehe.

Jacob Bernoullis Arbeiten über unendliche Reihen703 sind
darauf zurückzuführen, daß sie häufig ein Mittel bieten, um zu
einer Lösung von Integrationsaufgaben zu gelangen. Deshalb
hatten sich schon die Begründer der Infinitesimalrechnung, Wallis
und Newton, mit der Entwicklung von Funktionen in unendliche
Reihen befaßt704. So hatte Wallis die Fläche zwischen der
Hyperbel und ihren Asymptoten durch eine unendliche Reihe dargestellt.
Man findet bei ihm auch schon die Reihe der reziproken
Quadratzahlen:


1/(12) + 1/(22) + 1/(32) + ...,


deren Summierung jedoch erst Euler vollzog.

Die erste Integration mit Hilfe der Reihenentwicklung gelang
Nikolaus Mercator (1668) bei seiner Quadratur der gleichseitigen
Hyperbel705. Auch Leibniz hat sich mit der Summation
einiger unendlichen Reihen befaßt, die auf die Ermittlung von π
hinauslaufen. In ihren ersten Anfängen geht die Lehre von den
unendlichen Reihen sogar auf Euklid und Archimedes zurück.
Die eigentliche Begründung der Theorie der unendlichen Reihen
erfolgte jedoch erst durch Newton, den Entdecker der allgemeinen
Binomialformel. Für ganzzahlige positive Exponenten, die eine
endliche Reihe ergeben, war die Entwicklung der Formel (a + b)n
schon lange vor Newton bekannt.

Auf Jacob Bernoullis Arbeiten über unendliche Reihen
kann hier nicht näher eingegangen werden. Die Ergebnisse verdienen
hier nur insoweit Erwähnung, als sie zur angewandten
Mathematik hinüberleiten. So gelang es Bernoulli, die Beziehung
zwischen den Koordinaten der elastischen Kurve durch eine Reihe
auszudrücken, die Parabel und die logarithmische Linie mit Hilfe
einer solchen zu rektifizieren, und anderes mehr706.

Von Jacob Bernoulli und seinem Bruder Johann wurde
die Aufmerksamkeit der Mathematiker auch wieder auf die für
die Physik besonders wichtigen Maxima- und Minimaaufgaben
gelenkt und durch die Behandlung der sogenannten isoperimetrischen
Probleme ein Grund geschaffen, auf dem später
Euler, Lagrange und andere die Variationsrechnung errichten
konnten.

Die isoperimetrischen Probleme handeln von Kurven, die
gewissen Maxima- und Minimabedingungen genügen. Das älteste
dieser Probleme lautet: Welche unter allen isoperimetrischen Kurven
schließt die größte Fläche ein? Schon das Altertum beantwortete
diese Frage dahin, daß die verlangte Kurve der Kreis sei707.

Das erste isoperimetrische Problem, mit dem sich Johann
Bernoulli beschäftigte, betrifft die Brachystochrone, die Linie des
kürzesten Falles708. Johann Bernoulli formulierte dies Problem
mit folgenden Worten: »Zwei gegebene Punkte, die verschiedenen
Abstand vom Erdboden haben und nicht senkrecht übereinander
liegen, sollen durch eine Kurve verbunden werden, auf der ein
beweglicher Körper, vom oberen Punkte ausgehend, vermöge seiner
Schwere in der kürzesten Zeit zum unteren Punkte gelangt«.
Nachdem er die Lösung gefunden, forderte er nach damaliger
Sitte »die scharfsinnigsten Mathematiker des ganzen Erdkreises«
auf, gleichfalls die Aufgabe zu lösen. Leibniz gelang dies noch
am nämlichen Tage, an dem er davon Kenntnis erhielt. Auch
Newton und Jacob Bernoulli fanden übereinstimmend die
Lösung, daß die Zykloide die gesuchte Kurve sei. Die Verwunderung
war umso größer, als Huygens diese Kurve schon als diejenige
erkannt hatte, in der die Fallbewegung von allen Punkten
aus dieselbe Zeit beansprucht. Er hatte ihr aus diesem Grunde
den Namen »Tautochrone« beigelegt. So zeige, sagt Jacob
Bernoulli in der Bekanntgabe seiner Lösung709, eine Kurve, die
von so vielen Mathematikern untersucht worden sei, daß an ihr
nichts mehr zu erforschen übrig schien, plötzlich eine ganz neue
Eigenschaft.

Die Begründung der mathematischen Physik.

Die beiden älteren Bernoulli errichteten in erster Linie auf
den geschaffenen Grundlagen das Gebäude der Differential- und
Integralrechnung.

Eine Auswahl aus seinen Vorlesungen über die Methoden der
Integralrechnung schrieb Johann Bernoulli in den Jahren 1691
und 1692 nieder710. Ein von ihm herrührendes Werk über die
Differentialrechnung scheint verloren gegangen zu sein. Johann
und Jacob Bernoulli ist es besonders zu danken, daß sich das
von Leibniz gefundene Verfahren der Infinitesimalrechnung rasch
einbürgerte.

Johann Bernoulli beginnt nach einigen allgemeinen Betrachtungen
mit der Quadratur von Flächen und der Rektifikation
von Kurven. Danach wendet er sich physikomechanischen Problemen
zu, z. B. den zuerst von Tschirnhausen eingehender untersuchten
kaustischen Linien, und der Kettenlinie. Später sehen wir Daniel
Bernoulli vorzugsweise damit beschäftigt, schwierige mechanische
Probleme, bei denen die von Huygens und selbst noch von
Newton in seinen »Prinzipien« befolgte geometrische Methode
keine Aussicht auf Erfolg bot, vermöge des neuen Hilfsmittels zu
bewältigen. Daniel Bernoulli ist daher als der Hauptbegründer
desjenigen Wissenszweiges zu nennen, den man als mathematische
Physik bezeichnet. Er führte in die Mechanik das Prinzip von der
Erhaltung der Kraft ein, das schon Huygens bei seinen Untersuchungen
über das zusammengesetzte Pendel vorgeschwebt hat,
und brachte dieses Prinzip bei seinen Arbeiten über die Bewegung
flüssiger Körper überall zur Anwendung (Hydrodynamik 1738)711.
Huygens hatte es dahin ausgesprochen, daß ein frei fallender
Körper, wie immer man seine Bewegungsrichtung ändert, nur bis
zur ursprünglichen Höhe wieder emporsteigen kann, da die Wirkung
der Ursache gleichwertig sei. Aus diesem Grunde hatte Huygens
auch die Möglichkeit eines Perpetuum mobile bestritten. Obgleich
Daniel Bernoulli712 die große Bedeutung des Prinzips von der
Erhaltung der Kraft wohl ahnte, blieb es doch dem 19. Jahrhundert
vorbehalten, es in seiner Allgemeingültigkeit nachzuweisen
und die gesamte Naturlehre darauf zu begründen.

Zu den mechanischen Vorgängen, mit denen sich das 18. Jahrhundert
beschäftigte, gehörten auch der Fall und der Wurf.
Galilei hatte zwar die Theorie dieser Bewegungen entwickelt und
damit für die Mechanik eine neue Ära eröffnet. Er hatte jedoch
von einem sehr wesentlichen Faktor, dem Luftwiderstande, abgesehen,
nicht etwa weil er die Wichtigkeit dieses Faktors nicht
kannte, sondern weil sich Galilei die erwähnte Beschränkung
noch auferlegen mußte.

Ein Gesetz für den Widerstand, den Flüssigkeiten und Gase
auf bewegte Körper ausüben, stellte zuerst Newton auf. Er gelangte
zu der Annahme, daß der Widerstand des Mediums für ein
und denselben Körper dem Quadrate der Geschwindigkeit proportional
sei. Auf Newtons Veranlassung wurden Versuche angestellt,
um das Gesetz zu prüfen. Es erwies sich auch für mittlere
Geschwindigkeiten als gültig.



Die Bahn, die ein geworfener Körper unter dem Einfluß des
Luftwiderstandes beschreibt, suchte zuerst Johann Bernoulli zu
bestimmen. Es ergab sich jedoch, daß die mathematische Analyse
zur Bewältigung dieser Aufgabe nicht imstande war, und daß eine
angenäherte Lösung des ballistischen Problems sich nur durch die
Vereinigung von Versuch und Rechnung erhoffen ließ. Am erfolgreichsten
in dieser Richtung war die Arbeit von Robins713, die
Euler unter dem Titel »Neue Grundsätze der Artillerie«714 in
deutscher Sprache herausgab. Robins zeigte, daß Newtons
Gesetz nur für geringe Geschwindigkeiten gilt, daß aber mit
größeren Geschwindigkeiten der Widerstand weit stärker wächst,
als jenes Gesetz angibt.

Um die Geschwindigkeit des Geschosses in irgend einem
Punkte der Wurfbahn bestimmen zu können, konstruierte Robins
sein »ballistisches Pendel«. Ein Körper von bedeutendem Gewicht
wurde so aufgehängt, daß er pendeln konnte. Schoß man eine
Kugel gegen diesen Körper, so ließ sich aus dem Gewicht, den
Dimensionen und dem Ausschlag des Pendels die Geschwindigkeit
der Kugel den Stoßgesetzen gemäß berechnen. Nach dem Stoß
besitzen nämlich das Pendel, dessen Masse M, und die Kugel,
deren Masse m und deren Geschwindigkeit im Augenblicke des
Zusammentreffens v sei, die gleiche Geschwindigkeit V. Gemäß
den Stoßgesetzen ist aber


mv = (M + m)V.


Daraus folgt, daß


v = (M + m)/m · V ist715.


Mit dem Einfluß des Widerstandes, den Gase und Flüssigkeiten
der Bewegung entgegensetzen, haben sich die theoretische
und die Experimentalphysik seit Bernoulli und Robins immer
wieder beschäftigt, ohne indes bei der Kompliziertheit der in
Betracht kommenden Umstände bisher zu einem abschließenden
Ergebnis zu gelangen.

Fast noch übertroffen wurden die Leistungen Daniel Bernoullis
durch diejenigen Eulers. Leonhard Euler wurde am
15. April des Jahres 1707 in Basel geboren und war ein Schüler
des daselbst ein Lehramt bekleidenden Johann Bernoulli. Auf
die Empfehlung Daniel Bernoullis hin kam Euler mit 20 Jahren
an die Akademie zu Petersburg. Bezeichnend für seine ungewöhnliche
mathematische Befähigung ist Folgendes. Als es galt,
gewisse astronomische Tafeln zu berechnen, erklärten die Mathematiker
der Akademie, hierzu einer Frist von einigen Monaten zu
bedürfen. Euler dagegen erbot sich, jene Tafeln in drei Tagen
fertig zu stellen, und hielt auch Wort. Doch hatte er diese
Leistung mit dem Verluste eines Auges zu bezahlen, das er infolge
einer durch die Überanstrengung herbeigeführten Krankheit einbüßte.
Im Jahre 1741 berief Friedrich der Große durch ein aus
dem Feldlager stammendes Schreiben Euler an die Preußische
Akademie der Wissenschaften. Volle 25 Jahre arbeitete er als
eine Zierde dieser Gesellschaft in der Residenz der Preußischen
Könige an dem Ausbau der neueren Mathematik. Dabei entfaltete
der große Mann eine beispiellose Produktivität. Allein in den
Jahrbüchern der Berliner Akademie veröffentlichte er 121, zum
Teil sehr umfangreiche, Abhandlungen716. Nach Maupertuis'
Tode leitete Euler die Akademie. Schließlich traten aber Zerwürfnisse
ein, die Euler veranlaßten, sein Verhältnis zur Berliner
Akademie zu lösen und, einer Aufforderung Katharinas der
Zweiten folgend, nach Petersburg zurückzukehren. An seine Stelle
trat in die Berliner Akademie als würdiger Nachfolger Lagrange
ein. Trotzdem Euler bald darauf völlig erblindete, erlahmte seine
wissenschaftliche Tätigkeit nicht. Noch wenige Stunden vor seinem
am 7. September 1783 erfolgten Tode war er damit beschäftigt,
die Bewegung des in demselben Jahre erfundenen Luftballons zu
berechnen.


[image: Abb. 119]
Abb. 119. Leonhard Euler.



Bevor wir uns Eulers Arbeiten auf den Gebieten der mathematischen
Physik und der Astronomie zuwenden, haben wir ihn
als das kennen zu lernen, was er in erster Linie war, nämlich
als Mathematiker. Gibt es doch keinen Zweig der reinen Mathematik,
der ihm nicht eine außerordentliche Förderung verdankte717.
Er war es, der die Bemühungen Vietas zum Abschluß brachte
und die Algebra zu einer »internationalen mathematischen Kurzschrift«
gestaltete718. In seiner »Einführung in die Analysis des
Unendlichen« vom Jahre 1748719 gab er eine umfassende Erörterung
der Kurven, welche durch die allgemeine Gleichung zweiten
Grades definiert werden. Während er dadurch die analytische
Geometrie förderte, verstand er es andererseits, den höheren Kalkül
von beengenden geometrischen Fesseln loszulösen und ihn zu einer
selbständigen Disziplin zu gestalten. Euler vor allem gelang ferner
die scharfe Erfassung des Funktionsbegriffes, dem die ersten Kapitel
der »Introductio« gelten, jenes Begriffes, den man wohl zu den
wichtigsten Schöpfungen der neueren Mathematik gerechnet hat720.
Im Anschluß an Bernoullis Untersuchungen über isoperimetrische
Probleme erfand Euler als einen besonderen Teil der höheren
Analysis die Variationsrechnung.

Während Johann Bernoulli über die isoperimetrischen
Probleme sich dahin geäußert hatte, daß man wohl vergebens
nach einem allgemeinen Verfahren für ihre Lösung suchen werde,
unternahm Euler die ersten Schritte zur Ausbildung einer
»Methode, Kurven zu finden, denen eine Eigenschaft im höchsten
oder geringsten Grade zukommt.« Eine Auswahl geeigneter Abschnitte
der betreffenden umfangreichen Schrift Eulers wurde
neuerdings in deutscher Übersetzung veröffentlicht721. Ein näheres
Eingehen auf den Inhalt des gewöhnlich als »Methodus inveniendi«
bezeichneten Hauptwerkes von Euler ist hier nicht am Platze722.
Bemerkt sei nur, daß die von Euler befolgte Methode wesentlich
geometrisch ist, wodurch die Behandlung der einfacheren Probleme
sehr klar und durchsichtig wird. Euler hat sein Verfahren
als Variationsrechnung bezeichnet und es mit folgenden Worten
erläutert. »Die Variationsrechnung ist die Methode, die Änderung
aufzufinden, die ein aus beliebig vielen Veränderlichen zusammengesetzter
Ausdruck erleidet, wenn man entweder alle oder nur
einige Variabeln sich ändern läßt«723.

In einem Anhang zu dem Werke »Methodus inveniendi« setzt
Euler die Bedeutung, welche die in diesem vorgetragenen Lehren
für die Lösung physikalischer Probleme besitzen, des Näheren
auseinander. Er meint, »es geschehe nichts in der Natur, dem
nicht irgendein Verhältnis des Maximums oder des Minimums zu
Grunde liege«. Daraus ergibt sich für die Forschung ein
direktes und ein indirektes Verfahren. Das eine führt zur Bestätigung
des anderen, wodurch ein hoher Grad von Gewißheit
verbürgt wird. Handelt es sich z. B. darum, die Krümmung
eines an den beiden Enden aufgehängten Seiles festzustellen, so
geschieht dies entweder direkt, indem man die Wirkungen untersucht,
welche die Schwere auf das Seil ausübt. Oder man bedient
sich der Methode der Maxima und Minima und erörtert mit ihrer
Hilfe, welche Gestalt das Seil annehmen muß, damit sein Schwerpunkt
in die möglichst tiefe Lage gelangt. Auf beiden Wegen
erhält man ein und dieselbe Kurve, die Kettenlinie, die der Parabel
sehr ähnlich sieht724.

Von der Kettenlinie, bei welcher die Elastizität keine Rolle
spielt, ging man zur Untersuchung derjenigen Kurven über, die
ein elastisches Band unter der Einwirkung von Kräften annimmt.
Die hierbei entstehenden Gestalten waren längst bekannt. Jedermann
kennt z. B. die in Abb. 120 dargestellte Form, die ein aus
Fischbein oder Stahl hergestellter
Streifen annimmt,
wenn wir an den Endpunkten
A und C zwei
Kräfte in den Richtungen
AD und CD wirken lassen,
und der Streifen in B festgehalten
wird.


[image: Abb. 120]
Abb. 120. Eine der von Euler untersuchten
elastischen Kurven.



Von der Untersuchung
der elastischen Kurven, bei
denen die Theorie der
Maxima und Minima gleichfalls
eine Rolle spielt, ging
man zu den Schwingungen
elastischer Bänder über.
Der erste, der sich mit diesen Problemen eingehender befaßte, war
Daniel Bernoulli. Wird die schwingende Bewegung hinreichend
schnell, so wird durch sie ein Ton hervorgerufen, dessen Natur sich
mit Hilfe von Experimenten untersuchen läßt. So vermochte man
auf physikalischem Wege das Ergebnis der mathematischen Analyse
zu bestätigen und tiefer in das Wesen der elastischen Körper einzudringen.
Auch dies geschah besonders durch Euler. Er unterschied
dabei verschiedene Fälle, z. B. das Verhalten eines elastischen
Bandes, das an einem Ende befestigt ist, oder desjenigen,
das an beiden Endpunkten festgehalten wird. Bei diesen Untersuchungen
sonderte Euler die Schwingungen von Körpern, die
erst infolge ihrer Spannung elastisch sind (elastische Saite) von
den Schwingungen an sich elastischer Bänder725. Die Töne, die
dadurch hervorgerufen werden, hat besonders Chladni in seiner
»Akustik«726 untersucht und mit den mathematisch gefundenen Ergebnissen
Eulers in guter Übereinstimmung gefunden.

Eine der frühesten Arbeiten Eulers auf dem Gebiete der angewandten
Mathematik betrifft die von Newton gegebene Theorie
der Gezeiten727. Die Pariser Akademie der Wissenschaften hatte
bei der Wichtigkeit des Gegenstandes zu Beginn des 18. Jahrhunderts
zahlreiche Flutbeobachtungen in den französischen Häfen
anstellen lassen. Dabei hatte sich gezeigt, daß man diese Beobachtungen
nur zum Teil aus Newtons Theorie erklären konnte.
Die Akademie schrieb deshalb im Jahre 1740 Preise über diese
Frage aus. Unter den gekrönten Arbeiten befanden sich auch
diejenigen von Euler und Bernoulli. Es gelang, auf der durch
Newton geschaffenen Grundlage, mit Hilfe der höheren Analysis
manche Umstände in Rechnung zu ziehen, die bei den Gezeiten
mitwirken, so daß z. B. das Zurückbleiben der Flutwelle hinter der
Kulmination des Mondes bestimmt werden konnte.

Auch die Lösung einer zweiten, für die Nautik sehr wichtigen
Aufgabe, an der sich Galilei in seinen letzten Lebensjahren vergebens
abgemüht hatte, des Problems der Längenbestimmung,
blieb Euler vorbehalten. Galilei und das Altertum hatten ihren
Berechnungen gewisse astronomische Erscheinungen, wie die Verfinsterungen
der Jupitermonde oder die viel seltener vorkommenden
Mondfinsternisse, zugrunde gelegt. Schon vor Galilei erfolgten
neue Vorschläge, deren Durchführung die endliche Lösung des so
lange schwebenden Problems herbeiführen sollte. Da der Mond
infolge seiner Bewegung um die Erde seinen Ort rasch ändert,
kann der Abstand des Mondes von bestimmten Fixsternen, der
von Minute zu Minute ein anderer ist, zum Vergleich der Ortszeiten
und damit zur Längenbestimmung dienen. Es würde dazu
nur eine Tabelle erforderlich sein, die für einen bestimmten Ort
der Erde die Abstände des Mondes für die einzelnen Tage, Stunden
und Minuten angibt. Wird dann die betreffende Distanz an dem
Orte der Beobachtung zu einer anderen Tageszeit gemessen, so
läßt sich aus dem Unterschiede der Zeiten der Längenunterschied
berechnen728. Ein zweites in Vorschlag gebrachtes Verfahren729 beruht
auf der Anwendung genauer Chronometer, die während der
ganzen Dauer der Reise die Zeit desjenigen Ortes angeben, den
man zum Ausgangspunkte für die Längenbestimmung gewählt hat.
Die Verwirklichung dieser beiden Vorschläge wurde lebhaft angestrebt,
nachdem im Jahre 1713 das englische Parlament einen
Preis von 20000 Pfund für die praktische Lösung des Längenproblems
ausgesetzt hatte.

Da die Bewegung des Mondes von den anziehenden Kräften
der Erde und der Sonne abhängt, war sie weit schwieriger zu ermitteln
als diejenige der Planeten. Noch zur Zeit Newtons betrug
der Fehler bei der Vorausbestimmung einer Mondfinsternis mitunter
eine Stunde und mehr. Auf Grund der Berechnungen
Eulers730 und eigener Beobachtungen brachte der Astronom Tobias
Mayer731 in Göttingen um die Mitte des 18. Jahrhunderts
Mondtafeln zuwege, die für Längenbestimmungen genügten. Die
Witwe Mayers, sowie auch Euler erhielten daher einen Teil
des Preises.

Ein hinlänglich genau gehendes Chronometer lieferte im Jahre
1758 der Uhrmacher John Harrison. Dieses wies nach einer
vier Monate dauernden Fahrt einen Fehler von nur etwa zwei
Minuten auf. Durch fortgesetzte Bemühungen wurde dieser Fehler
noch weiter herabgemindert, worauf Harrison die Hälfte der
vom Parlamente ausgesetzten Summe erhielt. Um die Länge des
Pendels dem Einfluß der Temperaturschwankungen zu entziehen,
verfertigte Harrison 1725 nach dem Vorgange Grahams Rost-
oder Kompensationspendel, indem er Metalle von verschiedenen
Ausdehnungskoeffizienten, wie Messing und Eisen, vereinigte. Graham
(1675–1751) hatte zu diesem Zwecke die sogenannte Quecksilberkompensation
erfunden.

Verwickelte, nur mit Hilfe der höheren Analysis zu lösende
Probleme boten die Schallerscheinungen dar. Euler untersuchte
nicht nur die Schwingungen von Saiten und Stäben732, sondern er
bestimmte auch die Grenzen der Hörbarkeit. Seinen Versuchen
gemäß fallen sie etwa mit den Schwingungszahlen 20 und 7000
zusammen. Überhaupt erwarb sich Euler große Verdienste um
eine wissenschaftliche Behandlung der Musik. Indessen hatte
es schon weit früher (um 1700) Sauveur unternommen, aus
der Musik ein Objekt der naturwissenschaftlichen Forschung
zu machen733. Bei Sauveur begegnet uns die später auch von
Euler vertretene Ansicht, daß die Konsonanz auf ein einfaches
Schwingungsverhältnis zurückzuführen sei, das vom Gehörorgan
leicht aufgefaßt wird. Töne, deren Schwingungszahlen sich wie
5 : 6 verhalten, werden nach Sauveur nicht mehr als konsonierend
empfunden. Den Wert 5 : 6 betrachtet er als die Grenze der
Konsonanz.


[image: Abb. 122]
Abb. 121. Schwingende Saiten.



Das Hauptverdienst Sauveurs besteht darin, daß er bestrebt
war, in die musikalisch-akustische Untersuchung überall das quantitative
Verfahren einzuführen. Sauveur machte auch schon die
Beobachtung, daß eine schwingende Saite außer ihrem Grundton
zugleich Obertöne erkennen
läßt. Dies beruht
darauf, daß die Saite entweder
ungeteilt schwingt
(Abb. 121, I), oder daß sie
mehrere Teilschwingungen
vollzieht (Abb. 121, II),
oder endlich, daß sie
gleichzeitig als Ganzes
und daneben in ihren Teilen
Schwingungen macht
(Abb. 121, III). Die
so entstehenden höheren
Töne nennt man Flageolett- oder Obertöne. Sie lassen sich nur
durch besondere Vorkehrungen ausschließen. Gewöhnlich tritt der
Schwingungszustand III ein. Das geschilderte Verhalten wurde
schon im Jahre 1674734 entdeckt, jedoch von Sauveur unabhängig
davon aufgefunden und genauer verfolgt735. Sauveur benutzte
für seine Untersuchung ein Monochord. Er rief an einer Saite
ihren Grundton hervor. Darauf berührte er sie an gewissen Stellen.


c           b          cʹ

a–––––––––––––––––––––aʹ


Geschah dies in b, so erhielt er die Oktave, geschah es in c, so
hörte man die zweite Oktave. Zur Untersuchung des Schwingungszustandes
führte Sauveur das noch heute gebräuchliche Verfahren
ein. Er setzte z. B. auf b, c, cʹ schwarze Papierreiterchen, und
auf die genau dazwischen liegenden Punkte weiße. Brachte er
dann die Saite zum Tönen, indem er sie gleichzeitig in c berührte,
so blieben die schwarzen Reiter sitzen, während die weißen abflogen.
Die Punkte b, c, cʹ, die in Ruhe bleiben, nannte Sauveur
Knoten, die dazwischen liegenden schwingenden Teile Bäuche,
Bezeichnungen, die bis auf den heutigen Tag üblich geblieben sind.

Wie die Obertöne, deren Bedeutung für das Zustandekommen
dessen, was wir Klangfarbe nennen, Helmholtz später untersucht
hat, so wurde auch die unter dem Namen der »Schwebung« bekannte
Erscheinung durch Sauveur wissenschaftlich erklärt. Es
war den Orgelbauern schon längst aufgefallen, daß das Ohr in
regelmäßiger Folge eigentümliche Stöße wahrnimmt, wenn zwei
Pfeifen angeblasen werden, deren Töne sich nur wenig voneinander
unterscheiden. Sauveur hat diese Stöße (er nannte sie battements,
Schläge) aus dem Zusammentreffen von Schwingungen erklärt,
die sich als ein jedesmaliges Anschwellen des Tones bemerkbar
machen. Besteht z. B. ein Ton aus neun Schwingungen für
eine gewisse Zeit, während ein gleichzeitig stattfindender Ton durch
zehn Schwingungen während derselben Zeit hervorgerufen wird, so
werden nach Ablauf dieser Zeit jedesmal die Schwingungen zusammenfallen.
In diesem Augenblick wird der Ton am stärksten
erscheinen, dann wieder abschwellen, um nach Ablauf derselben
Zeit von neuem verstärkt zu sein. Sauveur benutzte dies Verhalten,
um die Schwingungszahl eines Tones zu ermitteln, indem
er ihn gleichzeitig mit einem Ton von bekannter Schwingungszahl
erklingen ließ und die Anzahl der in einer Sekunde stattfindenden
Schwebungen feststellte736.



Eulers Äthertheorie.

Infolge der Zurückführung der akustischen Vorgänge auf die
Schwingungen elastischer Körper und Medien mußte sich dem
schon von Huygens unternommenen Versuch, die Lichtphänomene
aus denselben Prinzipien zu erklären, Aussicht auf Erfolg darbieten.
So sehen wir denn Euler eifrig bemüht, die Analogie
der Schall- und Lichterscheinungen darzutun. Nachdem er alle
Schwächen der Emanationstheorie Newtons, die er für geradezu
vernunftwidrig erklärte, nachgewiesen hatte, entwickelte er seine
eigenen Ansichten vom Äther und vom Licht. Euler geht, wie
vor ihm Huygens, von der Annahme aus, daß der Raum zwischen
den Himmelskörpern mit einer äußerst feinen Materie, dem Äther,
erfüllt sei. Letzterer sei eine Flüssigkeit wie die Luft, aber unvergleichlich
viel feiner und verteilter, da die Himmelskörper ihn
durchschneiden, ohne in ihm einen merklichen Widerstand zu finden.
Ferner besitze der Äther das Vermögen, sich nach allen Richtungen
auszubreiten und jeden leeren Raum auszufüllen. Infolgedessen
finde er sich nicht nur in den höheren Regionen, sondern
er durchdringe die Atmosphäre und dringe auch in die Zwischenräume
aller irdischen Körper ein.

Da die Luft infolge entsprechender Eigenschaften geeignet sei,
die Erzitterungen der tönenden Körper aufzunehmen und sie nach
allen Richtungen fortzupflanzen, worin ja der Schall bestehe, so
sei es natürlich, daß der Äther unter ähnlichen Umständen Erschütterungen
empfangen und sie nach allen Richtungen und auf
viel größere Entfernungen vermitteln werde. Diese Erzitterungen
des Äthers bewirken nach Euler das Licht. In Wirklichkeit komme
also nichts Stoffliches von der Sonne zu uns, ebensowenig wie von
einer Glocke, wenn ihr Geläut unser Ohr trifft. Man brauche
daher auch nicht zu befürchten, daß die Sonne, indem sie Licht
spendet, die geringste Einbuße an Substanz erleide. Den scheinbaren
Widerspruch, der darin liegt, daß die irdischen Lichtquellen
sich doch augenscheinlich verzehren, erklärte Euler ganz richtig
daraus, daß diese Lichtquellen nicht nur leuchten, sondern auch
Rauch und Ausdünstungen abgeben. Könnte man, sagt Euler,
diesen Rauch und diese Ausdünstungen aufheben, so würde das
bloße Leuchten keine Verminderung mit sich bringen. Als Beweis
dafür gilt ihm die Erscheinung, daß Quecksilber, das man in einer
evakuierten Röhre schüttelt, in den leuchtenden Zustand versetzt
wird, ohne an Substanz einzubüßen.



Daß sich die Zahl der Ätherschwingungen je werde ermitteln
lassen, bezweifelte Euler. Das Sonnenlicht soll deshalb weiß erscheinen,
weil es in Ätherschwingungen von jeder Zahl bestehe.
Bei der Brechung spalte sich das weiße Licht in Wellen von verschiedener
Länge; diese rufen nach ihrer Trennung die einfachen
Farben hervor. Um die Körperfarben zu erklären, vergleicht
Euler die Teilchen der Körper mit gespannten Saiten. Wie diese
durch Töne, die ihrem Grundton entsprechen, in Schwingungen
versetzt werden, ebenso verhalten sich die Körperteilchen, je nach
dem Grade ihrer Elastizität, gegenüber den Schwingungen des
Äthers. Ein Körper erscheint uns rot, wenn seine Teilchen eine
bestimmte, dem roten Licht entsprechende Zahl von Schwingungen
mitmachen. Weiß erscheint der Körper, wenn seine Teilchen vermöge
ihres Spannungszustandes auf alle Schwingungen abgestimmt
sind, die das Sonnenlicht enthält; schwarz erscheint er, wenn er
nicht mitschwingt.

Aus dem Gesagten erkennen wir, daß Euler den Vorstellungen,
die sich später aus der Undulationstheorie über das Zustandekommen
der Farben entwickelt haben, sehr nahe gekommen ist.
Trotz aller Klarheit, mit welcher er seine Anschauungen über die
Natur des Lichtes in den Briefen an eine deutsche Prinzessin737
vorträgt, sowie seiner in den Denkschriften der Berliner Akademie
gegebenen wissenschaftlichen Begründung dieser Anschauungen,
blieb die von Newton herrührende Emanationstheorie unerschüttert.
Was dem bloßen, gleichfalls von einem theoretischen Standpunkte
aus erfolgenden Bekämpfen einer irrigen Hypothese nicht
gelang, hat die spätere Entdeckung neuer Tatsachen sofort herbeigeführt.
Solchen gegenüber konnte eine Hypothese, die sich nicht
mit ihnen in Einklang bringen ließ, keinen Stand halten.

Auch um die Berichtigung eines anderen Irrtums Newtons
machte Euler sich verdient. Ersterer hatte die Beseitigung der
chromatischen Abweichung für unmöglich erklärt, da die Brechung
des Lichtes stets mit einer Farbenzerstreuung verbunden sei. Infolgedessen
hielt man die Vervollkommnung der dioptrischen Fernröhre
für ausgeschlossen und wandte sich gleich Newton vorzugsweise
der Verfertigung von Spiegelteleskopen zu, die gegen das
Ende des 18. Jahrhunderts durch Wilhelm Herschel einen hohen
Grad der Vollendung erreichten. Der Ansicht Newtons gegenüber
wies nun Euler im Jahre 1747 darauf hin, daß im Baue
unseres Auges das von Newton für unlösbar gehaltene Problem
doch gelöst sei, da die auf der Netzhaut erzeugten Bilder den
Fehler der chromatischen Abweichung nicht besäßen. Da beim
Auge in verschiedenem Grade brechende Medien, wie die Substanz
der Hornhaut, die Linse und der Glaskörper, bei der Bilderzeugung
zusammenwirken, so kam Euler auf den Gedanken,
mit dem Glase einen zweiten Stoff in entsprechender
Weise zu verbinden und dadurch die
Farbenzerstreuung zu beseitigen. Euler suchte
dieses zu erreichen, indem er seine Objektivgläser,
wie es die nebenstehende Abb. 122 erläutert, aus
Glas und Wasser zusammensetzte. Das Verfahren
bot zwar in der Ausführung Schwierigkeiten,
zeigte aber immerhin die Richtigkeit der
Eulerschen Folgerungen, da die Bilder, wenn
sie auch nicht die gewünschte Schärfe besaßen,
doch frei von dem gedachten Fehler waren.

Angeregt durch diese Untersuchung Eulers
kam zehn Jahre später der Optiker Dollond738 auf den Gedanken,
anstatt Glas und Wasser zwei Glassorten von ungleichem Brechungsvermögen
zu wählen. Zunächst verfertigte er Kron- und Flintglasprismen
von verschiedenen Brechungswinkeln. Beim Prüfen dieser
Prismen ergaben sich Zusammenstellungen, bei denen der hindurchgegangene
Strahl keine Farbenzerstreuung mehr aufwies und doch
noch, wenn auch in geringerem Grade, gebrochen wurde. Nachdem
sich auf solche Weise der Gedanke als durchführbar erwiesen, ging
Dollond zu seiner praktischen Verwertung über. Er setzte Linsen
aus zwei Stücken zusammen, von denen das eine aus Kron-, das
andere aus Flintglas bestand. Auch hierbei wurde die zweckmäßigste
Vereinigung durch Ausprobieren bewerkstelligt. Damit
war das achromatische Fernrohr erfunden, das durch Dollonds
Sohn und insbesondere im Beginn des 19. Jahrhunderts durch
Joseph Fraunhofer einen solchen Grad der Vollendung erhielt,
daß der während des 18. Jahrhunderts herrschende Reflektor das
Feld räumen mußte739.
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Abb. 122.


Eulers aus Glas
und Wasser zusammengesetztes
Objektivglas740.





Auch mit einem wichtigen Problem der angewandten Mechanik
hat sich Euler beschäftigt. Im Jahre 1750 hatte Segner das
nach ihm benannte Wasserrad erfunden741. Dies veranlaßte Euler,
eine »Vollständigere Theorie der Maschinen, die durch die Reaktion
des Wassers in Bewegung gesetzt werden«, zu entwickeln742. Die
Arbeiten von Segner und Euler sind für den Bau der horizontalen
Wasserräder (Turbinen) grundlegend gewesen. Die soeben
erwähnte Abhandlung Eulers wird selbst heute noch als nur
wenig veraltet betrachtet743. Euler löst in ihr die Aufgabe, die
Leistung einer hydraulischen Maschine zu finden, die für ein gegebenes
Gefälle und einen bestimmten Wasserverbrauch gebaut
ist. Ferner wird an einer Reihe von Beispielen gezeigt, wie man
für gewisse Bedingungen die größtmögliche Leistung der Turbine
berechnen kann.

Die Begründung der analytischen Mechanik.

Der Weg zu der dem 18. Jahrhundert gelungenen, vorläufig
abschließenden Gestaltung der Mechanik führt von den Bernoullis
und Euler über d'Alembert zu Lagrange, dem großen
Analytiker, dem jener Abschluß vorbehalten blieb. Die durch
Euler repräsentierte, ältere Generation begnügte sich mit der
Lösung zahlreicher, isolierter Aufgaben aus allen Teilen der angewandten
Mathematik. Für jedes Problem mußte man daher
einen neuen Weg, für jede Aufgabe besondere Kunstgriffe suchen,
so daß nur die hervorragendsten mathematischen Talente sich auf
dem Gebiete der Mechanik betätigen konnten. Durch d'Alembert
und in noch höherem Grade durch Lagrange wurde dieser Mangel
beseitigt, indem sie die allgemeinen Sätze fanden, die auf ganze
Gruppen von mechanischen Aufgaben anwendbar sind. D'Alembert
war es, der diese »Formgebung« der Mechanik einleitete,
während Lagrange sie vollendete744. Diese Bedeutung d'Alemberts
rechtfertigt es, daß wir nicht nur seinem Hauptwerk, sondern
auch seinem Lebensgang eine kurze Darstellung zuteil werden
lassen, zumal seine Beziehungen zu den philosophischen Bestrebungen
der Aufklärungsperiode von besonderem Interesse sind.



D'Alemberts Lebensumstände waren ganz außergewöhnliche.
Zu der Zeit, als in Frankreich der berüchtigte Herzog von Orleans
die Regentschaft führte, fand man auf den Stufen einer Kirche
ein ausgesetztes Kind, das der Frau des Handwerkers Alembert
zum Aufziehen übergeben wurde. Erst als dieses Kind zum Manne
geworden, der sich unter dem Namen d'Alembert einen geachteten
Namen geschaffen hatte, wurde der Schleier, der seine
Herkunft verbarg, gelüftet. Es stellte sich nämlich heraus, daß
seine Mutter eine Frau war, in deren Salon hervorragende Schriftsteller,
vornehme Militärs und Kleriker, darunter der spätere Papst
Benedikt XIV., verkehrten. Mit 12 Jahren wurde d'Alembert
in ein Collège aufgenommen. Er studierte Theologie, die Rechte
und Medizin, bis er sich schließlich mit ausgesprochener Neigung
der Philosophie und den mathematischen Wissenschaften zuwandte.

D'Alembert wurde Mitglied der Pariser und der Berliner
Akademie. Den glänzenden Verlockungen, durch die ihn Friedrich
der Große und Katharina II. an sich zu fesseln suchten,
widerstand er. Er blieb in Frankreich und starb dort im
Jahre 1783.

Seine grundlegende »Abhandlung über Dynamik« veröffentlichte
d'Alembert im Alter von 26 Jahren (1743)745. Sie bedeutet
einen Markstein in der Entwicklung der Mechanik, weil sie für
die Bewegung der Körper ein ebenso einfaches Grundprinzip aufstellte,
wie man es für das Gleichgewicht in dem Prinzip der
virtuellen Geschwindigkeiten besaß.

Die Ableitung des d'Alembert'schen Prinzips geht auf das
Problem des zusammengesetzten Pendels zurück. Offenbar ist ein
solches nichts anderes als ein Hebel, der sich in Bewegung befindet.
An einem solchen werden die auf jeden Massenpunkt wirkenden
Kräfte bekanntlich in zwei Bestandteile zerlegt, von denen
die einen sich gegenseitig aufheben, zur Bewegung also nicht beitragen,
während die anderen im Gegensatz zu jenen »verlorenen«,
sich das Gleichgewicht haltenden Kräften dem System die Bewegung
erteilen. Derjenige Massenpunkt, an dem weder Verlust
noch Gewinn stattfindet, ist der uns aus früheren Betrachtungen
bekannte Schwingungsmittelpunkt. Auch d'Alembert behandelt
als typischen Fall für sein Prinzip eine an einem Ende befestigte
und im übrigen mit verschiedenen Körpern beschwerte Stange,
also ein System, das sich gleichfalls als ein zusammengesetztes
Pendel oder ein in Bewegung begriffener Hebel betrachten läßt.
Dann zerlegt er, wie es schon vor ihm Jakob Bernoulli bei
der Untersuchung des zusammengesetzten Pendels getan, die wirkenden
Kräfte in diejenigen, die im Gleichgewicht sein müssen,
und in diejenigen, welche die Bewegung hervorrufen. In dieser
Art der Betrachtung liegt das Wesen von d'Alemberts Prinzip,
das in seiner allgemeinen Fassung folgendermaßen lautet: Werden
einem System von materiellen Punkten oder Körpern Bewegungen
mitgeteilt, die infolge der wechselseitigen Verbindung der Punkte
oder Körper eine Abänderung erfahren, so findet man die resultierenden
Bewegungen auf folgende Weise. Man zerlege die jedem
Körper mitgeteilten Bewegungen in je zwei andere a, α; b, β;
c, γ ... derart, daß die Körper, wenn man ihnen nur die Bewegungen
a, b, c beigelegt hätte, diese Bewegungen hätten bewahren
können, ohne sich gegenseitig zu hindern; und daß, wenn
man ihnen nur die Bewegungen α, β, γ ... eingeprägt hätte, das
System in Ruhe geblieben wäre. Dann werden a, b, c ... die Bewegungen
sein, welche diese Körper infolge ihrer Wechselwirkung
annehmen.

Zahlreiche Anwendungen seines Prinzips hat d'Alembert im
dritten Abschnitt seiner Abhandlung geboten746. Ferner gelang es
ihm, die Theorie der Bewegung der Flüssigkeiten auf sein Prinzip
zurückzuführen747. D'Alembert huldigte der zu seiner Zeit verbreiteten
Ansicht, daß die Prinzipien der Mechanik beweisbar
seien. Die Scheinbeweise, die er bringt, laufen indessen nur darauf
hinaus, daß der behauptete Satz wahr sei, weil für das Gegenteil
kein genügender Grund vorliege. Ein Zweifel hinsichtlich des
Wesens der mechanischen Prinzipien spricht sich indessen schon
in der zu jener Zeit gestellten Preisfrage der Berliner Akademie
aus, »ob die Gesetze von notwendiger oder nur erfahrungsmäßiger
Wahrheit seien«. D'Alemberts Satz führt offenbar die Aufgaben
der Dynamik auf Gleichgewichtsuntersuchungen und die dabei gewonnenen
Erfahrungen zurück. Der Satz macht die Erfahrung
nicht etwa überflüssig. Er hat den »Wert einer Schablone« zur
bequemen Lösung von Aufgaben. Er fördert »nicht so sehr das
Durchblicken der Vorgänge, als ihre praktische Bewältigung«748.



Bevor wir näher auf die weitere Entwicklung der Physik eingehen,
wollen wir uns mit dem Manne beschäftigen, der an Eulers
Stelle trat und das Werk dieses Meisters fortgeführt hat. Das
war Lagrange. Ihm und Euler ist es gelungen, anstatt des
synthetischen Verfahrens früherer Jahrhunderte in allen Zweigen
der reinen und der angewandten Mathematik, das rechnerische,
analytische Verfahren zur Durchführung zu bringen.

Lagrange ist sowohl in amtlicher als in wissenschaftlicher
Beziehung als der Nachfolger Eulers zu bezeichnen. Er wurde
nämlich nach dem Fortgange Eulers (1766) in die Preußische Akademie
der Wissenschaften aufgenommen und wirkte bis zum Tode
Friedrichs des Großen (1786) in Berlin. Ein besserer Ersatz
für Euler war nicht zu finden. An Bedeutung für die Weiterentwicklung
der Mechanik trat Lagrange gegen Euler nicht
zurück, so daß die Preußische Akademie sich rühmen kann, fast
ein halbes Jahrhundert die beiden größten Meister dieser Wissenschaft
zu den Ihren gezählt zu haben.

Wie sehr die staatliche Fürsorge den Fortschritt der Wissenschaften
mitunter beeinflußt hat, das zeigt vor allem das Preußen
Friedrichs des Großen. Unter dem rauhen, jedes wissenschaftlichen
Sinnes baren Vater dieses Monarchen hatte die Preußische
Akademie, in der sich während des späteren Verlaufs des 18. Jahrhunderts
das regste geistige Leben verkörperte, ein geradezu klägliches
Dasein gefristet. Der König hatte für die Gelehrten seines
Staates kaum etwas anderes übrig als Spott. Der kulturelle und
der politische Fortschritt Preußens wären unterblieben, wenn die
Wissenschaften dort auch weiterhin eine so geringe Beachtung
gefunden hätten wie zur Zeit Friedrich Wilhelms I. Was
dieser versäumte, hat jedoch sein großer Sohn vollauf wieder ausgeglichen.
Und zwar geschah dies nicht nur durch äußere Mittel,
sondern vor allem durch die persönliche Anteilnahme und das
stete Wohlwollen, das er den Gelehrten entgegenbrachte, sowie
durch den Schutz, den er ihnen allen reaktionären Strömungen
gegenüber bot. Wenn man sich die Entdeckungen und die Arbeiten
vergegenwärtigt, welche die Mathematiker, Astronomen, Physiker,
Chemiker, Anatomen und Botaniker der Preußischen Akademie
während der Fridericianischen Periode geleistet haben, so muß man
dem Historiker749 dieser Akademie darin recht geben, daß sie in
Hinsicht auf die Naturwissenschaften zu jener Zeit von keiner
anderen Akademie übertroffen worden sei. Man darf indessen
nicht vergessen, daß ihre hervorragendsten Mitglieder Ausländer
waren. Doch kehren wir zu Lagrange zurück.

Joseph Louis Lagrange wurde am 25. Januar 1736 in
Turin geboren. Sein Vater stammte aus Frankreich; dieser geriet
in Turin in solch mißliche Verhältnisse, daß der junge Lagrange,
der Jüngste unter elf Geschwistern, frühzeitig auf seine eigene
Kraft angewiesen war. Lagrange hat diesen Umstand später oft
als ein Glück bezeichnet. Er meinte, hätte er Vermögen gehabt,
so würde er die Mathematik nicht geliebt, vielleicht nicht einmal
kennen gelernt haben. So sehen wir ihn, kaum 19 Jahre alt,
bereits als Lehrer der Mathematik an einer Artillerieschule unterrichten,
wo er jünger als ein Teil seiner Schüler war. Mit Euler
und d'Alembert wurde Lagrange dadurch bekannt, daß er sich
gleich den genannten großen Mathematikern mit dem damals so
viel erörterten Problem der Saitenschwingungen befaßte. Zu einer
Berühmtheit wurde Lagrange, als er mit 28 Jahren (1764) den
großen mathematischen Preis der Pariser Akademie für eine Arbeit
über die Libration des Mondes750 erhielt. Bei dieser Untersuchung
hat er zum ersten Male das Prinzip der virtuellen Geschwindigkeiten751
angewandt, das er an die Spitze der analytischen Mechanik
stellte. Nach Berlin war Lagrange durch Vermittlung
d'Alemberts gekommen, den Friedrich der Große zunächst
und zwar vergeblich um die Übernahme der bisher von Euler
verwalteten Stelle zu gewinnen suchte. Nach dem Tode des großen
Königs wurde Lagrange der Aufenthalt in Berlin durch einen
Minister aber derartig verleidet, daß er nach Paris zurückkehrte,
wo ihm durch Vermittlung der Königin freie Wohnung im Louvre
angewiesen wurde. In Paris veröffentlichte er im Jahre 1788 sein
Hauptwerk, die Mécanique analytique. Da Lagrange im öffentlichen
Leben nicht hervortrat, so wurde er durch die Wirren der
Revolutionszeit auch nur wenig behelligt. Er wirkte während
dieses Zeitabschnittes an der École Polytechnique und war auch
in der Kommission tätig, die 1792 mit der Festsetzung des neuen
Maßsystems beauftragt wurde. Napoleon, der größte Förderer
der exakten Wissenschaften, den die Geschichte kennt, überhäufte
ihn mit Ehren und nannte ihn, halb im Scherz, halb aus Bewunderung,
»La haute pyramide des sciences mathématiques«.
Lagrange starb am 10. April des Jahres 1813 und wurde im
Pantheon bestattet. Seine Bedeutung hat Laplace in einem
Nachruf mit folgenden Worten gekennzeichnet: »Lagrange hat
gleich Newton in höchstem Maße die glückliche Kunst besessen,
die allgemeinen Prinzipien zu entdecken, die das Wesen der Wissenschaft
ausmachen. Diese Kunst verstand er mit einer seltenen
Eleganz in der Entwicklung der abstraktesten Theorien zu verbinden.«

Fortschritte der Mathematik.

Wir beschäftigen uns zunächst mit dem Anteil, den Lagrange
an der Entwicklung der reinen Mathematik genommen hat. Auf
diesem Gebiete setzte er die Arbeit der Bernoulli und Eulers
fort. Nur erwähnt seien Lagranges Zusätze zu Eulers Elementen
der Algebra. Sie beziehen sich auf das Gebiet der unbestimmten
oder diophantischen Analysis, dem Euler den letzten
Teil seines Werkes widmete. Diese Untersuchungen gehören der
reinen Mathematik an und stehen mit der Entwicklung der Naturwissenschaften
in einem nur lockeren Zusammenhange. Sie haben
aber in der neuesten Zeit die Grundlage für die Theorie der
algebraischen Zahlen gebildet und sind aus diesem Grunde vor
kurzem durch eine deutsche Übersetzung zugänglicher gemacht
worden752.

Mit den unbestimmten Gleichungen befaßt sich Lagrange
auch in einer für dieses Gebiet grundlegenden Abhandlung vom
Jahre 1768753. Er bewältigt darin die Aufgabe, alle unbestimmten
Gleichungen zweiten Grades mit zwei Unbekannten durch ganze
Zahlen zu lösen. Der Versuch, solche Gleichungen zu lösen,
reicht weit in der Geschichte der Mathematik zurück. Fermat
gelang die Lösung, doch hat er sein Verfahren nicht bekannt gegeben.
Es blieb daher Lagrange vorbehalten, ein allgemeines
Verfahren zu entwickeln und zu beweisen, daß jene Gleichungen
stets in ganzen Zahlen lösbar sind. Da sich nun jede Gleichung
zweiten Grades mit zwei Unbekannten auf die einfache Form
A = x2 + By2 bringen läßt, so war das Problem in seiner Allgemeinheit
gelöst.

Gleichfalls an Euler anknüpfend, hat Lagrange ferner die
Theorie der partiellen Differentialgleichungen mitbegründet. Wird
eine Gleichung y = f(x) differenziert, so läßt sich aus der entstandenen
Differentialgleichung durch Integration die ursprüngliche
Gleichung wiederherstellen. Eine solche Integration ist jedoch
nicht für jede beliebige Differentialgleichung möglich. Es
galt daher, ein Kennzeichen für die Integrierbarkeit einer Differentialgleichung
zu finden, und diese Aufgabe löste Euler für
solche Gleichungen erster Ordnung schon 1734. Später dehnte er
mit Erfolg diese Untersuchungen auf Differentialgleichungen höherer
Ordnung aus. Zu einer allgemeinen Theorie für dieses Gebiet ist
Euler allerdings nicht gelangt, sondern er beschränkte sich auf
die Durchführung zahlreicher besonderer Fälle von Integrationen.
Die allgemeine Lösung des Problems blieb Laplace und den
Mathematikern des 19. Jahrhunderts (Pfaff, Cauchy und anderen)
vorbehalten.

Die Abhandlungen von Lagrange, welche die Lehre von der
Integration der Differentialgleichungen förderten, fallen in den
Zeitraum von 1772–1785. Seine Untersuchung vom Jahre 1772
»Über die Integration der partiellen Differentialgleichungen erster
Ordnung« wurde auch in deutscher Übersetzung zugänglich gemacht754.
Eine vollständige Integrationsmethode für lineare partielle
Differentialgleichungen mit beliebig vielen Veränderlichen
fand Lagrange indessen erst sieben Jahre später, nachdem er
sich dem durch Eulers Untersuchungen gestellten Problem zugewandt
hatte.

Mit Lagrange begann auch eine neue Epoche in der Behandlung
der Maxima- und Minimaaufgaben. Der Fortschritt
bestand darin, daß er die analytische Bewältigung der hierher
gehörigen Probleme ins Auge faßte, während die Bernoulli und
Euler vorzugsweise geometrisch verfuhren. Die hierbei befolgte
Methode von Lagrange bestand in einer engen Verbindung der
Differential- mit der Integralrechnung und wurde von Euler mit
dem besonderen Namen der »Variationsrechnung« belegt. Die
grundlegende Abhandlung von Lagrange für diesen Teil der
höheren Analysis erschien im Jahre 1762755.



Wie die Isoperimeterprobleme756 seit dem Altertum behandelt
und insbesondere durch Fermat gefördert wurden, haben wir an
früherer Stelle757 erfahren. Während des 18. Jahrhunderts waren
es zunächst die Bernoulli und Euler, die sich mit diesen Problemen
befaßten. In seiner epochemachenden Abhandlung vom
Jahre 1762 löste Lagrange in seiner Allgemeinheit das Problem,
für eine Integralformel ∫Z, in der Z eine bestimmte Funktion der
Variabeln x, y, z und ihrer Differentiale bezeichnet, diejenige Relation
zu finden, welche diese Variabeln unter sich haben müssen,
damit ∫Z ein Maximum oder ein Minimum wird. Dann wendet
er sich zur Erläuterung seiner Methode der Brachystochrone zu,
einer Kurve, die in der Geschichte der Mathematik ihre besondere
Bedeutung besitzt, weil sie den Untersuchungen der Bernoulli
über isoperimetrische Probleme zum Ausgangspunkt gedient hat758.

Eine Vereinfachung und Vervollständigung der Variationsrechnung
hat Lagrange in einer Abhandlung759 vom Jahre 1770
und vor allem in seiner »Analytischen Mechanik« (1788) gegeben.
Auch Legendre und später Jacobi haben wertvolle Beiträge
zur weiteren Ausgestaltung des für die mathematische Physik so
wichtigen Verfahrens geliefert760.

Die Grundformeln der analytischen Mechanik.

Lagrange war es vorbehalten, die Mechanik in ein System
zu bringen und durch die Verbindung des Prinzips der virtuellen
Geschwindigkeiten mit dem Satze von d'Alembert diejenige
Gleichung abzuleiten, die er selbst als die dynamische Grundformel
bezeichnete, weil sich danach »die Bewegung irgend eines
Systems von Körpern regelt«761. Durch diese Leistung Lagranges
ist seine »Mécanique analytique« vom Jahre 1788 zum Fundament
der neueren Mechanik geworden und zu einer Bedeutung gelangt,
die derjenigen, die Newtons »Prinzipien« für das vorhergehende
Zeitalter besaßen, fast gleichkommt. Ein wesentlicher Unterschied
zwischen Newton und Lagrange besteht indessen darin, daß
Newton seine Sätze an der Figur entwickelte und somit rein
geometrisch (synthetisch) verfuhr, während Lagrange und sein
Vorgänger Euler auf dem Gebiete der Mechanik die analytische
oder rechnende Methode begründeten. Das Bestreben dieser Analytiker
lief darauf hinaus, zu möglichst umfassenden Formeln zu
gelangen, welche die Behandlung der zahlreichen Einzelfälle nach
dem gleichen Schema ermöglichen und sie dadurch erleichtern.
In diesem Sinne ist Lagranges analytische Mechanik wohl als
eine der großartigsten Leistungen für die Ökonomie des Denkens
bezeichnet worden762.

Für die Statik leitete Lagrange die allgemeine Formel für
das Gleichgewicht eines beliebigen Systems von Kräften aus dem
Prinzip der virtuellen Verschiebungen ab. Wirken auf eine Anzahl
von Massenpunkten, die zu einem System verbunden sind, die
Kräfte P1, P2, P3 ... und sind die entsprechenden virtuellen Verschiebungen
p1, p2, p3 ..., so herrscht in dem System Gleichgewicht,
wenn P1p1 + P2p2 + P3p3 + ... = 0 ist. Der kürzeste
Ausdruck für diese Grundformel der Statik lautet:


∑Pp = 0.


Bezieht man die Massenpunkte auf ein rechtwinkliges Koordinatensystem
und zerlegt jede Kraft in ihre parallel zu den Koordinatenachsen
wirkenden Komponenten, so lautet die Formel:


∑(Xdx + Ydy + Zdz) = 0.


Die Komponenten für die einzelnen Massenpunkte sind
X1Y1Z1, X2Y2Z2 usw. Ferner sind die virtuellen Verschiebungen
für die zuletzt erwähnte Formel, gleichfalls parallel den Achsen
zerlegt, dx1dy1dz1, dx2dy2dz2 usw.

Die Ableitung der Grundformel für die Dynamik aus dem
Prinzip der virtuellen Geschwindigkeiten in Verknüpfung mit dem
Satz von d'Alembert gestaltet sich folgendermaßen. Es seien
m1m2m3 ... die Massenpunkte, x1y1z1, x2y2z2 ... die zugehörigen
Koordinaten, und X1Y1Z1, X2Y2Z2 ... wieder die Kraftkomponenten.
Da die Massenpunkte unter sich verbunden sind, so führen
sie Bewegungen aus, welche durch die Kräfte m1d2x1/(dt2), m1d2y1/(dt2),
m1d2z1/(dt2) ... an den nicht miteinander verbundenen Massen hervorgerufen
werden können. Diese Kräfte und die angreifenden Kräfte
X, Y, Z ... stehen nach d'Alemberts Prinzip im Gleichgewicht.
Wendet man darauf das Prinzip der virtuellen Verschiebungen an,
so ergibt sich die Formel:


Σm(d2x/(dt2)δx + d2y/(dt2)δy + d2z/(dt2)δz) = Σm(Xδx + Yδy + Zδz).


Dafür kann man auch schreiben:


Σ{m(X - d2x/(dt2))δx + m(Y - d2y/(dt2))δy + m(Z - d2z/(dt2))δz} = 0.


Die Grundformeln der analytischen Mechanik geben uns nicht
etwa neue Aufschlüsse über die Natur der mechanischen Vorgänge,
sondern sie bauen sich auf schon bekannten Prinzipien auf. Was
sie bieten, ist die Möglichkeit, mit ihrer Hilfe auf rechnerischem
Wege zur Bewältigung der Einzelfälle dieser Wissenschaft zu gelangen763.
Die Vervollkommnung, welche die analytische Mechanik
seit Lagrange durch Poisson, Green, Hamilton, Gauß,
Helmholtz und andere Forscher erfuhr, hing daher von der
weiteren Entwicklung des Kalküls ab.

Durch seine »Analytische Mechanik« förderte Lagrange
nicht nur die mathematische Physik, sondern vor allem auch die
theoretische Astronomie. Um letztere machte sich Lagrange
außerdem noch durch eine Reihe von Abhandlungen verdient,
unter denen sein »Versuch einer neuen Methode, um das Problem
der drei Körper zu lösen« besondere Erwähnung verdient764.

Die Abweichungen, die ein Planet in seiner elliptischen Bahn
um den Zentralkörper durch den Einfluß eines dritten Weltkörpers
erfährt, hatte Newton noch nicht in Rechnung ziehen können.
Die ersten, denen dies für besondere Fälle gelang, waren Clairaut
und Euler. Nach ihnen haben sich um die Bewältigung dieses
Problems Lagrange und ganz besonders Laplace verdient gemacht.
War man auch nicht imstande, eine völlig befriedigende
Theorie zu finden, so erkannte man doch, daß auch unter dem
Einfluß eines dritten Körpers eine elliptische Bewegung stattfindet,
bei der jedoch die Elemente der Ellipse sehr langsamen (säkularen)
Änderungen unterworfen sind. Da also im Verlaufe langer
Zeiträume periodisch derselbe Zustand wieder eintritt, so erschien
die Stabilität des Sonnensystems gesichert.

Endlich sei noch erwähnt, daß Lagrange die mathematische
Analyse auch in den Dienst der Kartographie gestellt hat. Der
erste, der die Theorie dieser Disziplin unter allgemeine Gesichtspunkte
zu bringen suchte, war bekanntlich Lambert765. Er stellte
sich die Aufgabe, die Lage der Längen- und Breitenkreise so zu
bestimmen, daß alle auf der Karte vorkommenden Winkel den
betreffenden Winkeln auf der Erdkugel gleich sind. Dieselbe Aufgabe
beschäftigte auch Euler766. Während Lambert und Euler
sich noch auf bestimmte Projektionsarten beschränkten, suchte
Lagrange der Theorie eine größere Allgemeinheit zu geben, indem
er alle Fälle in Betracht zog, in welchen die Meridiane und
die Parallelkreise durch Kreise wiedergegeben werden767.

Die Begründung der Photometrie.

Die Ausdehnung der mathematischen Analyse auf sämtliche
Gebiete der Naturwissenschaft kam im 18. Jahrhundert nicht nur
der reinen und der angewandten Mechanik, sondern auch der Optik
und der so lange vernachlässigten Akustik zugute.

Die Optik war bis auf Keplers und Scheiners Zeit eine
vorwiegend geometrische Wissenschaft gewesen. Scheiner errichtete
die Grundlagen für die physiologische Optik. Eine bemerkenswerte
Erweiterung der Theorie des Sehens unter Berücksichtigung
der physiologischen und der physikalischen, insbesondere
der quantitativen Seite, erfolgte um die Mitte des 18. Jahrhunderts
durch Lambert, den wir als den Begründer der Photometrie bezeichnen
müssen. Lambert erschöpfte dies Gebiet in einer Weise,
daß seit dem Erscheinen seines großen, diesen Wissenszweig behandelnden
Hauptwerkes768 nur wenige die Photometrie betreffende
Fragen aufgeworfen und erörtert worden sind, die er nicht schon
behandelt oder gestreift hätte.

Johann Heinrich Lambert wurde am 26. August des
Jahres 1728 zu Mülhausen im Elsaß als Sohn eines armen Handwerkers
geboren. Da es an Mitteln fehlte, um den hochbegabten
Knaben, dem Rate seiner Lehrer entsprechend, studieren zu lassen,
war Lambert zunächst gezwungen, das Schneiderhandwerk zu erlernen.
Seiner schönen Handschrift verdankte er dann eine Anstellung
als Schreiber. Zunächst war er als solcher in einem
Eisenwerk, später bei einem Professor der Rechtswissenschaft in
Basel tätig. Letzterer ließ ihm einen Teil des Tages zur wissenschaftlichen
Weiterbildung frei, und so vermochte es Lambert,
die Lücken seiner Bildung auszufüllen. Sein Gönner verschaffte
ihm darauf eine Stelle als Erzieher in einem gräflichen Hause.
Hier und in den Jahren, die er mit seinen Zöglingen auf der
Universität verlebte, fand Lambert Muße, sich eingehender mit
wissenschaftlicher Arbeit zu befassen. Sein Interesse war besonders
der Astronomie zugewandt. Aus dem Bestreben, gewisse
astronomische Fragen zu lösen, entsprang auch seine Beschäftigung
mit der Lehre vom Licht. Bald nachdem Lambert seine Tätigkeit
als Erzieher aufgegeben hatte, erschienen rasch nacheinander
seine drei Hauptwerke, nämlich die Photometrie (1760), eine Abhandlung
über den Lauf der Kometen und seine kosmologischen
Briefe (1761). Lambert war dadurch als kaum Dreißigjähriger
mit einem Schlage zu einer europäischen Berühmtheit geworden.
Auch als Philosoph gewann der vielseitige Mann einen solch hervorragenden
Ruf, daß Kant ihn für einen der ersten unter seinen
Zeitgenossen hielt769. Kant schrieb an Lambert, er halte ihn
für das größte Genie Deutschlands und für den geeigneten Mann,
die Philosophie zu reformieren. Er selbst wolle keine Zeile in
seinen Werken stehen lassen, die Lambert nicht deutlich finde.
Die Bemühungen der Petersburger Akademie um Lambert wurden
dadurch vereitelt, daß ihn die Berliner Akademie zum Mitglied
ihrer physikalischen Klasse mit einem Jahresgehalt von 500 Talern
ernannte. Lambert stand in regem wissenschaftlichen Verkehr
mit Euler und Lagrange. Er starb am 25. September 1777.
Sein frühzeitiger Tod wird darauf zurückgeführt, daß er durch
übermäßiges Arbeiten seine Gesundheit untergrub.

Über Lambert besitzen wir folgende Charakterzeichnung:
»Er war gleichgültig gegen alles, was das Leben schön und behaglich
macht. Sein Kopf arbeitete unbehelligt durch Leidenschaften
wie eine schwer zum Stehen zu bringende Maschine. Dabei
war er harmlos und naturwüchsig. In der Mathematik stand
Lambert nicht auf der Höhe von Euler und Lagrange. In
der Astronomie war er kein Herschel, in der Physik kein Newton.
In der Philosophie gebrach es ihm an Leibnizens Fülle und Beweglichkeit
und an Kants bohrendem Tiefsinn. Aber, daß er
alle vier Disziplinen mit grundlegenden und fortbildungsfähigen
Arbeiten befruchtete, macht ihn doch den Größten ähnlich.«

Auf dem Gebiete der Photometrie
war vor Lambert nur wenig geschehen.
Kepler hatte zwar den
Hauptsatz, daß die Lichtstärke mit
dem Quadrate der Entfernung abnimmt,
geometrisch abgeleitet, zu Versuchen,
die Lichtstärken verschiedener
leuchtender Körper zu vergleichen, war
indessen erst Huygens übergegangen.
Das erste wirkliche Photometer hatte
dann der Franzose Bouguer (1698
bis 1758) geschaffen. Es bestand aus
zwei durchscheinenden Schirmen, die sich in den Öffnungen OO1
(s. Abb. 123) befanden. Damit das Licht der beiden Lichtquellen
sich nicht vermischen konnte, war zwischen den beiden Öffnungen
nach der Seite der Flammen eine Scheidewand (F) angebracht.
Die Lichtquelle, deren Stärke zu messen war, wurde verschoben,
bis dem vor OO1 befindlichen Auge die transparenten, in OO1
befindlichen Schirme gleich hell erschienen.


[image: Abb. 123]
Abb. 123. Bouguers Photometer.



Bouguer verfaßte auch ein Werk über die Photometrie, das
1760, also gleichzeitig mit Lamberts, denselben Gegenstand betreffender
Schrift erschien, von Lambert also nicht berücksichtigt
werden konnte770. Es läßt sich begreifen, daß die Verdienste Bouguers
und Lamberts um die Begründung des neuen Wissenszweiges
gegeneinander abgewogen wurden, und es hat nicht an
Stimmen gefehlt, die Lambert gegenüber Bouguer zu verkleinern
suchten771. Anerkannt muß werden, daß der französische den
deutschen Forscher in der Anstellung sinnreicher und sorgfältiger
Versuche übertraf, während Lambert bei seinen experimentellen
Untersuchungen sogar mit einer gewissen Nachlässigkeit verfuhr.
Bestand doch sein ganzes Instrumentarium nur aus drei kleinen
Spiegeln, zwei Linsen, einigen Glasplatten und einem Prisma.
Andererseits gebührt Lambert das Verdienst, die Begriffe und
das System der Photometrie geschaffen zu haben. Während Bouguer
sich an Beobachtungen hält und aus ihnen nicht mehr folgert,
als sich streng genommen daraus folgern läßt772, weiß Lambert
jedem Problem eine, bis zum Ziel gelangende, mathematische
Lösung zu geben. Allerdings war dies mitunter nur auf Grund
einer so weit gehenden Vereinfachung der Voraussetzungen möglich,
daß das Ergebnis der Rechnung nur als eine rohe Annäherung
an die wirklichen Verhältnisse betrachtet werden durfte.
Daß der Franzose, wie wir hervorhoben, die Beobachtung und
die genaue Messung, der Deutsche dagegen die Begriffsbestimmung
und die Ableitung, unbeschadet mangelhafter Empirie,
in den Vordergrund stellt, war kein Zufall, sondern entsprach
der Eigenart französischen und deutschen Geistes. Ein ähnliches
Verhältnis waltete im 18. Jahrhundert zwischen den englischen
und den deutschen Geisteserzeugnissen. Daß die Deutschen
die Vorzüge der westeuropäischen Forschungsweise sich
anzueignen und mit den eigenen Vorzügen zu verbinden wußten,
hat dem Deutschland des 19. und 20. Jahrhunderts die führende
Rolle auf manchen Gebieten der Naturwissenschaften eingebracht.

Nach diesen allgemeinen Bemerkungen und der Eingliederung
Lamberts in die Reihe seiner Zeitgenossen773 wenden wir uns
seiner Photometrie zu, einem Werke, das, wie sein Herausgeber
hervorhebt, für den Astrophysiker ebenso unentbehrlich ist, wie
für den Astronomen Laplaces Mécanique céleste774.



Lambert beginnt mit einer Betrachtung der Grundbegriffe
der Photometrie. Gerade dasjenige, meint er, sei unserer Einsicht
am meisten verschlossen, was der sinnlichen Wahrnehmung fortwährend
begegne. Dafür stelle die Theorie des Lichtes ein ausgezeichnetes
Beispiel dar. Daß diese nicht genüge, könne man
schon daraus schließen, daß zwei so verschiedene Hypothesen wie
diejenige von Newton und Euler (richtiger Huygens) zur Erklärung
der Erscheinungen angewendet würden. Die erstere liege
dem Verständnis näher, doch entspreche Eulers Theorie wohl
mehr der Natur der Sache. Lambert knüpft daran einen oft
wiederholten Ausspruch über die Beurteilung von Hypothesen.
Seine Worte lauten: »Unter die vornehmsten und sichersten Kriterien
dafür, daß eine Hypothese sich der Wahrheit nähert, muß
man den Fall nehmen, wenn man aus ihrem Lehrgebäude den
Eintritt neuer Erscheinungen vorhersehen und wenn man Sätze
daraus folgern kann, denen die zu diesem Zwecke angestellten
Versuche beipflichten«775. Diese Prüfung sollte erst weit später
zugunsten der von Huygens und Euler vertretenen Wellentheorie
entscheiden776.

Da es für photometrische Untersuchungen kein absolutes Maß
gibt, sondern stets ein sehr subjektiver Faktor, das Urteil des
Auges nämlich, in Betracht gezogen werden muß, macht Lambert
die Voraussetzung, daß »eine Erscheinung stets dieselbe
ist, so oft dasselbe Auge auf die gleiche Weise affiziert
wird«. Das Auge sei bei verschiedenen Helligkeitsgraden zwar
nicht imstande, zu entscheiden, um wieviel der eine größer sei als
der andere, doch müsse man voraussetzen, daß das Auge über die
Gleichheit zweier Helligkeitsgrade entscheiden könne. Nur durch
die Verknüpfung dieses Axioms mit den schon aus geometrischen
Überlegungen folgenden Prinzipien der Photometrie könne man
zu einem Ausbau dieses Teils der Optik gelangen.

Von solchen Prinzipien hob Lambert außer dem Satze von
der Abnahme des Lichtes mit dem Quadrate der Entfernung noch
zwei besonders hervor. Das erste lautet: »Wird dieselbe Fläche
einmal von m, das andere Mal von n Lichtquellen beleuchtet, von
denen jede dieselbe Intensität besitzt und ihr Licht unter völlig
gleichen Umständen nach der Fläche sendet, so verhalten sich die
Helligkeitsgrade wie m : n.« Die Beleuchtung eines Blattes ist
also um so stärker, je größer die Anzahl der leuchtenden Kerzen
ist, vorausgesetzt, daß diese gleich hell sind, die gleiche Entfernung
vom Blatte und die gleiche Größe besitzen777.

Der dritte, wichtigste Grundsatz sprach aus, daß die Helligkeit
in demselben Verhältnis abnimmt wie der Sinus des Neigungswinkels.
Der geometrische Beweis, den Lambert hierfür bringt
(Photometrie § 53), ist in alle Lehrbücher der Physik übergegangen.
Lambert begnügte sich nicht mit dem theoretischen Beweise dieser
Sätze, sondern er suchte auch durch geeignete Versuche ihre gegenseitige
Abhängigkeit darzutun und ihnen auf diese Weise eine
noch größere Sicherheit zu verleihen.

Das nächste Kapitel beschäftigt sich mit der Messung und
der Stärke des direkten Lichtes. Für zahlreiche Einzelfälle wird
die Lichtmenge oder die Erleuchtungskraft berechnet, die von verschieden
gestalteten Flächenstücken ausgeht. Das von Lambert
benutzte Photometer stimmte mit dem nach Rumford benannten
ziemlich überein. Lamberts Verfahren bestand darin, daß er die
Helligkeit zweier Flächenstücke verglich, von denen das eine durch
eine bestimmte Lichtquelle, das andere durch eine Lichtquelle,
deren Stärke ermittelt werden sollte, beleuchtet wurde. Die Einrichtung
geht aus Fig. 2 der Photometrie (s. Abb. 124) hervor.


[image: Abb. 124]
Abb. 124. Lamberts Photometer.



In K und A befinden sich die beiden Lichtquellen, die verglichen
werden sollen. BDCEFG sei eine weiße, ebene Fläche;
vor dieser ist über HI ein undurchsichtiger, Schatten spendender
Schirm aufgestellt. Der von der Lichtquelle bei A herrührende
Schatten bedeckt den Teil DFEC der weißen Fläche, während
der von K ausgehende Schatten auf DFGB fällt. Auf diese
Weise wird der vordere Teil der Fläche DFGB nur von der
Lichtquelle in A, der hintere Teil DFEC nur von den von K
kommenden Strahlen beleuchtet. Die eine Lichtquelle wird dann
so lange bewegt, bis die weiße Fläche zu beiden Seiten der Linie
DF gleich hell erscheint.

Auf das Kapitel, das sich mit dem direkten Lichte beschäftigt,
folgt ein anderes über die Reflexion des Lichtes durch dunkle
Körper778. Ferner wird von der durch zerstreutes Licht erzeugten
Helligkeit der durchsichtigen Körper, insbesondere der irdischen
Atmosphäre gehandelt und eine Formel für die Extinktion des
Lichtes auf seinem Wege durch die Atmosphäre abgeleitet (Photometrie
§ 878 bis 882). Im Anschluß hieran wird die Dämmerung
untersucht und die Höhe der Atmosphäre unter gewissen einfachen
Annahmen berechnet.

Der sechste Teil des Lambertschen Werkes enthält die
Grundzüge der Astrophotometrie. Es wird darin die Theorie der
Lichtstärke des Mondes und der Hauptplaneten entwickelt. Den
Schluß bildet eine experimentelle und theoretische Erörterung
über die Intensität des heterogenen und des relativen Lichtes,
worunter die Farben und der Schatten verstanden sind.

Auf den Gang der Untersuchung kann hier nicht näher eingegangen
werden, doch sei hier einiges über die Ergebnisse mitgeteilt.
Nach Lambert entspricht die Absorption des Lichtes
beim senkrechten Durchgang durch die Atmosphäre dem Verhältnis
100 : 59779. Für die mittlere Helligkeit des Vollmondes zu derjenigen
der Sonne wird das Verhältnis 1 : 277000 ermittelt, und die mittlere
Helligkeit des Vollmondes zu zwei Dritteln der mittleren Zentralhelligkeit
bestimmt. Letztere wird dann auch für die Planeten
aus der Zentralhelligkeit der Erde nach dem ersten von Kepler
ausgesprochenen Grundsatz der Photometrie berechnet.

Fortschritte der Akustik.

Während die Mechanik und die Optik seit den Zeiten Galileis
von seiten aller hervorragenden Physiker gefördert wurden, blieb
das Gebiet der Akustik zunächst vernachlässigt. Newton hatte
zwar in seinen »Prinzipien« eine Formel für die Fortpflanzungsgeschwindigkeit
des Schalles abgeleitet. Die experimentellen Bestimmungen
dieser wichtigen Konstante schwankten jedoch zwischen
1071 und 1255 Pariser Fuß. Die Berechnung aus Newtons
Formel ergab den noch geringeren Wert von 906 Fuß. Dieser
Widerspruch zwischen Theorie und Erfahrung bewog die Mathematiker,
sich mehr als bisher der Akustik zuzuwenden. Zunächst
prüften Euler und bald darauf Lagrange die Newtonsche
Formel, ohne jedoch zu einer Lösung des bestehenden Widerspruchs
gelangen zu können. Daniel Bernoulli wandte sich
besonders der Untersuchung der Luftschwingungen in den Orgelpfeifen
zu780. Er sowie Euler lieferten ferner Untersuchungen über
die Schwingungen von Saiten und Stäben. Die Abhandlungen,
die Euler, Lagrange, Bernoulli, d'Alembert u. a. über diesen
Gegenstand veröffentlichten, besitzen indessen mehr mathematischen
als physikalischen Wert. Der erste, der den akustischen
Problemen durch eine erfolgreiche Vereinigung von Experiment
und mathematischer Analyse gerecht zu werden vermochte, war
Chladni.

Ernst Florens Friedrich Chladni wurde als Sohn eines
Professors der Rechte am 30. November 1756 in Wittenberg geboren.
Er studierte zunächst gleichfalls die Rechte, wandte sich
aber später mit großer Vorliebe den Naturwissenschaften und der
Musik zu. Die Beschäftigung mit der letzteren veranlaßte ihn
zum Lesen akustischer Schriften. Da ihm diese indessen nur
sehr unvollkommene Aufschlüsse gaben, ging er zu eigenen Untersuchungen
über.

Vor Chladni hatte man sich ausschließlich mit den Quer-
oder Transversalschwingungen von Saiten befaßt. Chladni entdeckte,
daß an Saiten und insbesondere an Stäben auch Longitudinalschwingungen
und drehende Schwingungen hervorgerufen
werden können781.

Um Longitudinalschwingungen zu erhalten, wurden die Stäbe
festgehalten und der Länge nach gestrichen. Chladni benutzte
dazu besonders Glasröhren. Zum Hervorrufen der Töne bediente
er sich eines mit Smirgel bestreuten Tuches, das er mit der Hand
den Stab entlang rieb. Bei mittlerer Länge des Stabes waren
die Töne sehr hoch. Sie standen ferner in keinem bestimmten
Verhältnis zu den an demselben Stab durch transversale Schwingungen
erzeugten Tönen.



Auf die Longitudinalschwingungen von Stäben, die Chladni
beschrieb (Über die Longitudinalschwingungen der Saiten und
Stäbe, Erfurt 1796) gründete er die Erfindung einiger neuer Musikinstrumente,
des Euphons und des Klavizylinders.

Das Euphon bestand aus Glasstäben, die auf Eisenstäben
ruhten und mit angefeuchteten Fingern gerieben wurden. Beim
Klavizylinder bestanden die Stäbe aus Holz; sie wurden durch
eine Tastatur gegen einen rotierenden feuchten Glaszylinder gepreßt.
Beide Instrumente gaben einen sanften, anhaltenden, langsam
an- und abschwellenden Ton. Sie haben indessen keine Verbreitung
gefunden.

Das Studium der Longitudinalschwingungen führte Chladni
auch zu einer Berechnung der Fortpflanzungsgeschwindigkeit des
Schalles in festen Körpern. Er fand sie weit größer als die
Schallgeschwindigkeit in der Luft. Wählte er letztere als Einheit,
so ergab sich diejenige für
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Eine direkte Messung der Schallgeschwindigkeit in einem
Metall hat einige Jahrzehnte später Biot vorgenommen. Er stellte
sie an gußeisernen Röhren an, die auf eine längere Strecke verbunden
waren. Wurde die so entstandene, sehr lange metallische
Leitung an einem Ende angeschlagen, so nahm man den Ton
zuerst durch das Metall und später durch die Luft wahr. Aus
der Zeitdifferenz ergab sich für Gußeisen eine Fortpflanzungsgeschwindigkeit
des Schalles von etwa 3500 Metern.

Chladni untersuchte auch die Geschwindigkeit in verschiedenen
Gasen. Über die Stärke des Schalles in den Gasarten
hatte schon Priestley Versuche angestellt. Er hatte gefunden,
daß der Schall in Wasserstoff fast so schwach ist wie im Vakuum,
während er in Sauerstoff und in Kohlensäure stärker ist als in
der atmosphärischen Luft. Eine direkte Messung in den verschiedenen
Gasarten vermochte Chladni nicht vorzunehmen.
Sein Verfahren bestand darin, daß er Orgelpfeifen in verschiedenen
Gasen ertönen ließ. Da hier die Schwingungszahl und somit die
Höhe der Töne zu der Fortpflanzungsgeschwindigkeit in einem
mathematisch bestimmten Verhältnis steht, ließ sich aus der Verschiedenheit
der Tonhöhe, welche dieselbe Pfeife in verschiedenen
Gasen aufwies, die Fortpflanzungsgeschwindigkeit des Schalles für
jedes Gas ermitteln. Direkte Messungen hat später Regnault
in Wasserleitungsröhren vorgenommen, die mit verschiedenen Gasen
gefüllt waren. Sie ergaben, daß Chladnis Ableitungen im allgemeinen
zutreffend sind.

Ein ganz neues Gebiet wurde von Chladni dadurch erschlossen,
daß er sich der experimentellen und der mathematischen
Untersuchung schwingender Platten zuwandte. Ausführlich berichtete
er darüber 1787 in einer Schrift, die den Titel »Entdeckungen
über die Theorie des Klanges« führt. Besonderes Aufsehen
erregte er durch die Art, wie er die Schwingungen der
Platten vermittelst der nach ihm genannten Chladnischen Klangfiguren
sichtbar machte. Auf sein Verfahren wurde er durch die
Lichtenbergschen Staubfiguren geführt. Sie entstehen, wenn
fein gepulverte Körper, wie Schwefelblumen oder Mennige, auf
Platten gebracht werden und man auf sie die Elektrizität überspringen
läßt. Die Art, wie sich das Pulver lagert, läßt erkennen,
ob die Elektrizität positiv oder negativ war.

War der überspringende Funke positiv, so ordnete sich das
Pulver zu eigentümlichen Strahlen, war er negativ, so entstanden
wolkenartige Gebilde. Als Chladni diese Versuche wiederholte,
kam ihm plötzlich der Gedanke: Sollte sich nicht auf ebenen
Scheiben, sobald sie klingen und etwas Sand darauf gestreut wird,
eine Figur bilden, die den betreffenden Ton kennzeichnet und so
gleichsam sichtbar macht.

Um auf diese Weise den akustischen Zustand einer Platte
festzustellen, befestigte Chladni sie in horizontaler Lage an einer
oder mehreren Stellen, strich sie unter rechtem Winkel mit einem
Violinbogen und streute gleichzeitig Sand hinauf. Letzterer ordnet
sich dann in den bekannten regelmäßigen Figuren an, indem er
»von den schwingenden Stellen heruntergeworfen wird und auf den
nicht schwingenden Stellen ruhig liegen bleibt.« Chladni erkannte
daraus, daß »die natürliche Gestalt des Körpers durch die elastischen
Flächenkrümmungen, ebenso in gewissen Linien durchschnitten
wird, wie dieses bei den krummen Schwingungslinien der
Saiten in gewissen Punkten geschieht, und daß zwei Stellen, die
durch eine solche feste Linie voneinander gesondert sind, stets
nach entgegengesetzten Richtungen schwingen«.

Die folgenden, dem Werke Chladnis entnommenen 4 Figuren
zeigen uns, wie eine quadratische Platte schwingt, wenn sie in
verschiedener Weise festgehalten und gestrichen wird.



Fig. 87 erscheint, wenn die Scheibe in der Mitte gehalten und
an einer Ecke gestrichen wird. Diese Schwingungsart gibt den
tiefsten Ton.

Fig. 88 entsteht, wenn man die Scheibe wieder in der Mitte
befestigt, aber in der Mitte einer Seite streicht.


[image: Abb. 125]
Abb. 125. Chladnische Klangfiguren782.



Der Ton ist dann
nicht derselbe wie vorher,
sondern etwa um
eine Quinte höher.

Fig. 89, die leicht
in 90 übergeht, erhält
man, wenn die Scheibe
bei n oder g gehalten
und bei a gestrichen
wird. Der Ton ist
wieder etwas höher als
der vorige.

Chladni zeigte, daß
man durch Festhalten
mehrerer Stellen und
Abwechseln ihrer Lage
eine ganz außerordentliche
Mannigfaltigkeit
von Schwingungszuständen
und diesen
entsprechenden Klangfiguren hervorrufen kann. Sie könnten, meint
er, den Tapeten- und Kattunfabrikanten genug Stoff zur Bereicherung
ihrer Muster geben. Die Klangfiguren fesselten das Interesse aller
Kreise in hohem Grade, da Chladni, der kein Amt bekleidete,
sie an vielen Orten in akustischen Vorträgen, durch die er seinen
Lebensunterhalt erwarb, vorführte783.



Außer den erwähnten Schriften Chladnis ist noch sein zusammenfassendes
Werk, »Die Akustik«, zu erwähnen784. In seinen
neuen Beiträgen zur Akustik vom Jahre 1817 ermittelte Chladni
die obere Grenze der Hörbarkeit von Tönen zu 22000 Schwingungen
in der Sekunde.

Chladnis Verdienst um die Aufklärung der Natur der
Meteore wird an anderer Stelle gewürdigt werden. Er starb in
Breslau am 3. April des Jahres 1827.

Über den Stand der gesamten Experimentalphysik des 18. Jahrhunderts
geben die großen Werke von Desaguliers, s'Gravesande
und Musschenbroek Auskunft. Die genaueren Titel dieser
mehr als bloß historisches Interesse erregenden Werke finden sich
in der Literaturübersicht am Schluß des vierten Bandes. Sie befassen
sich in erster Linie mit Gegenständen der angewandten
Mathematik und haben dazu beigetragen, die Wissenschaft jener
Zeit von der oft überwuchernden Spekulation immer wieder auf
den sicheren Boden des Experiments zurückzuführen. Desaguliers
beschäftigt sich besonders mit der Mechanik und dem Maschinenwesen.
Bei s'Gravesande fallen dagegen die zahlreichen Untersuchungen
aus dem Gebiete der Hydrostatik und der Hydrodynamik
auf, während Musschenbroek, angeregt durch die
Versuche der Florentiner Akademie, zahlreiche Versuche über die
Wärme anstellte.




19. Die Fortschritte der Astronomie nach der
Begründung der Gravitationsmechanik.

Die Astronomie wurde während des 18. Jahrhunderts immer
mehr zum Vorbild, dem die übrigen Naturwissenschaften, vor allem
die Physik, nachzueifern strebten. In der Vollendung der Methoden,
sowie bezüglich der Sicherheit der Resultate, zu denen die
Astronomie gelangte, reichte jedoch kein anderer Zweig an sie
heran.

Neben dem Wettkampf zwischen dem dioptrischen Fernrohr
und dem Reflektor beschäftigten die Astronomen des 18. Jahrhunderts
noch zwei wichtige Fragen, welche die vorhergehende
Periode aufgeworfen hatte. Sie betrafen die Abweichung der Erde
von der Kugelgestalt und die Bestimmung der Sonnenparallaxe
aus den 1761 und 1769 wieder zu erwartenden Vorübergängen der
Venus. Um die von Newton und Huygens herrührende Annahme,
daß die Erde ein an den Polen abgeplattetes Rotationsellipsoid
sei785, auf ihre Richtigkeit zu prüfen, waren genaue Gradmessungen
in der Nähe eines Pols und des Äquators erforderlich.
War, der Theorie Newtons gemäß, die Krümmung in der Nähe
der Pole eine geringere, so mußte sich hier für den Breitengrad
eine größere Strecke ergeben als für eben dieses Maß in der Nähe
des Äquators. Zur Entscheidung dieser Frage sandte die französische
Regierung in den Jahren 1735 und 1736 Expeditionen nach
Peru und Lappland. Die erstere, die von Bouguer786 und de la Condamine787
geleitet wurde, maß den Abstand zwischen zwei nördlich
und südlich vom Äquator gelegenen Orten und fand für den Grad
56734 Toisen. Die von Maupertuis788 geführte zweite Expedition
stellte ihre Messungen in der Nähe des Tornea unter dem
66. Grade nördlicher Breite an. Das von dieser Expedition gefundene
Ergebnis belief sich auf 57438 Toisen789, war also um
704 Toisen größer als das am Äquator erhaltene, während sich
für die Breite von 45° ein zwischen diesen beiden Größen liegender
Wert von 57012 Toisen ergab. Die von Newton und
Huygens aufgestellte Ansicht über die Gestalt der Erde hatte
somit ihre Bestätigung erfahren. Nach de la Condamine ergaben
diese Messungen, daß sich die Erdachse zum Durchmesser des
Äquators wie 299 : 300 verhält, während Newton auf rechnerischem
Wege das Verhältnis 288 : 289 gefunden hatte.

Zu den Männern, die Maupertuis auf seiner Lapplandexpedition
begleiteten, gehörte der damals erst 23 Jahre alte
Clairaut, der zu den größten Mathematikern Frankreichs zählt790.
Ihm verdankt man die bedeutendste theoretische Untersuchung
über die Gestalt der Erde791.

Clairauts Arbeit wurde besonders dadurch veranlaßt, daß die
beiden Gradmessungen zwar die Richtigkeit der von Newton und
Huygens vertretenen Annahme bewiesen, daß sich aber die Abplattung
als nahezu doppelt so groß herausstellte, wie sie nach der
Theorie hätte sein sollen. Clairaut ging davon aus, daß die Gestalt
der Erde, abgesehen von den sehr geringen, als Berg und Tal in
die Erscheinung tretenden Unregelmäßigkeiten, von den Gesetzen
der Hydrostatik abhängen muß. Die Ausmessung der Erde könne
daher nur dasselbe ergeben, wie wenn die Messungen auf einer
festgewordenen Flüssigkeit ausgeführt wären, die vorher eine dem
Gleichgewicht entsprechende Gestalt angenommen hätte. An dem
damit gegebenen Problem, die Gestalt der Erde aus den hydrostatischen
Gesetzen abzuleiten, hat sich die mathematische Hydrostatik
recht eigentlich erst entwickelt792.

Die Anfangsgründe der Lehre vom Gleichgewicht der Flüssigkeiten
rühren besonders von Newton und von Huygens her. Huygens
hatte ausgesprochen, daß eine flüssige Masse nur dann in Ruhe
ist, wenn ihre Oberfläche ein Niveau darstellt, d. h. wenn sie überall
lotrecht zu den Kraftresultanten verläuft.
Newton dagegen führte den
Gleichgewichtszustand auf den Druck
zurück, der in Flüssigkeitssäulen
herrscht, die von der Oberfläche zum
Kraftzentrum reichen. Clairaut endlich
stellte ein umfassenderes Prinzip
an die Spitze. Es spricht aus, daß eine
flüssige Masse nur dann im Gleichgewicht
sein kann, wenn die an allen
Stellen eines beliebig geformten Kanals
auftretenden Kräfte sich gegenseitig
aufheben. Diesen Kanal kann man sich
so entstanden denken, daß die übrige
Masse der Flüssigkeit fest wird. Der Kanal kann ferner an der
Oberfläche münden, in der Oberfläche selbst verlaufen oder auch
in sich zurückkehren (Abb. 126). Von diesem Prinzip des beliebigen
Kanals ausgehend, gelangte Clairaut zu den partiellen
Differentialgleichungen für das Gleichgewicht der Flüssigkeiten.
Besteht nämlich für jeden beliebigen Kanal Gleichgewicht, so ist
offenbar auch die ganze Flüssigkeitsmasse im Zustande des Gleichgewichts.
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Abb. 126. Erläuterung des
Clairautschen Kanalprinzips.



Bei der Verwendung hydrostatischer Untersuchungen zur Erklärung
der Gestalt der Erde beschränkte sich Newton auf eine
homogene Masse. Für eine solche hatte Newton das Achsenverhältnis
gleich 230 : 231 berechnet. Clairaut dehnte dagegen die
Untersuchung auf den Fall aus, daß die Dichte der Schichten
sich mit der Annäherung an das Zentrum ändert. Auf die Einzelheiten
dieser Untersuchung und das daraus sich ergebende »Clairautsche
Theorem«793 kann hier nicht näher eingegangen werden,
da es sich um einen Gegenstand der höheren Analysis handelt.

Clairaut gehörte auch zu den ersten, die den höheren Kalkül
auf die Theorie der Mondbewegung anwandten. Dazu bedurfte es
einer Erörterung des Problems der drei Körper794, um dessen angenäherte
Lösung sich außer Clairaut besonders d'Alembert,
Euler, Lagrange und Laplace verdient gemacht haben.

Erwähnt sei noch, daß sich in Clairauts »Theorie der Erdgestalt«
schon der Grundgedanke der Lehre von der Kraftfunktion
oder dem Potential findet, mit deren Weiterentwicklung sich besonders
Green, Laplace und Gauß beschäftigt haben795.

Weit genauer als diejenige Gradmessung, an der Clairaut sich
beteiligte, war eine zweite, gegen das Ende des 18. Jahrhunderts
vorgenommene. In diesem Falle handelt es sich nicht um eine
vergleichende, aus rein wissenschaftlichen Gründen stattgefundene
Messung, sondern um eine solche, die darauf abzielte, den genauen
Wert einer den Maßen und Gewichten zugrunde zu legenden
Naturkonstante zu ermitteln.

Der Wunsch, ein einheitliches Maß- und Gewichtssystem zu
besitzen, war schon im 14. Jahrhundert mit dem Emporblühen
des Handels rege geworden. Man empfand immer deutlicher, daß
die bestehenden Unterschiede keinerlei Vorteil boten, sondern nur
zu Mißbräuchen, Bedrückungen und Betrügereien Anlaß gaben.
Die Bemühungen, hier Besserung zu schaffen, scheiterten schon
an dem Widerstande der Fürsten und Prälaten. Es war daher
eine der ersten Forderungen der Revolutionsmänner, die zahlreichen,
in Frankreich wie in allen anderen Ländern bestehenden Maße
durch ein gemeinsames, der Natur entlehntes Längenmaß zu ersetzen,
und dieses als Grundlage für die Hohlmaße und die Gewichte
festzulegen.



Als solches hatte schon 1670 ein Franzose796 die Minute eines
Längengrades vorgeschlagen. Fast zur selben Zeit brachte Huygens
in seinem Werke über die Pendeluhr (1673) das Sekundenpendel
als Längeneinheit in Vorschlag. Huygens wünschte den
dritten Teil des Sekundenpendels als Stundenfuß in allgemeinen
Gebrauch genommen zu sehen. Bald darauf entdeckte man jedoch
die Abhängigkeit der Länge des Sekundenpendels von der geographischen
Breite. Aus diesem Grunde wurde die von Huygens
ausgehende Anregung nicht weiter verfolgt.

Im Jahre 1790 wurde die Angelegenheit in der konstituierenden
Nationalversammlung behandelt. Letztere beschloß, die Länge,
welche das Sekundenpendel unter dem 45. Breitengrade besitzt,
als Maßeinheit zu wählen und beauftragte eine Kommission, in
der sich die bedeutendsten französischen Gelehrten (wie Laplace,
Lagrange, Monge und Borda) befanden, das Erforderliche in
die Wege zu leiten. Ein weiterer Beschluß lief darauf hinaus,
auch die englische Regierung für das Vorhaben zu gewinnen,
und die französische Kommission durch eine von der Royal Society
in London gewählte zu ergänzen. Man verwarf den Vorschlag,
als Längenmaß das Sekundenpendel festzusetzen, weil dieses wieder
durch eine andere Größe, nämlich die Zeit und ihre willkürliche
Einteilung in Sekunden, bedingt sei. Die Kommission schlug deshalb
vor, den Meridianquadranten möglichst genau zu messen
und seinen zehnmillionsten Teil als die gewünschte Einheit anzunehmen.

Veranlaßt durch diese Verhandlungen und Beschlüsse entstanden
zwei Arbeiten, von denen die eine auf eine möglichst genaue
Bestimmung des Sekundenpendels hinauslief. Die andere
schuf die Grundlage des metrischen Systems. Sie bestand in der
Messung eines von Dünkirchen bis Barcelona reichenden Meridianbogens797.

Die Pendelmessungen währten vom Juni bis zum August 1792.
Sie erfolgten unter Anwendung aller Kautelen und mit der größten
Genauigkeit nach der Methode der Koinzidenzen. Das Verfahren
beruhte darauf, daß die Schwingungen des Pendels einer astronomischen
Uhr mit den Schwingungen des zu messenden Pendels
verglichen wurden. Uhr und Pendel waren durch einen Glaskasten
vor Luftbewegungen geschützt. Das Pendel bestand aus
einem dünnen Platindraht und einer
Platinkugel von etwa 161/6 Linien
Durchmesser. Sie war auf eine besondere
Art befestigt798 und die Aufhängevorrichtung
wurde so eingerichtet,
daß sie auf die Schwingungsdauer
des Pendels keinen Einfluß
hatte. Die Beobachtung nach der
Methode der Koinzidenzen, deren
sich Borda zuerst bediente, geschieht
folgendermaßen: Man läßt
beide Pendel schwingen und beobachtet
die Durchgänge durch das
Gesichtsfeld eines in die Richtung
DD, eingestellten Fernrohrs. Man
bestimmt zunächst den Zeitpunkt,
in dem beide Pendel gleichzeitig
durch das Gesichtsfeld gehen (eine
Koinzidenz). Da die Pendel nicht
gleich lang sind, so wird bei der
nächsten Schwingung das eine Pendel
schon ein wenig vorangeeilt sein, und die nächste Koinzidenz
wird eintreten, sobald das etwas rascher schwingende Pendel
eine volle Schwingung mehr gemacht hat als das andere. Je
mehr Koinzidenzen man unter jedesmaliger Feststellung der von
einer Koinzidenz bis zur anderen verflossenen Zeit ermittelt,
desto genauer wird die experimentelle Grundlage für die sich anschließenden
Berechnungen sein. Zunächst galt es, aus der Beobachtung
der Koinzidenzen die Zahl der Schwingungen zu bestimmen,
die das Pendel in einem Tage mittlerer Sonnenzeit macht.
Dann mußten alle erforderlichen Korrekturen vorgenommen werden,
um die Entfernung des Aufhängepunktes bis zum Schwingungsmittelpunkt
zu finden. Endlich galt es, aus dieser reduzierten
Entfernung und der Zahl der Schwingungen, die das benutzte
Pendel an einem Tage macht, die Länge des Sekundenpendels zu
berechnen. Sie ergab sich für Paris (48° 50ʹ 14ʺ n. Br.) gleich
440,5593 Linien. Daraus folgt für die Beschleunigung g der
Wert 9,80882 m799.
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Abb. 127. Die Bestimmung der
Länge des Sekundenpendels.



Wir wenden uns jetzt der zweiten, durch den Wunsch nach
einem einheitlichen Maß veranlaßten Messung zu. Sie wurde besonders
im Anfange durch die Wirren der Revolution in hohem
Grade gestört und nahm eine Reihe von Jahren in Anspruch. Man
muß die Kühnheit, die Ausdauer und das Geschick bewundern,
womit ein solches Riesenwerk in einer Zeit ins Werk gesetzt und
durchgeführt wurde, in der das Land unter Greueltaten litt, von
Feinden bedroht war und keine festbegründete, staatliche Ordnung
besaß. Durch ein Gesetz vom 1. August 1793 wurde die Länge
des Meters vorläufig auf 443,443 Linien festgesetzt unter der Voraussetzung,
daß das zu erwartende Ergebnis der Gradmessung nicht
wesentlich hiervon abweichen werde.

Über dieses Ergebnis konnte die Kommission für Maß und
Gewicht erst mehrere Jahre später berichten. Das durch geodätische
Bestimmungen gefundene, als Meter bezeichnete Maß
belief sich auf 443,296 Linien (3 Fuß 11,296 Linien). Das provisorische
Maß war also um 0,146 Linien, d. h. um etwa 1/3 mm
länger als das durch die Gradmessung ermittelte Meter. Darauf
wurde die Einheit des Gewichtes im dezimalen metrischen System
bestimmt. Es ergab sich, daß das Kubikdezimeter destillierten
Wassers von größter Dichte im leeren Raum 18827,15 Gran
wog800. Die so erhaltenen, sehr genau gearbeiteten, aus Platin
verfertigten Normalmaße (ein Meter und ein Kilogramm) wurden
am 22. Juni 1799 im Staatsarchiv hinterlegt. Sie werden dort
mit größter Sorgfalt aufbewahrt und nur selten zur Verifizierung
gebraucht, da für diesen Zweck von ihnen entnommene Maße
dienen.



Es konnte nicht ausbleiben, daß man später Fehler in der
Bestimmung des Gradbogens entdeckte. Eine 1840 unternommene
Berechnung ergab für das Meter 3 Fuß 11,375 Linien. Danach
ist ein Meridianquadrant nicht 10000000, sondern 10000856 mal
so groß, wie der in Paris aufbewahrte étalon primitif. Man beschloß
aber, an letzterem festzuhalten, »weil man auf dem eingeschlagenen
Wege doch nicht in aller Strenge zu einem natürlichen
Maße gelangen« könne.

Wie das Ergebnis dieser zu den denkwürdigsten wissenschaftlichen
Untersuchungen zählenden Gradmessung, so ist auch ihre
Ausführung von Interesse. Übertraf sie doch alle früheren an
Umfang und Genauigkeit. Die äußersten Punkte des gemessenen
Bogens waren Dünkirchen (51° 2ʹ 10,5ʺ n. Br.) und ein Turm (41° 21ʹ 44,8ʺ
n. Br.) in der Nähe von Barcelona. Die Länge dieses
Bogens betrug also 9° 40ʹ 25,7ʺ. Seine Mitte lag unter 49° 11ʹ 58ʺ.
Da man die Mitte des Bogens möglichst unter 45° n. Br. zu
haben wünschte, dehnte man die Triangulationen später (1806)
weiter nach Süden bis zur Insel Formentera aus. Der Bogen
erhielt dadurch eine Länge von 12° 22ʹ 13,44ʺ. Seine Mitte fällt
unter 44° 51ʹ 2,83ʺ.

Der Triangulation wurden zwei Standlinien zugrunde gelegt.
Die eine in der Nähe von Paris war 6075,9 Toisen lang, die andere
in der Nähe der spanischen Grenze (Perpignan) besaß eine Länge
von 6006,25 Toisen und diente zur Kontrolle. Ausgemessen wurden
diese Standlinien mit Platinstangen, die unter der Aufsicht von
Borda mit der größten Sorgfalt verfertigt waren. Besondere Vorkehrungen
dienten dazu, um die jeweils herrschende Temperatur
bei der Benutzung dieser Stangen in Betracht zu ziehen usw. In
wissenschaftlicher Hinsicht hatte die Messung das bemerkenswerte
Ergebnis, daß die Erde kein regelmäßiges Rotationsellipsoid vorstellt,
daß also kein Meridianquadrant genau gleich dem anderen
ist. Auch eine zur selben Zeit in England unternommene Gradmessung
kleineren Umfangs, die aber mit größter Genauigkeit
durchgeführt wurde, ergab die gleiche Anomalie. Um also wenigstens
annähernd die Gestalt der Erde zu bestimmen, mußte man
die Ergebnisse aller an den verschiedenen Orten der Erde vorgenommenen
Gradmessungen zusammenfassen und nach der Methode
der kleinsten Quadrate diejenige Gestalt daraus berechnen,
die der wahren Gestalt der Erde am nächsten kommt. Diese
Aufgabe, mit der sich schon Bessel beschäftigte, suchte das im
Jahre 1886 gegründete Unternehmen der internationalen Erdmessung
zu lösen. Das Ergebnis, zu dem man seitdem vorgedrungen
ist, läuft darauf hinaus, daß die Erde keine regelmäßige
mathematische Gestalt besitzt. Sie bildet zwar eine nach außen
überall konvexe Fläche, zu deren Bestimmung indessen die geodätische
Untersuchung nur vorzudringen vermag, wenn sie sich
mit der systematisch durchgeführten Schweremessung verbindet.
Man hat sie als Geoid bezeichnet und bringt sie mit dem
Normalellipsoid in der Art in Verbindung, daß die Abweichungen
zwischen diesem und dem Geoid durch trigonometrische Messung,
geodätisches Nivellement und Schweremessung ermittelt werden,
um auf diese Weise immer genaueren Aufschluß über die wahre
Gestalt der Erde zu erlangen.

Sonnenparallaxe, Erddichte und Aberration.

In der Periode, die wir schildern, wurden auch die Entfernung
und die Größe der Sonne, sowie die Abmessungen des Planetensystems
nach ihrem absoluten Werte bestimmt, und damit
Aufgaben gelöst, die der Astronomie seit der Zeit Aristarchs
vorgeschwebt hatten.

Edmund Halley (1656–1742), ein jüngerer Zeitgenosse
Newtons, dessen Verdienste um die Fortbildung der Physik, der
Astronomie und der physikalischen Geographie wir kennen gelernt
haben, war gelegentlich eines von ihm beobachteten Vorüberganges
Merkurs vor der Sonne auf den Gedanken gekommen, einen derartigen
Vorgang zur Bestimmung der Sonnenparallaxe zu verwerten,
d. h. desjenigen Winkels, unter dem der Erdhalbmesser von der
Sonne aus erscheint.

Halley machte seinen Vorschlag in zwei Abhandlungen, die
1693 und 1716 in den Philosophical Transactions erschienen. Ihre
Titel lauten: »Über die sichtbare Konjunktion der unteren Planeten
mit der Sonne«801 und »Ein besonderes Verfahren, durch
das die Parallaxe der Sonne mit Hilfe der vor der Sonnenscheibe
zu erblickenden Venus sicher bestimmt werden kann«802.
Halleys Vorschlag ging dahin, von mehreren entfernten Stellen
der Erde aus die Durchgangszeiten eines der unteren Planeten,
d. h. die Zeiten ihres Vorüberganges vor der Sonnenscheibe zu
beobachten.



Bei einem Merkur- oder Venusdurchgang beschreiben nämlich
die genannten Planeten auf der Sonnenscheibe Sehnen, deren Lage
und Größe je nach dem Orte, den der Beobachter auf der Erde
einnimmt, verschieden ist. Infolgedessen ist auch die Zeit eines
und desselben Vorüberganges für die einzelnen Beobachtungsstationen
von verschiedener
Dauer. Wie aus
Abb. 128 ersichtlich ist,
steht die Entfernung cd
der Sehnen ef und gh
zu den Abständen der
drei Weltkörper und
dem durch Messungen
auf der Erde seiner
absoluten Größe nach
bekannten Stück ab
in einer gewissen Beziehung,
so daß sich aus den Ergebnissen der Beobachtung eines
Venusdurchganges die Größe und die Entfernung der Sonne berechnen
läßt803.
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Abb. 128. Halleys Bestimmung der Sonnenparallaxe804.



Halley selbst war es nicht mehr vergönnt, seinen Vorschlag
ins Werk zu setzen, da Vorübergänge der Venus seltene Ereignisse
sind und sich seit seinem Tode erst viermal wiederholt haben,
nämlich in den Jahren 1761, 1769, 1874 und 1882. Sowohl für
das Jahr 1761 als auch für 1769 wurden Expeditionen ausgesandt.
Insbesondere waren daran England, Frankreich und Rußland
beteiligt. Aus dem an der Hudsonbay, in Lappland, auf
Tahiti usw. angestellten Beobachtungen berechnete der französische
Astronom Delalande eine Parallaxe von 8,5–8,6 Sekunden. Da
der mittlere scheinbare Durchmesser der Sonne sich auf 31ʹ 37ʺ
= 1897 Sekunden beläuft, so ergibt sich aus dieser Bestimmung
Delalandes, daß der Sonnendurchmesser denjenigen der Erde
nahezu um das 113fache übertrifft, oder daß das Volumen der
Sonne 1400000mal so groß ist wie dasjenige der Erde. Für die
halbe große Bahnachse ergab sich ein Wert von 20682000 geographischen
Meilen. Eine sorgfältige Neuberechnung der Sonnenparallaxe
nach den 1761 gewonnenen Daten veröffentlichte später
Encke (1822). Er fand den Wert der Parallaxe gleich 8,53 Sekunden.

Sind die Größenverhältnisse des Systems bekannt, so läßt
sich durch eine ähnliche Schlußfolgerung, wie diejenige, die
Newton auf die Entdeckung des Gravitationsgesetzes führte805,
die Kraft ermitteln, mit der ein Körper in der Nähe der Sonnenoberfläche
angezogen wird. Delalande fand, daß diese Kraft
29mal die Anziehung der Erde übertrifft, so daß ein frei fallender
Körper auf der Sonne in der ersten Sekunde 29 × 15,09 = 434 Pariser
Fuß zurücklegt. Die neueren Bestimmungen haben für die
Sonnenparallaxe 8,88ʺ ergeben, wodurch sich der Abstand der
Erde von der Sonne auf rund 20000000 geographische Meilen
(148,6 Millionen Kilometer) vermindert, und auch die übrigen
Werte entsprechende Änderungen erfahren.

Von außerordentlicher Tragweite war Halleys Beobachtung,
daß die Fixsterne ihre gegenseitige Stellung ändern. Er machte
sie am Aldebaran, Arktur und Sirius, für die nach seinen Angaben
diese, als Eigenbewegung bezeichnete Änderung sich seit
den Zeiten des Ptolemäos auf die beträchtliche Größe von etwa
einem halben Grad belief806.

Newton hatte auf theoretischem Wege nicht nur die Abplattung,
sondern auch die Dichte unseres Weltkörpers ermittelt.
Die Bestimmung der ersteren und der sich daran anknüpfende
Streit hatte die Aussendung der Expeditionen nach Lappland und
nach Quito zur Folge gehabt. In Quito machte Bouguer807 eine
Entdeckung, welche die Handhabe bot, um auch die Newtonsche
Berechnung der Erddichte zu verifizieren. Bouguer fand nämlich,
daß infolge der Anziehung des Chimborazo das Bleilot um
7–8ʺ von der senkrechten Lage abwich. Diese Beobachtung veranlaßte
den Engländer Maskelyne (1732–1811), derartige Untersuchungen
an einem nach Volumen und Dichte bekannten Berge
anzustellen, um aus der Größe jener Abweichung und der Masse,
die sie hervorruft, die unbekannte Masse der Erde auf Grund des
Newtonschen Gravitationsgesetzes zu berechnen808.



Maskelyne wählte für seine im Jahre 1774 angestellten
Messungen einen steilen, regelmäßig geformten Granitberg Schottlands.
Die Dichte dieses Berges wurde auf Grund mehrerer,
an verschiedenen Stellen
entnommener Proben
zu 2,5 gefunden,
und aus diesem
Wert und dem Rauminhalt
des Berges
die gesamte auf das
Pendel wirkende Masse
berechnet. Die Ablenkung
selbst wurde
dann in der Weise bestimmt,
daß die Polhöhe
nördlich und südlich
von dem Berge
gemessen wurde (siehe
Abb. 129). Eine auf
Grund der so gewonnenen
Daten angestellte
Rechnung ergab
für die Erde als mittlere
Dichte 4,71. Letztere
ist danach etwa
doppelt so groß wie
diejenige des Granits,
eines Gesteins, mit
dem die meisten Substanzen,
welche die
starre Erdkruste zusammensetzen,
hinsichtlich ihrer Dichte nahezu übereinstimmen.


[image: Abb. 129]
Abb. 129. Maskelyne und Hutton bestimmen
die Dichte der Erde.

Der Abstand der durch A und B gezogenen
Breitenkreise betrug 4364,4 Fuß. Dementsprechend
hätten die Lote AP und BPʹ, wenn der Berg
nicht vorhanden gewesen wäre, einen Winkel von
42,92 Sekunden bilden müssen, und dieser Winkel
wäre gleich der Differenz der Polhöhen gewesen.
Die astronomischen Beobachtungen ergaben jedoch
eine Polhöhendifferenz von 54,6ʺ. Der Unterschied
von 11,6 Sekunden ist durch eine Verminderung
der Polhöhe bei A um den Winkel PAQ
und eine Vermehrung bei B um PʹBQʹ hervorgerufen.
PAQ + PʹBQʹ = doppelte Ablenkung
= 11,6 Sekunden.




Durch die Lösung derartiger Aufgaben trat die Astronomie
in eine immer engere Beziehung zur Physik der Erde. Aber auch
die reine Physik sollte durch die Bewältigung eines astronomischen
Problems eine wichtige Förderung erhalten. Im 17. Jahrhundert
hatte Römer auf astronomischem Wege eine physikalische
Konstante, die Fortpflanzungsgeschwindigkeit des Lichtes nämlich,
festgestellt. Jetzt bot sich eine andere Gelegenheit, dieselbe Größe
zu ermitteln und infolge der Übereinstimmung der auf verschiedenen
Wegen erhaltenen Ergebnisse zu einem höheren Grade der
Gewißheit zu gelangen.


[image: Abb. 130]
Abb. 130. Bradley entdeckt die Aberration.



Seit dem Bekanntwerden des koppernikanischen Systems war
seinen Anhängern die Aufgabe gestellt, den Umlauf der Erde um
die Sonne durch den Nachweis einer entsprechenden, scheinbaren,
jährlichen Bewegung der Fixsterne darzutun. In Abb. 130 bedeute
ABCD die Erdbahn, S sei ein Stern, der sich in der Ebene der
Ekliptik befinde. Steht nun der Durchmesser CA der Erdbahn
zu dem Abstand ES des Sternes in einem nicht zu kleinen Verhältnis,
so wird der Fixstern im Verlaufe eines Jahres am Himmel
die scheinbare Bewegung SʹSʺSʹ erkennen lassen. Beobachtungen
an einem außerhalb der Ekliptik gelegenen Fixstern werden für
diesen als scheinbare Bahn eine Kurve ergeben, deren Gestalt
der von dem Sterne aus beobachteten Bahn der Erde genau entspricht809.
Der Winkel CSE, unter dem von dem Sterne aus der
Halbmesser der Erdbahn erscheint, wird die jährliche Parallaxe
des Sternes genannt. Tycho, der hinsichtlich der Genauigkeit
seiner Messungen alle Vorgänger übertraf, mühte sich vergeblich
ab, eine solche Parallaxe am Polarstern nachzuweisen, und erklärte
insbesondere aus diesem Grunde dem koppernikanischen
System seine Gegnerschaft. Letzteres war trotzdem zur unbestrittenen
Herrschaft gelangt, ohne daß der geforderte, unmittelbare
Nachweis der Umlaufbewegung bisher erbracht worden wäre.

Da die Schärfe der astronomischen Beobachtung seit den
Zeiten Tychos sich vervielfältigt hatte810, so nahmen Hooke und
Cassini das alte Problem wieder auf. Ersterer wählte für seine
Messungen den in der Nähe des Nordpols der Ekliptik befindlichen
Stern γ Draconis und wies nach, daß dieser Himmelskörper tatsächlich
seine Stellung innerhalb eines Vierteljahres um 25 Sekunden
ändert.

James Bradley (1692–1763), der nach dem Tode Halleys811
zum Direktor der Sternwarte zu Greenwich ernannt worden war,
stellte während der Jahre 1725–1728 zu dem gleichen Zwecke
zahlreiche Beobachtungen an. Neben γ Draconis zog er indes
auch andere Fixsterne in Betracht, die in der Ekliptik selbst oder
zwischen dem Pole und der Ebene der Ekliptik liegen. Seine
Beobachtungen ließen scheinbare Bewegungen erkennen, die zwar
den Beweis für eine Bewegung der Erde um die Sonne lieferten,
indes doch nicht als parallaktische betrachtet werden konnten.
Während nämlich γ Draconis im Laufe eines Jahres eine nahezu
kreisförmige Bahn von 40ʺ Durchmesser beschrieb, durchliefen die
in der Ekliptik gelegenen Sterne in demselben Zeitraum zweimal
eine Linie, die unter demselben Winkel von 40ʺ gesehen wurde.
Zwischen der Ebene und den Polen der Ekliptik befindliche Sterne
endlich legten unterdessen Ellipsen zurück, deren große Achsen
wieder 40ʺ maßen und der Ebene der Ekliptik parallel waren,
während der Wert der kleinen Achsen zwischen 0ʺ und 40ʺ
schwankte, je nachdem der betreffende Stern der Ekliptik oder
ihrem Pole näher gelegen war812. Um diese scheinbaren Bewegungen
auf eine Parallaxe zurückzuführen, hätte man, da in allen Fällen
derselbe Wert von 40ʺ wiederkehrt, zunächst annehmen müssen,
daß sämtliche Fixsterne gleich weit von der Erde entfernt seien.
Dieser an sich schon unwahrscheinlichen Annahme widersprach
aber die Tatsache, daß in B und D (siehe Abb. 130) der Stern
nicht an demselben Orte gesehen wurde, wie es bei der parallaktischen
Bewegung doch der Fall sein müßte. Bradley fand nämlich,
daß, wenn die Erde sich in D befindet und sich in der
Richtung Dd bewegt, der Stern nach Sʹ verschoben erscheint.
Befindet sich die Erde dagegen in B, wo ihre Bewegungsrichtung
die entgegengesetzte ist, so findet die Verschiebung nach Sʺ statt.
In beiden Fällen erreicht der Wert dieser Verschiebung 20ʺ, während
in C und A, wo die Bewegungsrichtung der Erde mit derjenigen
des von dem Fixstern kommenden Lichtes übereinstimmt, der
Stern, falls er in der Ebene der Ekliptik liegt, an seinem wahren
Orte gesehen wird.

Zur Erklärung dieser auffallenden Erscheinung soll Bradley
durch eine alltägliche Beobachtung gelangt sein. Er bemerkte
nämlich bei einer Bootfahrt, daß die Fahne die Windrichtung
wirklich angibt, wenn der Lauf des Schiffes mit der Richtung des
Windes übereinstimmt. Änderte man dagegen den Kurs, so nahm
die Fahne die Stellung an, die sich als abhängig von den Richtungen
und den Geschwindigkeiten des Windes und des Bootes
erwies. Pflanzt sich, so folgerte Bradley, das Licht mit endlicher
Geschwindigkeit fort, so muß sich letztere mit derjenigen
der Erde zusammensetzen. Abb. 131 stellt das
Parallelogramm dieser Geschwindigkeiten dar.

Zu der Zeit, in der sich die Erde in den
Stellungen B und D (Abb. 130) befindet, beträgt
ihre durch das Stück ab (Abb. 131) wiedergegebene
Geschwindigkeit, wie überall auf ihrer
Bahn, etwa 4 Meilen. Die Aberration erreicht
dann ihren größten Wert von 20ʺ, der dem
Winkel acb beizulegen ist. In diesem Falle
verhält sich bc zu ab wie die Geschwindigkeit
des Lichtes zu derjenigen der Erde. Ist der
eine dieser Werte bekannt, so ist der andere
durch eine einfache Beziehung gegeben813.
Bradley erhielt so für die Fortpflanzungsgeschwindigkeit
des Lichtes, fast in Übereinstimmung
mit dem von Römer gefundenen Ergebnis, den Wert
von 40000 Meilen. Beide auf astronomischem Wege erhaltenen
Bestimmungen fanden um die Mitte des 19. Jahrhunderts eine
Bestätigung durch terrestrische, nach rein physikalischer Methode
angestellte Messungen.
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Abb. 131.


Bradleys Erklärung
der Aberration.



Weitere Fortschritte der Astronomie.

Bei Newton und den auf ihn folgenden Astronomen war
das Hauptinteresse auf das Planetensystem gerichtet, für das die
Gravitationsmechanik zunächst noch zahlreiche Probleme bot. Mit
den Kometenbahnen hatte sich zwar Newton in seinen Prinzipien
auch beschäftigt, doch war die von ihm geschaffene Methode noch
sehr unvollkommen. Weitere Untersuchungen auf diesen Gebieten
unternahmen Euler und ganz besonders Lambert. Hatte Kepler
für diese Himmelskörper noch eine geradlinige Bewegung angenommen,
so lieferte Newton den Nachweis, daß es sich auch hier
um Kegelschnitte handle. Er lehrte ferner, durch Konstruktion aus
drei Positionen die parabolische Bahn ermitteln, ein Verfahren,
dessen sich besonders Halley mit Erfolg bediente.

Grundlegende, geradezu klassische Arbeiten über die Bestimmung
der Kometenbahnen rühren von Lambert her, mit
dessen Lebensgang und Verdiensten um die Physik wir schon im
vorigen Abschnitte bekannt geworden sind814. Lamberts Ziel
bestand, wie er in seiner Vorrede hervorhebt, darin, die Bahn des
Kometen auf Grund von drei Beobachtungen, aus den Eigenschaften
der Kegelschnitte vollständig zu ermitteln. Von besonderer
Wichtigkeit ist Lamberts Satz815, daß die Zeit, die zum
Durchlaufen eines Kurvenstücks erforderlich ist, aus der Sehne
und den beiden Vektoren ermittelt werden kann. Für die Parabel
hatte diesen Satz schon Euler gefunden816. Er erkannte jedoch
noch nicht seine Bedeutung und hat ihn nicht bei seinen Arbeiten
über die Bahnbestimmung benutzt, während Lambert ihn auf
hyperbolische Bahnen ausdehnte.

Nachdem Lambert die Bewegung der Kometen erörtert hat,
befaßt er sich mit dem Verfahren, eine parabolische Kometenbahn
aus den Beobachtungen zu bestimmen. Genauer lautet das Problem,
das er sich stellt, folgendermaßen817: Gegeben sind drei
geozentrische Örter eines in einer Parabel sich bewegenden Kometen;
man soll Lage und Größe der Bahn ermitteln. Die Lösung
führte ihn auf eine Gleichung 6. Grades. Werden Lamberts
Ausdrücke nach einer kleinen Berichtigung entwickelt, so gibt
seine Methode ein brauchbares Verfahren818.

Unabhängig von Kant hat Lambert ferner Ansichten über
den Bau des Weltalls entwickelt, die mit den Ergebnissen der
neueren Forschung in Einklang stehen. Es geschah dies in seiner
1761 erschienenen Schrift »Kosmologische Briefe über die Einrichtung
des Weltbaus«. Lambert unterscheidet darin Weltsysteme
erster, zweiter und dritter Ordnung. Ein System erster
Ordnung bilden die Sonne und jeder Fixstern, da alle Fixsterne
als Zentren von ebensoviel Scharen von Planeten und Kometen
aufzufassen sind.

Das Sonnensystem kreist mit zahlreichen benachbarten Sonnensystemen
um einen gemeinschaftlichen Schwerpunkt. Das Ganze
betrachtet Lambert als ein System zweiter Ordnung. Aus solchen
setzt sich endlich die Milchstraße als eine Scheibe, deren Durchmesser
nach vielen tausend Siriusweiten zählt, zusammen. Vielleicht
sei, meint Lambert, auch hiermit die Gliederung zu immer
umfassenderen Gruppen nicht abgeschlossen, doch übersteige eine
Fortsetzung dieser Betrachtung unser Fassungsvermögen.

Die etwa drei Jahrzehnte (1718) vor der Herausgabe der
Kosmologischen Briefe durch Bradley entdeckte Eigenbewegung
der Fixsterne würde sich, diesen Ausführungen Lamberts entsprechend,
aus zwei Bewegungen zusammensetzen, der Bewegung
der Sterne selbst und der von Lambert vorgeahnten Bewegung
unseres Sonnensystems. »Es wird später möglich werden«, sagt
Lambert, »diese beiden Komponenten zu trennen und die Richtung
anzugeben, nach der sich unsere Sonne bewegt.« Diese Voraussage
sollte, wie wir in einem späteren Abschnitt sehen werden,
schon einige Jahrzehnte später (1781) durch Herschel in Erfüllung
gehen.

Astronomie und Kartographie.

Ganz Hervorragendes hat Lambert auch auf einem Nebengebiet
der Astronomie, auf dem Gebiete der Kartographie, geleistet,
so daß man für dieses mit dem Erscheinen von Lamberts
Schrift über Land- und Himmelskarten wohl eine neue Epoche
datiert hat. Die Schrift ist mit Anmerkungen versehen von
neuem herausgegeben worden819. Ihr erstes Erscheinen fiel in das
Jahr 1772.

Der in die zweite Hälfte des 18. Jahrhunderts fallende große
Aufschwung der Kartographie hing mit dem Einsetzen der wissenschaftlichen
Entdeckungsreisen (Cook) und mit genaueren topographischen
Landesaufnahmen zusammen. So entstand (1750 bis
1793) auf Grund einer großen genauen Landesvermessung Cassinis
Carte géométrique de la France. Sie umfaßte 184 Blätter
im Maßstab von 1 : 86400 und diente für die Karten der übrigen
Länder als Muster820. In gleichem Maße epochemachend war die
erwähnte Schrift Lamberts.

Zwar fehlte es vor Lambert nicht an Untersuchungen über
einzelne Entwerfungsarten. Ihm gebührt jedoch das Verdienst,
daß er zuerst die allgemeinen Grundsätze, die bei der Kartenprojektion
in Betracht kommen, aufstellte und als erster diejenigen
Forderungen erörterte, die das Kartenbild zu erfüllen
hat. Im Verfolg dieser Aufgaben kam Lambert auch auf
mehrere neue Projektionsarten, die noch heute im Gebrauch sind.
Es sind dies vor allem die winkeltreue und flächentreue Kegelprojektion821.

Mit demselben Gegenstande hat sich einige Jahre später auch
Leonhard Euler beschäftigt. Ihm hatte auch die sphärische
Trigonometrie um die Mitte des 18. Jahrhunderts Fortschritte zu
verdanken, die in erster Linie der Astronomie zugute kamen.
Eulers Abhandlungen über Kartenprojektion822 gehen über die
Behandlung, die Lambert dem gleichen Gegenstande widmete,
weit hinaus und leiten andererseits zu den Untersuchungen über,
die Lagrange und später Gauß823 über die konforme Abbildung
von Flächen auf anderen Flächen angestellt haben.

Die erste Arbeit Eulers handelt von der Abbildung der
Kugelfläche in einer Ebene, und zwar behandelt Euler nicht nur
die früheren Projektionen, bei denen die einzelnen Punkte der
Kugelfläche nach den Gesetzen der Perspektive so auf eine Ebene
projiziert werden, wie sie dem Beobachter von einem bestimmten
Punkte aus erscheinen, sondern er faßt seine Aufgabe in weiterem
Sinne auf und zeigt, wie die Punkte der Kugelfläche
nach einem beliebigen Gesetz in einer Ebene dargestellt werden
können.

Unter anderem werden die Bedingungen der Mercator'schen
Projektionsart entwickelt und dargetan, daß für diese die kleinsten
Teile der Oberfläche ihren Bildern in der Ebene ähnlich sind,
also das Prinzip der Konformität oder Winkeltreue gewahrt ist.
Euler zeigte ferner, daß der größte Vorteil, den derartige Karten
den Seefahrern gewähren, darin besteht, daß die loxodromischen
Linien, d. h. die Kurven, die sämtliche Meridiane unter dem
gleichen Winkel schneiden, bei dieser Projektionsart als gerade
Linien erscheinen. Jede gerade Linie schneidet nämlich alle Meridiane
der Karte, die ja bei Mercators Projektion einander
parallel sind, unter demselben Winkel.

Auch die bekannte Abbildung der Erdhalbkugeln im Innern
von Kreisen, deren Mitte der Pol einnimmt, während die Meridiane
und die Parallelkreise sich senkrecht schneiden, wird von Euler
aus den von ihm aufgestellten allgemeinen Gleichungen abgeleitet
und gezeigt, daß auch für diese Projektionsart alle sehr kleinen,
auf der Kugel beliebig angenommenen Figuren durch ähnliche
Figuren in der Ebene wiedergegeben werden.

In der zweiten Abhandlung wird ein für die Darstellung besonders
häufiger, flächentreuer Entwurf aus den allgemeinen Bedingungen
erörtert, der Entwurf nämlich, bei dem die Meridiane
und die Parallelkreise als Kreise erscheinen.

Die letzte Abhandlung endlich erörtert die Projektionsart,
die De Lisle seiner Karte des russischen Reiches zugrunde gelegt
hat824, und zeigt, wie man die Fehler einer solchen nach
De Lislescher Projektion entworfenen Karte möglichst verringern
kann. Die genannte Projektionsart ist eine konische,
d. h. ein Teil der Kugelzone wird derart auf einen Kegel übertragen,
daß den Meridianen gerade Linien, den Parallelkreisen
der Kugel aber parallele Kreise auf dem Mantel des Kegels entsprechen.

Nicht minder groß sind die Verdienste, die sich Euler um
die wichtigste Hilfswissenschaft der Astronomie, die Trigonometrie,
erworben hat. In seiner ersten Abhandlung über diesen Gegenstand
(1753) stellte er sich die Aufgabe, wichtige Sätze der sphärischen
Trigonometrie nach der Methode der größten und kleinsten
Werte abzuleiten825.

Etwaige Bedenken gegen die Ableitung der sphärischen Trigonometrie
aus den Regeln der Infinitesimalrechnung werden von
Euler zurückgewiesen. Es sei immer von Nutzen, auf verschiedenem
Wege dieselben Wahrheiten zu erreichen, weil aus diesem
Verfahren sich stets neue Gesichtspunkte ergeben würden. Zur
Notwendigkeit wurde aber die Anwendung der neuen Methode
hier wie in allen übrigen Fällen, wenn man ein Problem ganz
allgemein lösen wollte. Die bisher übliche Betrachtungsweise war
auf das ebene und das sphärische Dreieck beschränkt. Wollte
man dagegen Dreiecke untersuchen, die auf einer beliebigen, z. B.
einer konoidischen oder sphäroidischen Fläche dadurch entstehen,
daß man drei Punkte durch drei kürzeste, der betreffenden Oberfläche
angehörende Linien verbindet, so war damit ein Problem
gegeben, das sich nur mit den Mitteln der höheren Mathematik
lösen ließ. Die Wichtigkeit einer solchen Begründung der Trigonometrie
auf einer allgemeinen Auffassung leuchtet ein, wenn
man bedenkt, daß die Messungen der Geodäten nicht auf einer
Kugel, sondern, wie Euler hervorhebt, auf einer sphäroidisch gestalteten
Fläche geschehen. Wenn man die bei den Triangulationen
erforderlichen Dreiecke recht groß wähle, so müsse man
auf diesen Umstand auch Rücksicht nehmen. In der erwähnten
Abhandlung leitet Euler nur die Formeln für die Kugeloberfläche
mit Hilfe der Infinitesimalrechnung ab. Für andere Flächen, wie
das Sphäroid (Umdrehungsellipsoid), wird diese Trigonometrie der
kürzesten Linien (der Name sphärische Trigonometrie paßt ja nur
für die Kugel) in einer späteren Arbeit behandelt826. Auch darauf
wies Euler hin, daß die ebene Trigonometrie aus der sphärischen
hervorgeht, wenn man den Radius der Kugel unendlich groß
werden läßt827. Sehr glücklich war sein Gedanke, die Seiten eines
Dreiecks mit a, b, c und die entsprechenden Gegenwinkel mit
A, B, C zu bezeichnen. Die trigonometrischen Formeln wurden
dadurch viel übersichtlicher und neue Beziehungen weit leichter
als bisher entdeckt828. Die trigonometrischen Formeln, die wir
heute benutzen, hat Euler mit Ausnahme der Gaußschen Formeln829
infolgedessen besonders klar dargestellt, teilweise auch zum
ersten Male abgeleitet830.




20. Mineralogie und Geologie
im 18. Jahrhundert

Wesentlich bedingt durch die Fortschritte der Physik und
der Chemie entwickelten sich im 18. Jahrhundert die Mineralogie
und die Geologie auf der in der vorhergehenden Epoche vor allem
durch Steno geschaffenen Grundlage weiter.

Die von Agricola begründete Lehre von den äußeren Kennzeichen
bildete bei Linné zwar noch den Kernpunkt der mineralogischen
Wissenschaft. Doch dürfen wir nicht vergessen, daß
Linné auf diesem Gebiete kein Forscher war, sondern die Mineralien
nur seinem alles umfassenden Natursystem anzugliedern
suchte. Seine Begriffsbestimmungen erhoben sich kaum über die
von Agricola aufgestellten; sie waren sogar weniger verständlich,
da bei Linné Erläuterungen durch Beispiele, wie sie Agricola
gegeben, fehlten831.

Linné berücksichtigte die äußere Gestalt (würflig, säulenförmig,
pyramidal), die Oberfläche (rauh, glatt), die innere Struktur
(körnig, faserig, blätterig), die Härte (am Stahl funkend, läßt sich
schneiden, schreibt) und endlich das optische Verhalten (durchsichtig,
gefärbt usw.). Der Kristallform schenkte man zu jener
Zeit noch geringe Aufmerksamkeit. Linné suchte die an den
Mineralien vorkommenden Formen auf einige bekannte Salze (Kochsalz,
Salpeter, Alaun, Vitriol) zurückzuführen. Dies war ein vergebliches
Bemühen, zumal Linné sich von der sonderbaren Vorstellung
leiten ließ, daß dasjenige Salz, mit dem ein Mineral in
seiner Kristallform übereinstimmt, auch die Ursache für die Form
des Minerals sei.

Die Begründung der Mineralchemie.

Erst im 18. Jahrhundert gelangte man allgemeiner zu der
Auffassung, daß man es in den Mineralien mit Verbindungen zu
tun habe und begann sie nach ihrer Zusammensetzung einzuteilen.
Ein nach diesem Gesichtspunkt durchgeführtes System konnte sich
indessen im 18. Jahrhundert wegen des unfertigen Zustandes der
Chemie noch nicht entwickeln. Durch das Handinhandgehen der
Mineralogie mit der Chemie wurden aber im 18. Jahrhundert die
wichtigen Grundlagen für die Mineralchemie geschaffen. Die größten
Verdienste um diesen Wissenzweig haben sich die schwedischen Forscher
Cronstedt (1722–1765) und Bergman (1735–1784) erworben.

Dem wichtigsten Instrument zur chemischen Untersuchung
der Mineralien, dem Lötrohr, begegnet man gelegentlich schon im
17. Jahrhundert. Seine ausgedehnte, mit zahlreichen Kunstgriffen
verknüpfte Anwendung verdankt man indessen Cronstedt. Er
lehrte auf einem Stück Kohle eine kleine Probe des zu untersuchenden
Minerals durch Hinaufblasen der Flamme und die Anwendung
von Flußmitteln all den chemischen Prozessen unterwerfen,
denen die Erze beim Hüttenbetriebe im Schmelzofen unter
der Wirkung des Gebläses ausgesetzt sind. Dabei läßt aber die
Behandlung der kleinen Probe hinsichtlich der Zusammensetzung
des Minerals weit mehr erkennen als die hüttenmännischen Prozesse,
weil letztere der unmittelbaren Beobachtung viel weniger
zugänglich sind. Arsen und Schwefel werden vor dem Lötrohr
an dem Geruch ihrer bei der Verbrennung entstehenden Oxyde,
Antimon am Beschlage erkannt. In der reduzierenden Flamme
werden Blei, Silber, Kupfer, Eisen usw. abgeschieden832. Insbesondere
achtete Cronstedt auf die Färbung der Flußmittel,
die er der Probe vor dem Schmelzen zusetzte. Als Flußmittel
gebrauchte er Borax, der z. B. durch Kobalt blau, durch Kupfer
grün und durch Braunstein violett gefärbt wird, ferner dienten ihm
als Ersatz für Borax in geeigneten Fällen Soda und Phosphorsalz833.

Der Schmelzfluß wurde auf der Kohle hergestellt, seine Herstellung
am Platindrahte erfolgte erst später, nachdem der Gebrauch
des Platins allgemeiner geworden war834. Ließ sich das
Lötrohr auch für die quantitative Untersuchung der Mineralien
nicht verwerten, so wurde es doch auf die geschilderte Weise in der
Hand Cronstedts zu einem Hilfsmittel, das der Mineralchemie
ebenso wertvolle Dienste leistete, wie sie die Kristallographie der
Anwendung des Goniometers verdankt.



Um das weitere Eindringen in die chemische Natur der Mineralien
zu ermöglichen, mußte sich zu dem Lötrohrverfahren, oder
der Untersuchung auf trockenem Wege, die Analyse des in den
löslichen Zustand übergeführten Minerals gesellen. Nur auf diesem
Wege ließen sich genauere Ermittlungen anstellen. Diesen Weg
erschlossen zu haben, ist vor allem dem schwedischen Chemiker
Bergman zu danken. Seine Verdienste um den Ausbau der
qualitativen und der Gewichtsanalyse werden jedoch an anderer
Stelle besprochen werden. Wir haben es hier nur mit der von
Bergman geübten Anwendung dieser Methode auf die Mineralien
zu tun. Hatte er das Mineral, das zuerst aufs feinste gepulvert,
gegebenenfalls auch durch Schmelzen mit Pottasche »aufgeschlossen«
wurde, in einer Säure gelöst, so begann die qualitative Untersuchung
durch Reagentien, die größtenteils noch heute gebraucht
werden. Dann folgte die quantitative Bestimmung. Ihre Ergebnisse
werden jedoch aus zwei Gründen recht ungenau. Einmal
waren die Methoden der Gewichtsanalyse noch zu unvollkommen;
ferner waren mitunter die Bestandteile der Mineralien, die Bergman
untersuchte, noch nicht sämtlich bekannt. So erblickte er
im Rubin, der nur aus Tonerde besteht (Al2O3), eine Verbindung
dieses Oxyds mit Kieselerde. Hyazinth dagegen, der aus Kiesel-
und Zirkonerde zusammengesetzt ist, wurde für eine Verbindung
von Kieselerde mit Ton- und Kalkerde angesehen, weil Bergman
die Zirkonerde noch nicht als eigentümliche Substanz erkannt
hatte. Dies geschah erst durch Klaproth (1789), der sich
ganz besonders bemühte, die Mineralchemie im Anschluß an
Bergman weiter auszubauen. Das Ergebnis der Bemühungen
von Scheele, Bergman, Klaproth und anderen Chemikern
des 18. Jahrhunderts, die ihre Wissenschaft mit der Mineralogie
zu verknüpfen strebten, bestand darin, daß Werner, der zwar
selbst kein Chemiker war, aber die Wichtigkeit der Zusammensetzung
der Mineralien zu würdigen wußte, noch vor Ablauf des
18. Jahrhunderts ein mineralogisches System nach chemischen Gesichtspunkten
aufstellte.

Die Aufstellung eines Systems der Mineralien.

Die Gruppierung der Mineralien nach »inneren Kennzeichen«
war zwar schon früher versucht worden835. Doch war der Erfolg
naturgemäß nur gering, solange nicht die Mineralanalyse der
Systematik die Wege geebnet hatte, und bevor man nicht eine Scheidung
zwischen Mineralien, Gesteinen und Versteinerungen durchzuführen
wußte. Ein kurzer Überblick über das System Werners
lehrt uns am besten den Standpunkt kennen, den die mineralogische
Systematik gegen das Ende des 18. Jahrhunderts eingenommen
hatte.

In die erste Klasse wurden die in Wasser unlöslichen Oxyde
der Nichtmetalle und die Silikate der Leichtmetalle, die selbst
noch der Entdeckung harrten, gestellt. So begegnet uns in dieser
Klasse, zu der übrigens auch der Diamant gerechnet wurde, das
den Quarz (SiO2) und viele Silikate umfassende Kieselgeschlecht.
An dieses reihten sich das Tongeschlecht mit Korund (Al2O3),
Feldspat, Glimmer, die ja beide Tonerde enthalten, und einige
scheinbar homogene und daher noch als Mineralien betrachtete
Gesteine, wie Basalt und Tonschiefer.

Als Salze (II. Klasse) werden in Wasser lösliche, dem Kochsalz
ähnliche Mineralien zusammengefaßt, wie Alaun, Salpeter und
Salmiak. Dann folgen als III. Klasse die brennbaren Mineralien
(Schwefel, Bernstein, Steinkohle usw.).

Am besten bestimmt ist die IV. und letzte Klasse. Sie umfaßt
die Schwermetalle und ihre Verbindungen. Eingeteilt wird
sie in die silberhaltigen Erze (das Silbergeschlecht), die kupferhaltigen,
bleihaltigen usw. Auf die Elemente, mit denen die
Schwermetalle verbunden sind, wird bei dieser Einteilung kein
Gewicht gelegt. So umfaßt das Eisengeschlecht etwa folgende
Mineralspezies:



	1. Gediegenes Eisen
	Fe


	2. Schwefelkies
	FeS2


	3. Magneteisenstein
	Fe3O4


	4. Eisenglanz
	Fe2O3


	5. Spateisenstein
	FeCO3 usw.



Zu einem ähnlichen Mineralsystem war man um 1800 auch
in Frankreich gelangt836. Diese Systeme mußten sich indessen in
dem Maße, in dem man in die chemische Zusammensetzung der
Mineralien eindrang, als unzulänglich erweisen. Schwefelkies,
Eisenglanz und Eisenspat z.B. waren, trotzdem sie alle drei Eisen
enthalten, in chemischer Hinsicht drei verschiedenen Gruppen
zuzuweisen. Ferner griff auch die Erkenntnis Platz, daß die chemische
Konstitution in manchen Fällen für die Krystallform bestimmend
ist. Damit waren die wichtigsten Gesichtspunkte gegeben,
nach denen sich die Systematik im 19. Jahrhundert, wie
wir sehen werden, weiter entwickeln sollte.


[image: Abb. 132]
Abb. 132. Das von Romé de l'Isle gebrauchte
Anlegegoniometer837.

GF und AB sind zwei Lineale, deren Abschnitte
GC und BC je nach der Größe des zu messenden
Objektes verlängert oder verkürzt werden können.
MTN trägt den Gradbogen, AB wird um C
gedreht. OC dient zur Stütze des Gradbogens.
AB wird gedreht, bis die Schenkel BC und CG
den, sich schneidenden Kristallflächen genau anliegen.
Der Kantenwinkel läßt sich dann auf dem
Gradbogen ablesen.




Aus dem Bedürfnisse, die Mineralien auch ohne eingehendere
chemische Analyse zu bestimmen, entspringt die Kennzeichenlehre,
die insbesondere auf der Verwendung des 1758 von Cronstedt
eingeführten Lötrohrs
beruht. Borax, Phosphorsalz
und andere
noch heute zur raschen
Bestimmung gebräuchliche
Hilfsmittel kommen
in Aufnahme.
Auch die Farbe und
die Spaltbarkeit werden
als wichtige Kennzeichen
verwertet.
Ebenso wird das spezifische
Gewicht berücksichtigt,
doch begnügt
man sich zunächst
mit dem bloßen
Abschätzen des letzteren.
Eine größere Beachtung
fand diese physikalische
Konstante
erst, nachdem in Nicholsons
Senkwage838
ein bequemes Mittel zur
raschen Bestimmung
des spezifischen Gewichtes
an die Hand gegeben war. Seitdem Steno auf die Konstanz
der Winkel hingewiesen hatte, wandte man sich auch mit
wachsendem Interesse dem an den Mineralien in die Erscheinung
tretenden Formenreichtum zu. Dem französischen Forscher
de l'Isle839 gelang es, die von Steno nur für einige Fälle nachgewiesene
Regel in ihrer Allgemeingültigkeit zu erkennen. Als
Meßinstrument bediente er sich hierbei des von seinem Gehilfen840
erfundenen Anlegegoniometers (s. Abb. 132 auf der vorigen Seite).

Die Unterscheidung der Gebirgsglieder.

In seiner »Urgeschichte« hatte Leibniz mit Nachdruck als
Vorbedingung für die weitere Entwicklung der Geologie die gründliche
Untersuchung der Beschaffenheit und des Verlaufs der Erdschichten
gefordert. An die Lösung dieser Aufgabe machte sich
unter hervorragender Beteiligung Deutschlands das 18. Jahrhundert.
Das Interesse für die geologischen Kräfte wurde in diesem
Zeitraum auch durch zwei außergewöhnliche, elementare Vorgänge
in hohem Grade angeregt, nämlich durch die Entstehung einer
vulkanischen Insel (Santorin) inmitten des ägäischen Meeres und
durch das furchtbare Erdbeben von Lissabon. Insbesondere das
letztere rief eine wahre Flut von Schriften hervor841. Unter anderen
hat sich auch Immanuel Kant mit diesem Naturereignis und
seiner Ursache eingehend beschäftigt842.

An die Entstehung von Santorin und die Bildung des Monte
Nuovo bei Pozzuoli knüpfte Moro843 seine Theorien über die Entstehung
der Erde an. Moro unterscheidet die ursprünglichen
Gesteine von den sekundären, geschichteten und läßt alle Inseln,
Kontinente und Gebirge durch vulkanische Hebung entstehen.
Auch Moros Landsmann Vallisneri844 suchte die geologischen
Erscheinungen auf natürliche Ursachen zurückzuführen. Er untersuchte845
die marinen Ablagerungen, die sich zu beiden Seiten des
Apennin befinden und wies die Verbreitung derartiger Ablagerungen
auch für die übrigen europäischen Länder nach. So kam
er zu der Erkenntnis, daß das heutige Festland früher Meeresboden
gewesen sei, und daß sich die Versteinerungen führenden
Schichten dereinst durch allmählichen Absatz bildeten und gleichzeitig
die Überreste abgestorbener Organismen, unsere heutigen
Petrefakten, einhüllten.



Während man anfangs alle leblosen Körper, die der Schoß
der Erde birgt, unter dem Namen »Fossilien« vereinigte, gelangte
man im Laufe des 18. Jahrhunderts dazu, die Versteinerungen
und die Felsarten von den eigentlichen, dem Auge gleichartig
erscheinenden Mineralien zu trennen. Von jetzt an traten Versteinerungslehre
und Geognosie der Mineralogie als selbständige
Wissenzweige zur Seite. Mit großem Eifer wandte man sich in
allen Kulturländern diesen neu erschlossenen Forschungsgebieten
zu und begab sich an das gründliche Studium von Naturkörpern,
denen man bisher neben der Tier- und Pflanzenwelt nur geringe
Beachtung gezollt hatte. An den Universitäten wurden neue
Lehrstühle errichtet. Gleich den Botanikern und den Zoologen
unternahmen jetzt auch Geologen Reisen zur Erforschung fremder
Länder. Besondere Schulen wurden gegründet; so verdanken die
Bergakademie in Freiberg und die École de mines in Paris ihren
Ursprung der geschilderten Bewegung. Die erstere der genannten
Anstalten gelangte rasch zu europäischer Berühmtheit durch die
Tätigkeit eines Mannes, mit dem wir uns zunächst befassen müssen.
Es ist dies der Deutsche Werner, der sich um die Kennzeichenlehre
und die Geognosie besonders verdient gemacht hat. Bevor
wir uns ihm zuwenden, müssen wir uns mit zwei anderen deutschen
Geologen beschäftigen, die für Werners wissenschaftliche Tätigkeit
die Grundlagen schufen, indem sie die geologische Spekulation
beiseite setzten und eine gründliche, voraussetzungslose Durchforschung
der Erdschichten unternahmen. Diese Männer waren
Lehmann und Füchsel.

Lehmann846, der in Berlin und später in Petersburg Mineralogie
und Chemie lehrte, veröffentlichte als das Ergebnis zahlreicher
Beobachtungen die erste genauere Untersuchung über die
Zusammensetzung und die Lagerung der geschichteten Gebirgsglieder847.
Er unterscheidet sie als »Flözgebirge« von den »Ganggesteinen«,
die früher entstanden seien und sich »in die ewige
Teufe fortsetzen«. Bezeichnend ist nun, daß die ersten deutschen
Geologen, die sich nicht auf Spekulationen beschränkten, sondern
sich an die Erforschung der tatsächlichen Verhältnisse begaben,
die Erdrinde ihrer Hauptmasse nach, den Granit und Basalt eingeschlossen,
aus dem Wasser entstehen ließen, während man in
Italien unter dem unmittelbaren Eindruck des Vulkanismus alles
auf diese Kraft zurückzuführen suchte und selbst geschichtete
Gesteine als Eruptionsprodukte betrachtete, wie es vor allem
Moro tat.

Lehmanns Arbeit gründet sich, wie die Betrachtungen von
Leibniz und die eingehenderen Untersuchungen Füchsels, besonders
auf die geologische Natur des Mansfelder, durch den
Bergbau seit alters aufgeschlossenen Bodens. Lehmann unterscheidet
30 verschiedene Schichten und bedient sich dabei zum
Teil noch heute üblicher Bezeichnungen, wie der Ausdrücke Zechstein,
Kupferschiefer, Rottotliegendes.

Von dem zweiten Vorläufer Werners, dem Arzt Füchsel,
rührt die erste scharf ausgeprägte Terminologie her. Von besonderer
Wichtigkeit ist die durch ihn erfolgte Aufstellung des
Begriffes »Formation«. »Jeder einzelne Niederschlag«, sagt
Füchsel, »bildet eine Erdschicht oder Bank. Aber es gibt gewisse
Folgen von Schichten, die unter gleichen Verhältnissen unmittelbar
nacheinander entstanden sind; solche Reihen bilden zusammen
das, was wir eine Formation nennen, und eine solche
Formation bezeichnet eine Epoche in der Geschichte der Erde«.
Die einzelnen Formationen kennzeichnete Füchsel durch das
Vorhandensein von eigentümlichen Versteinerungen, den Leitfossilien.

G. Ch. Füchsel wurde 1722 in Ilmenau geboren und wirkte
als Arzt in Rudolstadt. Dort starb er 1773. Über seine geologischen
Arbeiten schrieb er in seiner »Historia terrae et maris
ex historia Thuringiae per montium descriptionem erecta 1762«.

Er unterschied für Thüringen folgende neun Formationen:


	Muschelkalk als das oberste Kalkgebirge,

	Sandgebirge (Buntsandstein),

	Den heutigen Zechsteindolomit,

	Den Kupferschiefer,

	Das Weißliegende,

	Das rote Gebirge,

	Dachschiefergebirge,

	Steinkohlengebirge, das stellenweise auch in Thüringen
zutage tritt.

	Grundgebirge.


Füchsel stellte auch als erster in Deutschland eine geologische
Karte der von ihm durchforschten Gegend her. Auch
wußte er seine Beschreibungen durch deutliche Profile zu unterstützen.
Seine Veröffentlichungen wurden zwar der Allgemeinheit
wenig bekannt, doch sind sie es, auf die Werner, der Linné der
Geologie, sich insbesondere stützte.

Die gleichen Bestrebungen wie in Deutschland begegnen uns
im 18. Jahrhundert in Frankreich. Dort untersuchte Guettard
das Pariser Becken und gelangte zu dem Schlusse, daß dieses
einst von Wasser bedeckt gewesen und durch die im Lauf der
Zeit zu festem Gestein gewordenen Ablagerungen einmündender
Flüsse ausgefüllt worden sei. Die Berge der Auvergne, wie den
Puy de Dôme und den Mont Dore, erkannte Guettard als erloschene
Vulkane.

Guettards848 Schrift über die Vulkane der Auvergne ist für
die Entwicklung der Geologie von großer Bedeutung gewesen, da
sie den Blick der Geologen von den nur sporadisch vorkommenden
tätigen Vulkanen auf die außerordentliche Bedeutung des
Vulkanismus für längst abgelaufene Perioden der Erdgeschichte
lenkte849. Daß die Kegel der Auvergne einst tätige Vulkane waren,
schloß Guettard aus den lavaartigen Gesteinen und den Bimssteinmassen,
die sich dort zeigen. Für den Basalt nahm er seiner
scheinbar kristallinischen Regelmäßigkeit wegen den vulkanischen
Ursprung nicht an. Er hielt ihn vielmehr für eine Kristallisation
aus einer wässrigen Lösung. Erst ein jüngerer Zeitgenosse und
Landsmann Guettards erkannte die wahre Natur des Basalts.
Dies war Desmarest850. Er zeigte, daß der Basalt oft deutlich
auf vulkanischer Asche lagert, daß er mitunter auch von dieser
bedeckt wird oder allmählich in Lava übergeht. Wieder an anderen
Stellen fand er den Basalt stromartig geflossen, so daß an
seiner ursprünglich feurig-flüssigen Beschaffenheit nicht mehr gezweifelt
werden konnte. Die gleiche Entstehungsart machte Desmarest
auch für die älteren Massengesteine (Granit und Porphyr)
wahrscheinlich.

Im Jahre 1746 veröffentlichte Guettard eine geognostische
Karte, die den Aufbau Frankreichs, Englands und eines Teiles
von Mitteleuropa zur Darstellung brachte. Diese Karte gibt nicht
nur über das Vorkommen von Gesteinen und Mineralien Auskunft,
sondern es sind auf ihr auch die wichtigsten Bergwerke und
Mineralquellen, sowie Fundorte von Versteinerungen verzeichnet,
so daß sie noch heute mit Vorteil gebraucht werden kann851.

Später vereinigte sich Guettard mit Lavoisier in der Absicht,
gemeinschaftlich mit diesem einen mineralogisch-geognostischen
Atlas von Frankreich herauszugeben. Es erschienen auch
eine größere Anzahl von Blättern, doch blieb das Unternehmen
unvollendet.

Die Aufstellung von Perioden der Erdgeschichte.

Eine eigenartige Stellung in der Geschichte der Geologie
nimmt Buffon, der geistreichste Naturforscher des 18. Jahrhunderts,
ein. Buffon852 (1707–1788), dessen Lebens- und Entwicklungsgang
an anderer Stelle geschildert werden soll, hat die
Geologie weniger durch neue Beobachtungen bereichert, sondern
durch die Art, wie er die bis dahin bekannt gewordenen
Tatsachen zusammenzufassen und mit neuen Gedanken zu verknüpfen
wußte. Er hat die Geologie mit einer vor ihm nicht
anzutreffenden Klarheit als die in langen Zeiträumen sich abspielende
Geschichte unseres Planeten dargestellt. Die Planeten
sind nach ihm aus der Sonne hervorgegangen. Die Loslösung
der Planeten vom Zentralkörper erfolgte nach der allerdings unhaltbaren
Hypothese Buffons durch den Zusammenstoß der Sonne
mit einem Kometen.

Um ein Urteil über die Dauer der gesamten Erdgeschichte
zu gewinnen, stellte Buffon zahlreiche Versuche über die Abkühlung
glühender Kugeln von verschiedenem Durchmesser an.
Aus den Ergebnissen dieser Versuche berechnete er, daß sich die
Erdkugel in etwa 75000 Jahren von ihrer anfänglichen bis zu
ihrer heutigen Temperatur abgekühlt habe. Es ergaben sich
daraus für die einzelnen Perioden der Erdgeschichte Zeiträume853,
die heute als viel zu gering erscheinen. Während des ersten Zeitraums,
den Buffon auf 35000 Jahre bemessen zu dürfen glaubte,
schieden sich infolge einer unregelmäßigen Zusammenziehung der
äußeren Rinde die Festlandsmassen von den Meeresbecken. Aus
der gleichen Ursache und durch Gasentwicklung im Innern des
Erdkörpers entstand das Urgebirge. Während anfangs das Wasser
die Erde als eine Dunstmasse umgab, verdichtete es sich mit der
fortschreitenden Abkühlung. Die dritte Periode beginnt daher
mit der Entstehung des Urmeeres, aus dem nur die Gipfel der
Urgebirge hervorragten. Das heiße Wasser des Urmeeres besaß
in hohem Grade die Fähigkeit, feste Bestandteile der Erdoberfläche
zu zersetzen und aufzulösen. Allmählich sonderten sich
aus dieser Lösung diese Bestandteile als Ton, Schiefer und Sand
in parallelen, dem Urgebirge auf- und angelagerten Schichten
wieder ab. Das Meer bevölkerte sich schließlich infolge der
weiteren Abkühlung mit lebenden Wesen, deren Gehäuse gleichfalls
zur Bildung von Schichten beitrugen. Die fortschreitende
Änderung der Lebensbedingungen bewirkte, daß auch die Lebewelt
ihren Charakter ununterbrochen durch das Aussterben von
Arten und die Entstehung neuer Arten änderte. Aus den Überresten
zusammengesetzter Pflanzen entstanden in dieser Periode
auch die Steinkohlen führenden Schichten.

Während der nächsten (vierten) Periode entwickelte sich durch
das Eindringen größerer Wassermengen in das heiße Erdinnere
eine gewaltige vulkanische Tätigkeit, durch welche der bisherige
Aufbau der Erdkruste sehr gestört und die Lage der Schichten
in mannigfacher Weise geändert wurde. Die heutigen Eruptionen
und Erdbeben betrachtet Buffon als die verhältnismäßig unbedeutenden
Nachwehen des gewaltigen Kampfes der Elemente, der
in jener Periode stattfand.

Im folgenden Zeitraum näherten sich die irdischen Zustände
den heutigen. Gewaltige Landsäugetiere entstanden unter höheren
Breiten zu einer Zeit, als die Lebensbedingungen in der Nähe
der heißen Äquatorialzone noch ungünstig waren. Die Flora und
die Fauna drangen daher von den Polargegenden allmählich in die
niederen Breiten vor, während in der Verteilung von Wasser und
Land nur noch geringe Änderungen stattfanden. So löste sich
in dieser, mit dem Erscheinen des Menschen ihren Abschluß
findenden Periode Großbritannien von Frankreich. Es entstand
die Ostsee, und in den außereuropäischen Teilen der Erde
fanden ähnliche Verschiebungen statt, zu denen Buffon die
Entstehung der Sundainseln und der Antillen aus Teilen der benachbarten
Festländer rechnet.

Es ist ein Reichtum von neuen Gedanken, die uns in Buffons
Darstellung der Epochen der Natur begegnen, Gedanken, die in
ihrer ganzen Bedeutung zum Teil erst spätere Generationen gewürdigt
haben.

Weitere Fortschritte der Geologie.

Während Buffon wie kein anderer Forscher des 18. Jahrhunderts
die Geologie als Ganzes darzustellen wußte, bemühten
sich andere Männer die Grundlagen dieser Wissenschaft durch
eindringende Beobachtung der Einzeltatsachen immer mehr zu
befestigen. Unter ihnen sind zu nennen: Pallas als Erforscher
außereuropäischer Länder, Saussure wegen seiner Begründung
des wissenschaftlichen Alpinismus, und Werner, der die von
Lehmann und Füchsel begonnene, genauere Erforschung der
einzelnen Formationsglieder fortsetzte.

Pallas854 wurde 1741 in Berlin geboren. Er studierte Medizin
und Naturwissenschaften und wurde in noch jugendlichem
Alter an die Petersburger Akademie berufen und von Katharina II.
mit der Leitung einer Forschungsreise nach Sibirien betraut
(1768–1774). Nach seiner Rückkehr veröffentlichte er ein Reisewerk
über das nördliche Asien, das alle bisher erschienenen Reisewerke
in bezug auf Reichtum an neuen Beobachtungen übertraf.
Pallas starb 1811 in Berlin.

Das Hauptergebnis seiner Durchforschung Sibiriens war die
Beobachtung, daß der Boden dieses Landes in seinen oberflächlichen,
aus Ton, Mergel und Pflanzenresten bestehenden Teilen
mit den Knochen großer Landsäugetiere förmlich durchsetzt ist.
Die Erklärung, die Pallas hierfür gab, war wenig stichhaltig.
Sie hat trotzdem der phantastischen, bald darauf von Cuvier
aufgestellten Katastrophentheorie als Grundlage gedient: Aus
dem vulkanischen Charakter der Südsee, die ihm »über einem
einzigen vulkanischen Gewölbe zu stehen« schien und aus der
Beschaffenheit der sibirischen Ebene folgerte Pallas nämlich, die
Gewässer des Stillen Ozeans seien durch vulkanische Kraft nach
den Polen gedrängt worden und hätten zahllose Pflanzen und
Tiere der tropischen Länder dorthin geschwemmt und im Schutt
der Gebirge begraben.

Kamen die Forschungen von Pallas auch in erster Linie
der Zoologie, der Botanik und der Völkerkunde zugute, so ist
doch auch in geologischer Beziehung manche genaue Beobachtung
und treffende Ansicht auf ihn zurückzuführen. Die Meinung
Buffons, daß das Urmeer fast bis zu den Gipfeln der ältesten
Gebirge gereicht habe, wies Pallas zurück. Nach ihm fand die
Erhebung der geschichteten Gesteine bis weit über das Niveau
des Meeres hinaus durch vulkanische Kräfte statt. Pallas verstand
es, aus der Störung der Schichten und ihren Lagerungsverhältnissen
Schlüsse auf das Alter der Gebirge zu ziehen und
z. B. begreiflich zu machen, daß die Alpen einem relativ jungen
gebirgsbildenden Vorgang ihren Ursprung verdanken.

Fast ausschließlich der Erforschung der Alpen widmete sich
Horace Benedicte de Saussure in vieljähriger, mühevoller
Tätigkeit. Saussure wurde 1740 in Genf geboren und bekleidete
dort eine Professur. Im Jahre 1787 führte er zu wissenschaftlichen
Zwecken die erste Besteigung des Montblanc aus855. Er
starb 1799. Als Ergebnis seiner alpinistischen Untersuchungen,
die sich nicht nur auf die geognostischen, sondern auch auf die
biologischen, meteorologischen und physikalischen Verhältnisse des
Hochgebirges erstrecken, veröffentlichte er ein umfangreiches
Werk856.

Saussure erkannte, daß der Kern der Alpen aus Urgestein
(insbesondere Granit) besteht, und daß sich an diese Gesteine
geschichtete, zunächst auch noch versteinerungslose Gebirgsglieder
anlehnen. Hervorzuheben ist, daß Saussure, obgleich er die
wissenschaftliche Erforschung der Gletscher begann, die Findlingsblöcke
und andere glaziale Gebilde doch nicht als solche erkannte,
sondern sie im Sinne der Katastrophentheorie als Zeugen plötzlich
auftretender Gewalten, z. B. eines Zusammenbruchs von Gebirgsmassen,
auffaßte. Wertvoll war dagegen sein Nachweis, daß die
Westalpen nicht durch vulkanische Tätigkeit gehoben sein können,
da sich nirgends Spuren einer solchen finden. Über die eigentliche
Ursache der Gebirgsbildung blieb er jedoch die Auskunft schuldig.

Erwähnt sei noch, daß Saussure seine geologischen Arbeiten
mit solchen über die Schneegrenze, über die Wärmezunahme im
Erdinnern und die Verbreitung der Pflanzenwelt nach Höhenzonen
zu verknüpfen wußte. In letzterer Hinsicht hat er den pflanzenklimatologischen
Untersuchungen vorgearbeitet, die später v. Humboldt
am Pik von Teneriffa und in Südamerika anstellte.



Werners System der Mineralien und der Gesteine.

In dem Maße, wie die Kenntnis der Gesteins- oder Gebirgsarten
wuchs, nahm die bei ihrer Anordnung und Benennung einreißende
Verwirrung zu. Diesem Zustande machte Werners
erstes systematisches Lehrbuch der Geognosie ein Ende. Es erschien
im Jahre 1787 und führt den Titel: »Kurze Klassifikation
und Beschreibung der verschiedenen Gebirgsarten«.

Abraham Gottlob Werner wurde am 25. September 1750
in einem kleinen Orte der Oberlausitz geboren. Sein Vater verwaltete
ein Eisenhüttenwerk und besaß eine Mineraliensammlung,
die den Knaben in hohem Grade fesselte. Seit dem Jahre 1775
bekleidete Werner ein Lehramt an der Bergakademie in Freiberg857.

In den von ihm vertretenen Gebieten nahm er bald eine ähnliche
Stellung ein, wie sie um dieselbe Zeit Linné in der Reihe
der Botaniker und Zoologen besaß. Beide Männer wirkten vorzugsweise
als Lehrer und Systematiker. Sie verstanden es, für
ihre Wissenschaft zu begeistern und ihr Jünger zuzuführen, während
die durch eigenes Forschen aufgefundenen Ergebnisse sich in bescheideneren
Grenzen hielten. Bei Werner, wie bei Linné, entwickelte
sich ferner eine gewisse Einseitigkeit, wodurch der weitere
Ausbau der Wissenschaft bei dem Ansehen, das beide Männer
genossen, mitunter ungünstig beeinflußt worden ist.

Da Werners Buch über die Fossilien858 sich besonders eignet,
um mit dem Standpunkt, den die Mineralogie im 18. Jahrhundert
einnahm, bekannt zu machen, da es ferner, wie selten
eine Schrift, den Fortschritt dieser Wissenschaft bedingt hat, so
sei aus seinem Inhalt hier noch einiges mitgeteilt.

Unter Fossilienkunde versteht Werner das, was wir heute
als Mineralogie bezeichnen. Sie ist ihm nicht nur ihres Nutzens
wegen von besonderer Wichtigkeit, sondern auch, weil auf ihr die
»Lehre von den Gebirgen« (Petrographie) und die »mineralogische
Geographie« (Geologie) beruhen.

Als den Begründer der neueren Mineralogie haben wir den
Deutschen Agricola (Bauer) kennen gelernt859. In den auf Agricola
folgenden zwei Jahrhunderten waren die Fortschritte dieser
Wissenschaft jedoch gering. Ein erneutes Aufblühen begann um
1730, also etwa 40 Jahre vor dem epochemachenden Auftreten
Werners. Zwischen den Mineralogen des 18. Jahrhunderts war
eine gewisse Scheidung eingetreten. Die einen gründeten ihre
Wissenschaft ausschließlich auf die äußeren Kennzeichen der
Mineralien, während andere die wichtigste Aufgabe in der Zerlegung
der Mineralien in ihre Bestandteile erblickten. Eine vermittelnde
Richtung wollte Gruppen von Mineralien nach ihrer
chemischen Zusammensetzung bilden. Für die Bestimmung der
Mineralspezies innerhalb dieser Gruppen sollten aber die äußeren
Kennzeichen maßgebend sein860. Werner dagegen hielt es für
das Natürlichste, die systematische Gliederung des Mineralreichs
ausschließlich nach der chemischen Zusammensetzung vorzunehmen,
weil auf ihr die wesentlichste Verschiedenheit der Mineralien beruhe.
Wenn sein Buch trotzdem in erster Linie von den Kennzeichen
handelt, so liegt darin kein Widerspruch. »Denn«, sagt Werner,
»die Mineralien in ein System bringen und nach Mitteln suchen,
um die einzelnen Mineralspezies rasch und sicher zu erkennen,
sind zwei verschiedene Dinge.« Zudem war die Chemie noch zu
unentwickelt, um für das von Werner gewünschte System schon
eine ausreichende Grundlage zu geben. Es lag daher näher, zunächst
die Lehre von den äußeren Kennzeichen der Mineralien
durch eingehende Erforschung und scharfe Begriffsbestimmung zu
vervollkommnen. Hierin bestand denn auch vor allem Werners
Reformwerk. Recht treffend bemerkt er, er wolle lieber die Mineralien
schlecht geordnet und gut beschrieben als gut geordnet und
schlecht beschrieben haben.

Werner unterscheidet äußere, innere und physikalische Kennzeichen.
Die inneren oder chemischen Kennzeichen sind ihm zwar
die wichtigsten, indes aus verschiedenen Gründen unbequem. Ihre
Ermittlung erfordere viele Vorkehrungen und setze voraus, daß
der Mineraloge gleichzeitig ein geschickter Chemiker sei. Bei der
chemischen Untersuchung gehe ferner die Substanz verloren, da
man sie zerlegen müsse. Unter den physikalischen Kennzeichen
versteht Werner das Verhalten der Mineralien gegen andere Körper,
insbesondere das magnetische und elektrische Verhalten. Da dieses
keine große Rolle spielt, so bleiben als wichtigste die äußeren,
durch unsere Sinne wahrnehmbaren Kennzeichen übrig.



Am ausführlichsten behandelt Werner die Farbe. Sie sei
zwar allein nicht hinreichend, um die Mineralien zu unterscheiden,
das seien aber alle übrigen Eigenschaften einzeln genommen auch
nicht. Nur die Summe aller Eigenschaften bestimme den Begriff
eines Minerals861. Werner unterscheidet acht Hauptfarben: Weiß,
Grau, Schwarz, Blau, Grün, Gelb, Rot und Braun. Für jede
Hauptfarbe werden, unter Anführung eines typischen Minerals,
eine Anzahl Abstufungen unterschieden. Beim Gelb z. B.:


	Schwefelgelb (Schwefel),

	Speisgelb (Schwefelkies),

	Weingelb (Topas vom Schneckenstein),

	Goldgelb (Gold) usw.



Jede dieser Abstufungen wird nicht nur durch ein oder mehrere
Beispiele gekennzeichnet, sondern außerdem noch genau beschrieben.
Goldgelb, sagt Werner z. B., ist eine metallische, hohe, gelbe
Farbe, in der keine Beimischung einer anderen wahrzunehmen ist.

Werner schuf auch die für die äußere Gestalt (den Habitus)
noch heute üblichen Bezeichnungen, indem er Ausdrücke wie »derb,
eingesprengt, angeflogen, gestrickt, dendritisch« usw. so scharf
umschrieb, daß sie für eine wissenschaftliche Terminologie zweckdienlich
waren.

Die Kristallform findet zwar schon eine ausgedehntere Berücksichtigung,
doch ist Werner von einer wissenschaftlichen Kristallographie
noch weit entfernt. Er unterscheidet eine Reihe von
Grundgestalten, wie die Säule, die Pyramide, die Tafel, die Achtflächner
(Würfel und Rhomboeder), und beschreibt, wie sie durch
Abstumpfung, Zuschärfung und Zuspitzung verändert werden. Abgestumpft
nennt er z. B. einen Kristall, wenn »einige oder alle«
Ecken oder Kanten wie abgeschnitten sind. Daß am Bleiglanz
und am Kalkspat ein großer Formenreichtum vorkommt, wird
nur nebenbei erwähnt862. Auch geht aus Werners Beschreibungen
hervor, daß er charakteristische Formen, wie das Pentagondodekaeder
am Schwefelkies, ebensowenig näher untersucht hat wie seine
Vorgänger863.

Wie gering auf dem Gebiete der Naturbeschreibung noch
das Bedürfnis nach wissenschaftlicher Genauigkeit war, geht aus
der ganzen Art hervor, wie Werner das so wichtige, die größten
Verschiedenheiten aufweisende Kennzeichen der »Schwere« berücksichtigt.
Von der so einfachen Bestimmung des spezifischen Gewichtes
mittels der hydrostatischen Wage heißt es864: »Dieser Versuch
ist in der Mineralogie unbrauchbar. Denn wie ist es möglich,
die dazu nötigen Werkzeuge gleich bei der Hand zu haben, und
in welchem Kabinett würde es einem Mineralogen erlaubt sein,
mit den Erzstufen dergleichen Versuche anzustellen? Hier müssen
wir uns unserer Gliedmaßen bedienen, indem wir das Mineral in
die Höhe heben. Unser Gefühl muß uns dann sagen, wie groß,
unter Bemessung des räumlichen Umfangs, den wir nach Augenmaß
beurteilen, die verhältnismäßige Schwere ist.« Einem derartigen
noch ganz unwissenschaftlichen Verfahren entspricht es
denn auch, wenn Werner sich bei seinen Beschreibungen der Angaben
leicht, nicht sonderlich schwer, schwer und außerordentlich
schwer, bedient.

Nur ganz nebenher wird auch das chemische Verhalten herangezogen.
So empfiehlt Werner den Nachweis von Kupfer durch
Ammoniak (blaue Farbe der Lösung), das Betupfen mit Säure,
um kohlensaure Salze nachzuweisen, usw.

Zum Schluß sei als ein Beispiel, wie Werner die Mineralogie
darstellt, seine Beschreibung von Fraueneis (Gips) hierhergesetzt:


	Es ist von hellweißer Farbe;

	derb;

	hat eine unebene Oberfläche;

	ist äußerlich kaum schimmernd;

	inwendig stark glänzend;

	besteht aus großen ebenen Blättern;

	zerspringt in rautenförmige Stücke;

	ist durchsichtig;

	sehr weich;

	in dünnen Scheiben etwas elastisch-biegsam;

	klingt ein wenig;

	ist mager;

	etwas kalt anzufühlen;

	nicht sonderlich schwer.



Mag uns auch heute das von Werner Geschaffene nur dürftig
erscheinen, sein Reformwerk hatte doch den glänzendsten Erfolg
und bewirkte, daß die Mineralogie schon unter seinen Schülern
(Breithaupt, Weiß u. a.) eine achtunggebietende Stelle einnahm.



Als Geognosie bezeichnet Werner »die Wissenschaft, die uns
den festen Erdkörper überhaupt kennen lehrt, und uns mit den
verschiedenen Lagerstätten der Fossilien, aus denen die Erde
besteht, und mit ihrer Erzeugung und ihrem Verhalten gegeneinander
bekannt macht«. Obgleich durch verschiedenartige Zusammenstellung
der Mineralien, von denen schon Werner über
200 kannte, sich eine unbegrenzte Zahl von Mischungen ergeben
würde, fand sich, daß die Verschiedenheit der Gebirgsarten durchaus
nicht ins Unendliche geht und daß die meisten sehr charakteristisch
und leicht bestimmbar sind. »Es ist wahrscheinlich«,
sagt Werner, »daß wir den größten Teil der Gebirgsarten schon
kennen, da diejenigen der entferntesten Länder insgemein mit den
uns bekannten übereinstimmen«865. Sämtliche Arten werden sodann
in fünf Gruppen eingeteilt, die Werner als Urgebirge, Übergangsgebirge,
Flözgebirge, aufgeschwemmtes Gebirge und vulkanische
Gesteine unterscheidet.

Zu der ersten Gruppe werden Granit, Gneiß und Glimmerschiefer
gerechnet. »Uranfänglich« nennt Werner diese Gesteine,
weil sie gleichsam den Kern der Gebirge vorstellen und sich in
das Innere der Erde erstrecken. Auch der Mangel an Versteinerungen
ist ihm charakteristisch für diese Bildungen. Erst im
Übergangsgebirge, das vorzugsweise aus Tonschiefer und Grauwacke
besteht, begegnen uns die ersten Versteinerungen.

Als Flözgebirge bezeichnet Werner Muschelkalk, Sandstein,
rotes Totliegendes, Basalt, Steinkohle, Steinsalz und Gips. Es
ist ihm wahrscheinlich, daß diese Gesteine aus Gliedern der älteren
Gruppe hervorgegangen sind, die ihrerseits wieder durch Kristallisation
aus wäßriger Lösung entstanden sein sollten. Eigentümlich
ist ihm für das Flözgebirge das Vorhandensein von meist
zahlreichen Versteinerungen, sowie die Erscheinung, daß seine
Gesteine innerhalb desselben Gebirgsstocks in der Regel in Lagen
miteinander abwechseln, während ein uranfängliches Gestein an
dem Aufbau eines Gebirges ausschließlich oder doch auf weite
Erstreckung beteiligt sei.

Die Verwitterungsprodukte der genannten Gesteine endlich
werden als aufgeschwemmtes Gebirge bezeichnet, das entweder als
Seifen aus Kiesel und Sand die Täler füllt, oder die alles bedeckende
Schicht des niedrigen Landes bildet.



Neptunismus und Vulkanismus.

Die Anschauungen, welche Werner über die Natur und den
Ursprung der vulkanischen Gesteine entwickelte, haben dem Fortschreiten
der geologischen Wissenschaft gegenüber keinen Stand
halten können. Er betrachtete sie nämlich als jüngste Produkte,
die aus den sedimentären Gesteinen durch die Wirkung brennender
Kohlenflöze umgeschmolzen seien. Von dem Basalt, dessen feurig-flüssiger
Ursprung durch die Untersuchungen französischer Geologen
als zweifellos dargetan worden war, behauptete Werner,
das Gestein sei sedimentär; es habe einst ein weit verbreitetes
Lager ausgemacht, das größtenteils wieder zerstört worden sei und
die zerstreuten Basaltkuppen als Überreste zurückgelassen habe.

Diese Ansicht Werners wurde von einem seiner Schüler866
angegriffen, und alsbald erhob sich in Deutschland eine erbitterte
wissenschaftliche Fehde zwischen den Anhängern Werners, den
»Neptunisten«, und ihren Gegnern, den »Vulkanisten«. Es ist
bekannt, daß auch Goethe, wie aus zahlreichen Stellen seiner
Werke hervorgeht, an dieser Streitfrage lebhaften Anteil nahm.

Auch die neue, von Pallas und Saussure verfochtene Lehre,
daß die Gebirge und ausgedehnte Teile der Erdoberfläche emporgehoben
worden seien, bekämpfte Werner. Nach seiner Meinung
änderte sich das Niveau des Weltmeeres; indem die gewaltigen
Wassermassen von den Kontinenten abflössen, schufen sie durch
ihre erodierende Tätigkeit die Unebenheiten der Erdoberfläche,
ein Irrtum, der gleichfalls durch einen Schüler Werners, den
hervorragenden Geologen von Buch, widerlegt wurde.

Die erwähnten Einseitigkeiten und Irrtümer erklären sich
besonders aus dem Umstande, daß Werner seine Lehren auf Beobachtungen
aufbaute, die sich auf das Erzgebirge und die angrenzenden
Teile von Böhmen und Sachsen beschränkten, während
die französischen Geologen und die jüngere, von Werner vorgebildete
Generation deutscher Forscher zunächst Italien und bald
darauf auch das übrige Europa und die außereuropäischen Erdteile
geologisch untersuchten und mit der Ausdehnung des Gesichtskreises
zu allgemeineren und richtigeren Ansichten kamen. Werners
Verdienst war trotzdem nicht gering. Es besteht für die Geologie
wie für die Mineralogie darin, eine »feste Terminologie eingeführt
und dadurch eine klare Darstellung der Beobachtungen
ermöglicht zu haben«867.

Bevor wir uns den jüngeren Geologen zuwenden, müssen wir
uns mit dem Manne befassen, der am meisten zum Sturz der einseitig
»neptunistischen« Lehre Werners beigetragen hat. Es ist
das James Hutton. Er wurde 1726 in Edinburg geboren, studierte
in seiner Vaterstadt und in Paris, wirkte als Privatgelehrter
und starb 1797. Hutton war ein unvergleichlicher Beobachter
und ein nüchterner scharfer Denker. Seine streng induktiv begründeten
geologischen Ansichten entwickelte er zuerst im Jahre
1785. Ausführlich legte er sie in der 1795 erschienenen »Theorie
der Erde« dar868.

Seine Beobachtungen stellte Hutton in England, Frankreich
und vor allem in Schottland an. Dort untersuchte er im Grampiangebirge
die Grenze zwischen dem Granit und den benachbarten
Gesteinen. Dabei machte er die wichtige Entdeckung, daß von
einem Granitstock mitunter Gänge ausgehen, die das Nebengestein
durchsetzen, und letzteres an den Stellen, wo der Granit es berührt,
oft wesentlich verändern. Hutton schloß hieraus, daß der
Granit und der sich ähnlich verhaltende Porphyr eruptiv und
jünger als die durchsetzten Schichten seien. Er beobachtete ferner,
daß die von ihm als ursprünglich feurig-flüssig angesehenen Gesteine
sich mitunter zwischen die Schichten sedimentärer Gesteine
ergossen haben und daher irrtümlich für flözartige Bildungen angesehen
wurden.

Zu erklären blieb noch der Unterschied, den Granit, Porphyr
und Basalt gegenüber den eigentlichen, porösen und meist kein
deutliches kristallinisches Gefüge aufweisenden Laven der noch
tätigen Vulkane besitzen. Die Schwierigkeit wurde dadurch gehoben,
daß zu jener Zeit die experimentelle Geologie einsetzte
und Beweise für die Richtigkeit der Huttonschen Lehre brachte.
James Hall, ein Landsmann Huttons und der Begründer des
geologischen Versuchs, zeigte, daß die Laven des Vesuvs, wenn
man sie schmilzt und langsam erstarren läßt, kristallinische Massen
ergeben, deren Gefüge von den Bedingungen dieses Versuches abhängt.
Die Ansicht der Neptunisten, daß eine kristallinische Beschaffenheit
stets auf eine Ausscheidung aus wäßriger Lösung hindeute,
war dadurch als Irrtum nachgewiesen. Ferner erwies Hall
auf experimentellem Wege die Richtigkeit der Ansicht Huttons,
nach welcher der hohe Druck, unter dem sich manche Gesteine
im Erdinnern bilden, die Beschaffenheit ihres Gefüges bedinge.
Hall schmolz z. B. Kreide in geschlossenen Gefäßen, so daß
eine Zersetzung in Kalk und Kohlensäure nicht eintreten konnte.
Auch in diesem Falle war das Erstarrungsprodukt körnig kristallinisch
und mit dem Marmor völlig identisch869. Die älteren, unter
Druck und langsam aus dem Schmelzfluß erstarrten Massengesteine
wurden fortan als plutonische Gesteine bezeichnet.

Weit vorangeeilt war Hutton seinen der Katastrophenlehre
huldigenden Zeitgenossen durch die Gesamtauffassung, die er sich
vom geologischen Geschehen gebildet hatte. Er zeigte sich nämlich
schon von den beiden Grundvorstellungen beherrscht, die erst
seit Lyell Gemeingut der Geologen geworden sind870. Hutton
lehnt nämlich den Gedanken, daß es sich in der Entwicklung der
Erde um Katastrophen oder gar um übernatürliche Kräfte gehandelt
habe, entschieden ab und sucht die Tatsachen aus den
bekannten, noch heute wirkenden Kräften zu erklären. Da deren
Wirkungen innerhalb der kurzen der Beobachtung zugänglichen
Zeit aber nur geringfügig sein kann, so nahm Hutton zweitens
die Vorstellung bedeutender Zeiträume zuhilfe, innerhalb welcher
die Wirkungen der geologischen Kräfte sich zu großen Gesamtwirkungen
summieren mußten.

Hinsichtlich der geschichteten Gesteine entwickelte Hutton
gleichfalls Ansichten, die sich im wesentlichen mit den heutigen
geologischen Anschauungen decken. Für diese Gesteine nahm er
einen doppelten Ursprung an. Sie entstanden auf dem Grunde
der Gewässer als Sand- oder Tonschichten aus dem Material, das
sich durch die Zertrümmerung des festen Landes bildete. Jene
Schichten wechseln mit Kalksteinen ab, die ihrerseits aus den
Schalen der Meeresbewohner hervorgingen. An die Oberfläche
gelangten die sedimentären Gesteine nicht etwa durch das Sinken
des Meeresspiegels, wie manche der älteren Geologen annahmen,
sondern die vulkanische Hitze bewirkte eine teilweise Hebung
der Erdkruste. Unter dem Einfluß dieser Hitze sollten sich
auch die Sedimente verfestigt haben, eine Ansicht, der die neuere
Geologie allerdings nicht in ihrem ganzen Umfange beipflichtet.
Die Hutton'sche Schule hat auch die erodierende Tätigkeit
des Wassers in vortrefflicher Weise gewürdigt und zuerst auf
die gestaltende und transportierende Wirkung des Gletschereises
hingewiesen871.

Die Begründung der Paläontologie.

Sollte das Studium der Gebirgsglieder Licht über die Entwicklungsgeschichte
der Erde verbreiten, so mußte die Aufmerksamkeit
sich in steigendem Maße den Einschlüssen der Gesteine,
den Versteinerungen, zuwenden. Die alte, verbreitete Meinung,
man habe es in diesen mit Naturspielen oder mit den Überresten
der Sintflut zu tun, wich allmählich der Erkenntnis, daß die Fossilien
Zeugnis von vergangenen Tier- und Pflanzenwelten ablegen.
So entstand die Paläontologie, die vereint mit der gleichfalls im
18. Jahrhundert sich entwickelnden Geognosie, die Grundlage für
die geologische Wissenschaft des 19. Jahrhunderts bilden sollte.
Es entstanden Schriften über die fossilen Pflanzen, wie das Werk
Scheuchzers872. Und im Jahre 1755 erschien in Deutschland
ein größeres, systematisches Werk paläontologischen Inhalts, das
sich den großen naturhistorischen Werken der Botaniker und der
Zoologen dieses, sowie des verflossenen Zeitraums als ebenbürtig
an die Seite stellen konnte873.

Der Schweizer Scheuchzer (1672–1733) war der Hauptvertreter
der »Diluvianer«, die alle Versteinerungen als Zeugnisse
für die Sintflut betrachteten. Einen im Kalkschiefer zu Oeningen
gefundenen Abdruck, den Cuvier später einem Riesensalamander
(Andrias Scheuchzeri) zuschrieb, hielt Scheuchzer für den »homo
diluvii testis«, das »Beingerüst eines verruchten Menschenkindes,
um dessen Sünde willen das Unglück über die Welt hereingebrochen.«

Der Verfasser des erwähnten paläontologischen Hauptwerkes
war der Nürnberger Sammler und Maler Knorr874. Unterstützt
durch den Jenenser Professor Walch gab Knorr ein mit hunderten
von kolorierten Tafeln versehenes Werk heraus, das für die
Versteinerungskunde grundlegend gewesen ist. Die Erläuterungen
der Tafeln rühren von Walch her und gelten als Muster gründlicher
Gelehrsamkeit, während man die Herstellung der zahlreichen
Tafeln stets als Zeugnis eines bewunderungswürdigen Fleißes betrachten
wird. Der reiche Inhalt kann nur angedeutet werden;
er betrifft die fossilen Fische, Krebse, Seelilien (Crinoideen),
Ammoniten, Nautiliden, Muscheln, Schnecken, Brachiopoden,
Schwämme, Korallen, Belemniten usw. Am vortrefflichsten ist der
Abschnitt über die für das Silur charakteristische Krebstiergruppe
der Trilobiten. Aus dem Pflanzenreiche werden die fossilen Hölzer
und die Steinkohlenpflanzen genau beschrieben. Der Wert des
Werkes wird dadurch erhöht, daß es die vollständigsten und zuverlässigsten
Angaben über die gesamte frühere Literatur enthält.

Werner und seine Schüler hatten ihr Augenmerk in erster
Linie auf die Zusammensetzung und die Lagerung der Gebirgsglieder
gerichtet und den Versteinerungen nur geringe Aufmerksamkeit
gezollt. Das Werk von Knorr und Walch hatte sich dagegen
auf genaues Beschreiben beschränkt. Erst seit dem Ende des
18. Jahrhunderts lernte man nach und nach die Versteinerungen
als geschichtliche Denkmäler schätzen und ihr Verhältnis zur gegenwärtigen
Lebewelt begreifen. Die Blattabdrücke der steinkohlenführenden
Schichten z. B. hatten die älteren Geologen auf tropische
Gewächse zurückgeführt. Und es erschien fast als ein Wagnis,
daß 1784 ein Geologe875 erklärte, die betreffenden Überbleibsel
hätten nichts mit jetzt lebenden Pflanzen zu tun, sondern seien
auf gänzlich ausgestorbene Arten zurückzuführen.

Ähnlich änderten sich die Ansichten über die Versteinerungen
tierischen Ursprungs. Große fossile Knochen von Säugern hatte man
zwar seit dem Altertum schon hin und wieder ausgegraben. Erwähnung
finden derartige Funde z. B. bei Plinius und später bei
Athanasius Kircher. Wissenschaftliches Interesse erregten sie
indessen erst im 18. Jahrhundert, als sich ihre Häufigkeit auffallend
mehrte, und man sich nicht mehr mit der Fabel begnügte, daß es
sich hier um untergegangene Riesengeschlechter handle. Im Jahre
1700 entdeckte man bei Cannstatt fossile Knochen, unter denen
sich viele Elephantenzähne befanden, und etwa 100 Jahre später
konnte Blumenbach mehrere hundert Stellen angeben, an denen
man in Deutschland Überreste eines vorweltlichen Elefanten gefunden
hatte, den Blumenbach als Elephas primigenius (Mammut)
von den lebenden Arten dieser Gattung unterschied. Die ersten
Nachrichten über Mammutreste in Sibirien stammen aus dem
Jahre 1725, und gegen das Ende des 18. Jahrhunderts wies
Pallas876 nach, daß der Boden des nördlichen Asiens mit den
Überresten des Mammuts förmlich durchsät sei.

Ähnliche, von gewaltigen Landsäugern herrührende Funde
machte man während des 18. Jahrhunderts in Amerika. Aus
Resten, die man im nördlichen Teile dieses Kontinents entdeckte,
gelang es, das Skelett des Mastodons wieder herzustellen; und im
Jahre 1789 kam das vollständige, in den Pampas ausgegrabene
Skelett eines riesigen Geschöpfes nach Europa. Das ausgestorbene
Tier, dem es angehörte, wurde unter dem Namen Megatherium
(Riesenfaultier) beschrieben. Um dieselbe Zeit bemerkte man im
Pariser Gips zum ersten Male fossile Knochen von Vögeln.

Ein ganz neuer Geist wurde der Paläontologie eingehaucht,
als Cuvier sie mit der Zoologie und mit der vergleichenden Anatomie
in die engste Verbindung brachte. Wie auf diese Weise die
Versteinerungskunde sich aus der bloßen Naturbeschreibung zu
einer induktiv verfahrenden, modernen Wissenschaft entwickelte,
bleibt späterer Darstellung vorbehalten.




21. Die Naturwissenschaften und das
Zeitalter der Aufklärung.

Die Ergebnisse der neueren Philosophie, sowie der neueren
Naturwissenschaft übten einen Einfluß auf das allgemeine Denken
aus, der sich seit dem Beginn des 18. Jahrhunderts in wachsendem
Maße geltend machte und wiederum eine Rückwirkung auf das
wissenschaftliche Denken äußerte. Die Wurzeln dieser unter dem
Namen der »Aufklärung« bekannten Erscheinung sind in England
zu suchen. Von dort aus pflanzte sie sich nach Frankreich
fort, um schließlich auch in Deutschland und den übrigen europäischen
Ländern ihren Widerhall zu finden. Das Ziel der Aufklärung
war die Befreiung von den kirchlichen Dogmen und
anderen Vorurteilen, denen sich Galilei, Descartes und Huygens
noch gebeugt hatten, während seit dem Anfang des 18. Jahrhunderts
Philosophie und Forschung auf der ganzen Linie mehr
oder weniger offen im bewußten Gegensatz zur herrschenden
kirchlichen Lehre standen. Daß die Kirche dem Geiste der neuen
Zeit sich nicht anpaßte, ja ihn sogar, wo sie es konnte, in Fesseln
schlug, erregte den Widerspruch der Gelehrten und der Gebildeten.
In England knüpfte diese geistige Revolution vor allem
an die Lehren Lockes an. Ihr Führer war der Ire John
Toland (1670–1722). Die Schriften Tolands und seiner Anhänger
haben Holbach und Diderot, die für ihre Übersetzung
sorgten, sowie andere französische Aufklärer angeregt. Vor allem
war es Voltaire, der auf den Spuren Tolands und seiner
Jünger wandelte und, wie sie, veraltete Anschauungen und Gebräuche
mit allen Waffen des Geistes bekämpfte. Tolands Einfluß
erstreckte sich so weit, daß wir ihn auch als den Vater des
neueren Monismus betrachten müssen877. Gleich sein erstes Werk,
das er im Jahre 1696 anonym erscheinen ließ, erregte ungeheures
Aufsehen. »Nur wer das Erscheinen des ‚Leben Jesu‛ von Strauß
erlebt hat, kann sich hierüber eine annähernde Vorstellung machen«878.
Toland suchte darzutun, daß die Lehren des Evangeliums, richtig
gedeutet, nichts enthalten, was nicht mit der Vernunft vereinbar
ist. Das Buch (Christianity not mysterious) gilt noch heute
als die Grundlage des »Deismus«. Danach offenbart sich Gott
nicht durch Wunder, sondern er wirkt nur innerhalb der Naturgesetze.
Die Verfechter dieser Ansicht nannten sich Freidenker
(free-thinker), ein Wort, das ja noch in der Jetztzeit seine Geltung
hat.

Die Kirche verhielt sich gegen Toland genau so, wie hundert
Jahre vor ihm, gegen Galilei. Sie brachte es fertig, daß
im irischen Parlament der Beschluß gefaßt wurde, Tolands Buch
öffentlich zu verbrennen. Es wurde sogar vorgeschlagen, nicht nur
das Buch, sondern auch den Verfasser den Flammen zu überliefern.
Toland entzog sich seinen Verfolgern durch die Flucht.
Später begab er sich auf Einladung der Königin Sophie Charlotte
nach Berlin. Dort verkehrte er in dem gelehrten Kreise,
den die Königin um sich versammelte, und dem auch Leibniz
angehörte. Briefe, die Toland später an die Königin richtete,
erschienen unter dem Titel: Letters to Serena (London 1704). In
diesen Briefen suchte er nachzuweisen, daß die geistigen Vorgänge
nur als Tätigkeitsformen der Materie zu betrachten sind.
Kann die Materie denken? und Wie kommt Bewegung in die
Materie? Das sind die wichtigsten Fragen, die Toland beschäftigen.
Die allgemeine Ursache der Bewegung ist nach Descartes
Gott, der die Materie zugleich mit der Bewegung geschaffen hat.
Wie heute das Verhältnis von Materie und Energie, so bildete
damals das Verhältnis von Materie und Bewegung den Hauptgegenstand
der naturphilosophischen Untersuchungen. Die Ruhe
betrachtete Toland nur als einen Grenzfall, in dem zwei gleichstarke,
entgegengesetzt gerichtete Bewegungen einander aufheben.
Undurchdringlichkeit, Ausdehnung und Aktion sind nach ihm
nicht drei verschiedene Dinge; sie entspringen nur verschiedenen Betrachtungsweisen
eines und desselben Dinges. Descartes hatte das
Wesen der Materie in der Ausdehnung erblickt; Huygens hatte
ihr außerdem als nicht minder wesentlich die Undurchdringlichkeit
zugeschrieben. Aktion endlich ist vielleicht im Tolandschen
Sinne schon eine Vorahnung von dem, was die heutige Physik als
Erhaltung der Kraft bezeichnet. Tolands Auffassung läßt sich
im Sinne moderner Naturauffassung dahin präzisieren, daß es weder
Kraft noch Materie gibt, sondern daß beide von verschiedenen
Standpunkten aus aufgenommene Abstraktionen der Dinge sind.

Das Prinzip von der Erhaltung der Kraft gelangt bei ihm,
wenn auch in philosophischer Fassung, in folgenden Worten zum
Ausdruck: »Sowie die einzelnen Körper nur die verschiedenen
Modifikationen der Materie und in ihr sämtlich enthalten sind, so
sind alle einzelnen Bewegungen der Materie nur die verschiedenen
Äußerungen der allgemeinen Aktion, die ebensowenig wie die
Materie vermehrt noch vermindert werden kann«879.

Dies Prinzip läßt sich in seinen Vorahnungen also rückwärts
über Toland, Leibniz, Descartes, Gassendi bis ins Altertum,
wo wir es bei Epikur als schon bekannt antreffen, zurückverfolgen.
Bei Descartes lautet die Fassung, daß Gott nicht
nur die Menge der Materie, sondern auch die Summe der in der
Welt vorhandenen Bewegung konstant erhalte, wobei Descartes
als das Maß der Kraft das Produkt von Masse und Geschwindigkeit
bezeichnete880.

In Frankreich wirkte der Geist der Aufklärungsperiode besonders
in Männern wie d'Alembert, Holbach und Voltaire.
Unter ihnen nahm d'Alembert die hervorragendste Stellung als
Naturforscher ein. Er war sehr vielseitig begabt und bildete den
Mittelpunkt einer Vereinigung, die sich später zu dem so bekannt
gewordenen Holbachschen Zirkel erweiterte. D'Alembert würdigte
gleich der Mehrzahl der französischen Gelehrten jener Zeit
neben der Arbeit nichts so sehr als die geistig angeregte Unterhaltung,
die in den Salons von Damen der Gesellschaft und des
Hofes in Fluß gehalten wurde. Hat doch in keinem Lande die
Frau eine so weitgehende Einwirkung auf die Politik, auf Kunst
und Wissenschaft ausgeübt wie gerade in Frankreich. Und man
kann sagen, daß diese mehr mittelbare Anregung der Wissenschaft
nicht zum Nachteil gereicht, sondern die französischen
Gelehrten in ihrer klaren, leicht verständlichen Ausdrucksweise
gefördert hat.

In Gemeinschaft mit Diderot gab d'Alembert die berühmte
Enzyklopädie heraus, die den beiden Männern und ihrem für die
Aufklärung wirkenden Anhang den Namen der Enzyklopädisten
eintrug. D'Alembert übernahm den mathematischen Teil dieses
Werkes, das in alphabetischer Folge alle bis zur Mitte des 18. Jahrhunderts
erworbenen Kenntnisse übermitteln sollte. Der Mathematik
und den Naturwissenschaften wurde der erste Platz eingeräumt
und betont, daß auf die alten Sprachen und die Altertumswissenschaft
nicht viel Gewicht zu legen sei. Schoß man
auch über das Ziel hinaus, so machte sich hierin doch eine gesunde
Reaktion gegen die Überschätzung geltend, welche die
»Humaniora« als Bestandteile der allgemeinen Bildung genossen
haben und sehr häufig auch heute noch beanspruchen. Zu weit
ging d'Alembert besonders darin, daß er das Verdienst der Alten
um die Entwicklung der Mathematik und der Naturwissenschaften
sehr gering einschätzte.

Neben Diderot und d'Alembert sind besonders Holbach,
Lamettrie881 und Helvetius zu nennen. Holbach wurde 1723
in der Pfalz geboren und starb 1789 in Paris. Er arbeitete gleichfalls
an der großen Enzyklopädie und ist besonders durch sein
»System der Natur« bekannt geworden882. Diese Schrift sowie
diejenige des Helvetius (1715–1771) über den Geist bedeuten
den Höhepunkt der materialistischen Weltanschauung und sind
von größtem Einfluß auf das geistige Leben des Zeitalters der
Aufklärung gewesen.

Im »System der Natur« wird alles Geschehen allein auf Materie
und Bewegung zurückgeführt. An die Stelle der Teleologie wird
auch auf seelischem Gebiete überall das rein mechanische Wirken
gesetzt. Die Moral wird aus dem physisch zu erklärenden Instinkt
hergeleitet.

Über das Verhältnis des Menschen zur Natur äußert sich
Holbach in folgenden Worten: »Die Menschen werden sich jederzeit
um die Wahrheit bringen, wenn sie die Erfahrung für selbstgeschaffene
Systeme hingeben. Der Mensch ist ein Geschöpf der
Natur; in ihr wurzelt er, ihren Gesetzen ist er unterworfen; ihrer
kann er sich nicht entschlagen; selbst im Denken kann er nicht
aus ihr heraustreten. Für ein von der Natur gebildetes, durch sie
bestimmtes Wesen gibt es nichts jenseits des großen Ganzen, unter
dessen Einflüssen es steht. Wesen, die man jenseits der Natur
setzt, sind jederzeit Geschöpfe unserer Einbildungskraft.

Der Mensch höre also auf, außerhalb der Welt Wesen zu
suchen und von ihnen ein Glück zu erwarten, das die Natur ihm
versagt. Er lerne vielmehr eben diese Natur und ihre Gesetze
kennen. Dann wende er das Beobachtete auf seine eigene Glückseligkeit
an, mit stiller Unterwerfung unter die Gesetze, denen er
sich nicht entziehen kann.

Offenbar ist es ein Mißbrauch, wenn man dem Menschen ein
physisches und ein moralisches Sein beilegt. Der Mensch ist ein
rein physisches Wesen und seine moralische Existenz ist nur eine
besondere Seite seines physischen Seins. Seine sichtbaren Handlungen
sowohl wie seine inneren Erregungen sind natürliche Folgen
seines eigentümlichen Mechanismus und der Eindrücke, die er von
Wesen seiner Umgebung erhält.«

Auf die philosophische Unhaltbarkeit dieser Lehren hat schon
Voltaire hingewiesen. Ihren unumwundensten Ausdruck fanden
sie in Lamettries Buch, Der Mensch eine Maschine883.

Hiermit endet unsere Betrachtung der naturwissenschaftlichen
Errungenschaften desjenigen Zeitalters, das vom Wiederaufleben
der Wissenschaften bis zu dem gegen das Ende des 18. Jahrhunderts
einsetzenden Umschwung reicht. Wir gedachten auch
der geistigen Strömungen, die neben der geschilderten Entwicklung
einhergingen, sie bedingten und durch sie bedingt wurden. Der
nächste und der Schlußband sollen das Emporblühen der Naturwissenschaften
in der mit jenem Umschwung anhebenden neuesten
Zeit bis zu den Problemen des Tages schildern.
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Ergänzungen, Zusätze und Berichtigungen.884



Zu S. 88, Anm. 2: Vgl. K. Meyer, Die Entwicklung des Temperaturbegriffs
im Laufe der Zeiten. Nr. 48 der Sammlung »Die Wissenschaft«, Verlag
von Vieweg, Braunschweig.

Zu S. 119: Zu den Ausführungen Keplers bemerkt E. Wiedemann:
»Faraday hat einmal meinem Vater gesagt, wenn man wüßte, was er alles
versucht habe, so würde man ihn für verrückt halten.«

Zu S. 121: Der Ehrensaal des Deutschen Museums in München birgt eine
Rekonstruktion der »Uranienborg« nebst den von Tycho benutzten Instrumenten
in der Größe 1 : 10.

Zu S. 129: Unter den Gegnern des Hexenwahns ist auch der Jesuit Spee
(1591–1635) zu nennen, der sich durch seine geistlichen Lieder einen Namen
in der Literaturgeschichte erworben hat (Wü).

E. Wiedemann bemerkt zu diesem Punkt: Ob wir dank der Telepathie
nicht bald wieder Hexenprozesse haben werden? Wir sind auf dem besten
Wege dazu! Sobald die Telepathie geglaubt wird, gibt es auch Hexen!

Zu S. 141: Das Problem des Sonnenbildes wurde schon von Kamâl
al Dîn gelöst (Wi).

Zu S. 143 oben: Alhazen war schon bekannt, daß das Verhältnis
zwischen dem Einfalls- und dem Brechungswinkel nicht konstant ist (Wi).

Zu S. 145 Mitte: Auch Alhazen war mit der am sphärischen Hohlspiegel
auftretenden Abweichung schon bekannt (Wi).

Zu S. 145 unten: Der Gedanke, den Linsen eine hyperbolische Form zu
geben, begegnet uns nach den neuesten Untersuchungen, welche die großen
Verdienste der Araber um die Entwicklung der Optik dargetan haben, schon
bei Kamâl al Dîn (Wi).

Zu S. 150, Anm. 3: Siehe auch S. Günther, Vergleichende Mond- und
Erdkunde (Vieweg, Die Wissenschaft) (Wü).

Zu S. 174 (4. Zeile): Es muß heißen »uns gegen die Umwelt geistig einzustellen«
statt »uns gegen die geistige Umwelt einzustellen«.

Zu S. 201: Ein prächtiges Ölbild Otto v. Guerickes befindet sich im
Ehrensaal des Deutschen Museums zu München.

Zu S. 207: Der Saal für Mechanik im Deutschen Museum zu München
enthält außer der Originalluftpumpe Guerickes auch Nachbildungen des
Baroskops (Abb. 64 unten).

Zu S. 265: Nach E. Wiedemann finden sich auch bei Kamâl al Dîn
schon richtige Vorstellungen über das Zustandekommen des Regenbogens.



Zu S. 282: Zu dem zweiten Absatz ist zu bemerken, daß dies Verhalten
Newtons für seine ganze Denkungsart bezeichnend ist (Wi).

Zu S. 338: Herrn Prof. Dr. Plaßmann (Münster i. W.) verdanke ich
folgende Mitteilung über die Entdeckung der Saturnmonde:

In neuerer Zeit wurden zwei weitere Monde auf photographischem Wege
entdeckt. Nach dem Abstände von dem Hauptplaneten (gemessen von dessen
Mittelpunkt und in Teilen seines Äquatorradius) lassen sich die 10 Monde
folgendermaßen ordnen:



	Satellit
	Entdecker – Zeit
	 Abstand



	Mimas
	 W. Herschel         1789
	 3,1



	Enceledus
	 "   "                           "
	 3,9



	Tethys
	 D. Cassini            1684
	 4,9



	Dione
	 "   "                           "
	 6,2



	Rhea
	 "   "                      1672
	 8,7



	Titan
	 Chr. Huygens       1655
	 20,2



	Themis
	 W. H. Pickering   1904
	 24,2



	Hyperion
	 W. Cr. Bond         1848
	 24,5



	Japetus
	 D. Cassini            1671
	 58,9



	Phoebe
	 W. H. Pickering   1898
	 214,4




Zu S. 432: Mit physiologischer Optik hatten sich schon Ptolemäos und
vor allem Ibn al Haitam befaßt (Wi). Siehe Bd. I dieses Werkes.

Zu S. 491: Hier wie an früheren Stellen decken sich die modernen Anschauungen
nicht etwa vollkommen mit den älteren. Das Prinzip der Erhaltung
der Kraft (richtiger der Energie) konnte erst in Verknüpfung mit dem
Arbeitsbegriff aufgestellt werden. (Auf Grund einer Bemerkung von E. Wiedemann.)
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der Optik I. 147. wiedergegeben.



[12] Wilde, Geschichte der Optik. Bd. I. 150.
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[17] Johannis Kepleri Dioptrice. 1611. Kepleri
Opera omnia (ed. Frisch) II. 515 ff.



[18] Dioptrice, Problema LXXXVI. Duobus convexis majora et distincta
praestare visibilia, sed everso situ.



[19] Ostwalds Klassiker Bd. 144. S. 49.



[20] Keplers Dioptrik, 89. Problem; es lautet: Tribus convexis erecta et
distincta et majora praestare visibilia.



[21] Wie er in seinem »Rosa Ursina« betitelten Werke mitteilt. Siehe an
späterer Stelle.



[22] Ostwalds Klassiker. 144. (Keplers Dioptrik oder Schilderung der
Folgen, die sich aus der unlängst gemachten Erfindung der Fernrohre für das
Sehen und die sichtbaren Gegenstände ergeben. 1611. Übersetzt von F. Plehn.
Leipzig, W. Engelmann, 1904). S. 61.



[23] Ostwalds Klassiker, 144. S. 72.



[24] Christoph Scheiner wurde im Jahre 1575 in einem kleinen schwäbischen
Orte geboren. Mit 20 Jahren trat er in den Jesuitenorden ein. Er
lehrte Mathematik in Ingolstadt und Rom und starb 1650 als Rektor eines
Jesuitenkollegiums.



[25] Näheres darüber siehe an späterer Stelle.



[26] Humboldt, Kosmos III. 383.



[27] Rosa ist ein symbolischer Name für die Sonne. Das Adjektiv Ursina
weist darauf hin, daß Scheiner das Buch einem Herzog von Orsini widmete,
der ihn bei seinen Untersuchungen unterstützt hatte.



[28] Scheiner, Oculus, hoc est fundamentum opticum. 1619.



[29] Scheiner, Oculus, Liber III. Pars I. Cap. VI. Refractio radii visorii
ex aëre in tunicam Corneam. VII. Refractio e Cornea in humorem Aqueum.
Cap. VIII. Densitas humorum oculi comparata. Cap. IX. Refractio radii ex
Aqueo humore in Crystallinum. Cap. X. Refractio crystallino humore in Vitreum.
Cap. XI. Refractio e Vitreo humore in tunicam Retinam.



[30] Libri, Histoire des sciences mathématiques en Italie. Bd. III. S. 201.



[31] In seinen Galilei-Studien handelt E. Wohlwill von zahlreichen, das
Leben Galileis betreffenden Einzelheiten (Mitteilungen zur Gesch. der Med.
u. Naturwissensch.). Wohlwill unternimmt darin auch die Nachprüfung
mancher Angaben der Biographen Galileis. Als erster unter diesen ist Niccolo Gherardini
zu nennen. Er hatte Galilei 1633 kennen gelernt
und gab 15 Jahre nach Galileis Tode die erwähnte Biographie heraus. Auch
einem Schüler Galileis, Vincenzio Viviani, verdanken wir eine Schilderung
des Lebens seines Meisters. Ihr Titel lautet: Raconto istorico della vita di
Galileo Galilei.



Eine von Wohlwill unternommene Würdigung der Galilei-Biographie
Vivianis hat ergeben, daß die Angaben Vivianis nur mit Vorsicht aufzunehmen
sind. Vivianis Darstellung zeigt, wie manche von Schülern herrührende
Biographien, den Fehler, daß die Objektivität der Darstellung unter
der pietätvollen Gesinnung des Schriftstellers leidet. Wohlwill kommt zu
dem Ergebnis, daß die Angaben Vivianis, für die eine Bestätigung durch
anderweitige Zeugnisse fehlt, als hinreichend beglaubigte Daten nicht angesehen
werden können. Zu weit scheint Wohlwill zu gehen, wenn er Viviani absichtliche
Fälschungen vorwirft und z. B. annimmt, er habe Galilei die Erfindung
der Pendeluhr zugeschrieben, während Viviani sie sehr wahrscheinlich
selbst erfunden habe.



[32] Forschungen über die Vorgänger Galileis hat P. Duhem angestellt.
Siehe darüber auch den I. Band.



[33] Galilei, Opere complete ed. Alberi, VI. 11–12.



[34] Allerdings nicht allein wegen seiner Anhängerschaft an Koppernikus.



[35] Verbürgt ist dies nicht. Nach neueren Untersuchungen handelt es
sich sogar wohl nur um eine Erfindung, mit der man Galilei einen besonderen
Nimbus zu verleihen bezweckte. – Nach Wohlwill (Galilei-Studien
in den Mitteil. zur Gesch. d. Med. u. Naturwissensch. Bd. IV. N. 27. S. 247)
ist Gustav Adolf sogar niemals in Italien gewesen.



[36] Galilei sah zuerst drei Trabanten. Das war am 7. Januar 1610; einige
Tage später erblickte er alle vier. Darauf verfolgte er ihre Bewegungen mehrere
Monate sehr genau. Zu Ehren seines Herrscherhauses nannte Galilei die
Jupitermonde die »Mediceischen Gestirne«. Gegen Ende des Jahres 1610 entdeckte
Galilei die Lichtgestalten der Venus.



[37] Aus Fabronis »Lettere inedite d'uomini illustri, Florenz 1773«, übersetzt
von C. J. Jagemann. Siehe Geschichte des Lebens und der Schriften
des Galilei von C. J. Jagemann, Weimar 1783.



[38] Nach A. B. Hanschmann, Bernhard Palissy als Vater der induktiven
Wissenschaftsmethode. Leipzig 1903. S. 145.



[39] Sidereus nuntius. Venedig 1610. Diese Schrift findet sich im dritten
Bande der Alberischen Gesamtausgabe der Werke Galileis.



[40] So zählte er im Sternenbilde der Plejaden 40 Sterne, während das unbewaffnete
Auge nur 6 erkennt. Den Mond, den die Aristoteliker für eine
Scheibe hielten, erblickte er als eine Welt gleich der unsrigen mit Gebirgen
und Tälern. Er war sogar imstande, die Höhe der Mondberge aus der Länge
ihres Schattens zu berechnen.



[41] Fabricius und Scheiner.



[42] Siehe weiter unten bei Kepler.



[43] Gerhard Berthold, Der Magister Johann Fabricius und die
Sonnenflecken. Leipzig 1894.



[44] De maculis in sole observatis. Wittenberg 1611. Ein Neudruck des
sehr seltenen lateinischen Originals findet sich in der erwähnten Schrift von
G. Berthold.



[45] Siehe S. 13.



[46] An Marcus Welser. Die Briefe waren vom November und Dezember
des Jahres 1611 datiert und mit dem Pseudonym »Apelles latens post tabulam«
unterzeichnet.



[47] In der von Moritz Carriere gegebenen Übersetzung. Siehe Carriere,
Die philosophische Weltanschauung der Reformationszeit. Stuttgart und Tübingen
1847. S. 139.



[48] Dialog über die beiden hauptsächlichsten Weltsysteme, das Ptolemäische
und das Koppernikanische, von Galileo Galilei. Aus dem Italienischen
übersetzt und erläutert von Emil Strauß. Leipzig B. G. Teubner 1891. Der
Titel des Originals lautet: Dialogo de Galileo Galilei sopra i due massimi
sistemi del mondo, Tolemaico e Copernicano. MDCXXXII.



[49] Wie in so vielen Fällen, war die »Schule« weit beschränkter und engherziger
als der Meister, und vieles, was sie als »aristotelisch« zu lehren vorgab, hat Aristoteles
selbst teils gar nicht behauptet, teils nicht als Dogma
hingestellt! Vgl. v. Lippmann, Abhandl. u. Vorträge, Bd. 2, S. 153 (über
Aristoteles).



[50] Ausgabe von Strauß S. 37.



[51] Dialog, S. 57.



[52] Dialog (Ausgabe von Strauß) S. 81.



[53] Es geschieht dies im zweiten »Tag« des Dialogs.



[54] Dialog (Ausgabe von Strauß). S. 209.



[55] Dialog (Strauß). S. 382.



[56] Dialog. 4. Tag.



[57] Gleich 1200 Erdhalbmessern statt 23000.



[58] Dialog, Ausgabe von Strauß. S. 446.



[59] Es ist daher zu begrüßen, daß es durch eine mit den nötigen Erläuterungen
versehene Übersetzung dem deutschen Leser zugänglicher gemacht
wurde. Sie erschien 1891 bei B. G. Teubner: E. Strauß, Dialog über die
beiden hauptsächlichsten Weltsysteme von Galileo Galilei.



[60] Siehe S. 26 dies. Bds.



[61] Es sei verwiesen auf Gebler, Galileo Galilei und die Römische
Kurie. Nach authentischen Quellen dargestellt. Stuttgart 1876–1880, sowie
auf Wohlwill, der Inquisitionsprozeß des Galileo Galilei. Berlin 1870.
Eine neuere Biographie veröffentlichte Wohlwill unter dem Titel: Galilei
und sein Kampf für die Koppernikanische Lehre. 1909. Hamburg. L. Voss.



[62] Riccioli, Almagestum novum, lib. IX.



[63] Siehe auch G. Bertholds in der Zeitschrift für Geschichte der Mathematik
(1897) erschienene Notiz: Über den angeblichen Ausspruch Galileis
»Eppur si muove«.



[64] Seine Mitteilung über diese Entdeckung datiert vom 20. Februar 1637.



[65] Hevels Selenographie, Danzig 1647.



[66] Er hatte sich deswegen 1616 mit Philipp III. von Spanien vergeblich
in Verbindung gesetzt (S. Jagemann. Geschichte des Lebens und der Schriften
des G. Galilei. 1783. S. 146).



[67] Heller, Geschichte der Physik, I. 366.



[68] Unterredungen und mathematische Demonstrationen über zwei neue
Wissenszweige von Galileo Galilei. Aus dem Italienischen übersetzt und
herausgegeben von A. v. Oettingen. Leipzig. Verlag von Wilhelm Engelmann
1890. Ostwalds Klassiker der exakten Wissenschaften Nr. 11, 24 u. 25.
Der Originaltitel lautet: Discorsi e dimostrazioni matematiche intorno a due
nuove scienze. Leyden 1638.



[69] S. Bd. I. S. 430.



[70] Galilei, Unterredungen und mathematische Demonstrationen, Dritter
und vierter Tag. Ostwalds Klassiker Nr. 24. S. 3



[71] Dieser Schluß war nicht zulässig. Welche Rolle hier der Luftdruck
spielt, war Galilei allerdings noch unbekannt.



[72] Ostwalds Klassiker Nr. 11. S. 70.



[73] Ostwalds Klassiker Nr. 11. S. 71.



[74] Ostwalds Klassiker Nr. 11. S. 72.



Daß die Luft schwer sei, wurde auch schon im Altertum angenommen.
Auch Lionardo da Vinci und Cardano schrieben der Luft Gewicht zu.
Cardano stellte das Problem, »das Verhältnis der Dichte des Wassers zu derjenigen
der Luft durch Wägung zu finden.« Er hielt die Luft für 50mal so
leicht wie Wasser.



[75] Galilei gibt nämlich an (Ostwalds Klassiker Nr. 11, Seite 72), sie
sei gegen 400mal leichter, während sie tatsächlich 773mal so leicht ist.



[76] Rafaelo Caverni, Storia del metodo sperimentale in Italia. Tomo IV.
p. 269 u. f. Firenze 1895.



[77] Commentaria in Aristotelem Graeca, edita consilio et auctoritate Academiae
literarum regiae Borussicae Vol. XVII. Philoponi in physicorum libros
quinque posteriores. Ed. Hieronymus Vitelli, Berolini 1888, p. 683.



[78] Viviani in seinem Bericht über das Leben Galileis, der 1654 geschrieben,
aber erst 1717 veröffentlicht wurde. Galilei selbst hat diese Versuche
in seinen Schriften nicht erwähnt, daraus glaubt Wohlwill schließen
zu dürfen, daß es sich hier nur um eine der in der Geschichte der Wissenschaften
so häufigen Legenden handelt (Mitteilungen zur Geschichte der Medizin
und der Naturwissenschaften IV, 2. 1905). Daß übrigens Galilei die Angaben
des Aristoteles durch Fallversuche widerlegt hat, geht aus seiner in den
»Unterredungen« gegebenen Darstellung zur Genüge hervor. Ob diese Versuche
vom Turme zu Pisa oder von einem anderen hohen Gebäude vorgenommen
wurden, ist im Grunde ohne Bedeutung.



[79] Mach, Die Mechanik in ihrer Entwicklung. Leipzig 1883. S. 133.



[80] Siehe die Mitteilungen z. Gesch. d. Medizin u. d. Naturwiss. XIV. Bd.
S. 181.



[81] Dialog, Ausgabe von Strauß, S. 237.



[82] Galilei braucht hierfür die Ausdrücke impeto, energia und momento
del descendere.



[83] Ostwalds Klassiker Nr. 24. S. 30.



[84] Ostwalds Klassiker Nr. 24. S. 25.



[85] Ostwalds Klassiker Nr. 24. S. 35.



[86] Ostwalds Klassiker Nr. 11. S. 75.



[87] Den Isochronismus der Pendelschwingungen entdeckte Galilei bereits
1582 während seiner Studienzeit in Pisa.



[88] Näheres siehe bei Gerland und Traumüller, Geschichte der physikalischen
Experimentierkunst, Leipzig 1899, S. 120 u. f.



[89] Näheres berichtet darüber A. Kistner in den Mitteilungen zur Geschichte
d. Medizin u. d. Naturw. Bd. XIV. S. 240.



[90] Näheres findet sich in der Abhandlung E. Gerlands, Über die Erfindung
der Pendeluhr. Bibl. math. III. Folge, Bd. V. S. 234.



[91] Zeitschrift für Instrumentenkunde 1888. S. 79.



Die Zeichnung stellt die erste Idee der Anwendung des Pendels auf die
Uhr dar. Sie wurde nach den Angaben Galileis, der damals schon blind war,
von seinem Sohne und von seinem Schüler Viviani angefertigt. Näheres siehe
im Bericht über die Ausstellung im South-Kensington Museum. Berlin 1877.
S. 411 u. f.



[92] Ostwalds Klassiker Nr. 11. S. 84.



[93] S. Bd. I. S. 430.



[94] Näheres über die Entdeckung dieses Prinzips siehe bei E. Wohlwill,
Die Entdeckung des Beharrungsgesetzes (Zeitschrift für Völkerpsychologie und
Sprachwissenschaft. Bd. XIV u. XV.)



[95] P. Tannery, Galilée et les principes de la dynamique.



Siehe auch die Jahrbücher über die Fortschritte der Mathematik, Jahrgang
1901.



[96] Rosenberger, Geschichte der Physik B. II. S. 227.



[97] Der analytische Ausdruck für diese Kurve lautet: y2 = 2px. Für
zwei Punkte x_{ʹ}y_{ʹ} und x_{ʺ}y_{ʺ} erhalten wir y_{ʹ}2 = 2px_{ʹ} und y_{ʺ}2 = 2px_{ʺ}. Die
Division der beiden Gleichungen ergibt das oben ausgesprochene Gesetz:
x_{ʹ} : x_{ʺ} = y_{ʹ}2 : y_{ʺ}2.



[98] Galileis Unterredungen und mathematische Demonstrationen. Siehe
Ostwalds Klassiker Nr. 24. Fig. 108.



[99] Ostwalds Klassiker Nr. 24. S. 107.



[100] Ostwalds Klassiker Nr. 24. S. 119. Mit dem Problem der Kettenlinie
befaßten sich Huygens, Leibniz und Johann Bernoulli. Die
erste Lösung erfolgte 1690 durch Jakob Bernoulli (Acta Eruditorum,
Mai 1690).



[101] Ostwalds Klassiker Nr. 24. S. 90 u. 91. Über die Ausführung dieses
Versuches durch die Florentiner Akademie siehe an späterer Stelle dies. Bds.



[102] Benjamin Robins, New principles of gunnery. London 1742. Näheres
siehe an späterer Stelle.



[103] Eingehender hat man diese Fragen erst in der neuesten Zeit untersucht.



[104] Es ist hier der moderne Ausdruck gebraucht.



[105] Mach, Die Mechanik in ihrer Entwicklung. 1883. S. 47.



[106] Aristoteles, Mechan. Probleme (Poselger). Hannover 1881. S. 34.
Näheres über den vermutlichen Verfasser dieser Schrift findet sich auf S. 128
des ersten Bandes.



[107] Ostwalds Klassiker Nr. 25. S. 43. (Galilei, Unterredungen und
mathematische Demonstrationen, fünfter und sechster Tag).



[108] Mach, Die Mechanik in ihrer Entwicklung. 1883. Fig. 157.



[109] M. Rühlmann, Vorträge über Geschichte der technischen Mechanik.
Leipzig 1885. Fig. 12.



[110] Discorso intorno alle cose che stanno in su l'acqua o che in quelle.



[111] Nelli, Vita I. p. 62. Das Patent datiert vom Jahre 1594 (Libri, l'histoire
des mathématiques en Italie. IV. S. 197).



[112] Nelli. Vita e commercio letterario di Galileo Galilei. Vol. I. Losanna
1793. S. 72.



[113] Traumüller und Gerland, Geschichte der physikalischen Experimentierkunst.
Leipzig 1899. S. 116.



[114] Der Vorschlag rührte von Galileis Freund Sagredo her.



[115] Sanctorius, Professor der Medizin in Padua.



[116] Harmonicorum libri XII. Paris 1636.



[117] Ostwalds Klassiker Nr. 11. S. 86.



[118] Z. B. Schwenter (Bd. I, S. 424).



[119] Siehe an späterer Stelle.



[120] »Dialog« Ausg. von Strauß S. 418–434 und an anderen Stellen.



[121] Dialog (Strauß) S. 70.



[122] Dialog (Strauß) S. 278.



[123] Dialog (Strauß) S. 424.



[124] Le opere di Galileo Galilei, Florenz 1842–1856. Sie rührt von
Alberi her.



[125] Favaro, Le Opere di Galileo Galilei. Edizione nazionale sotto gli
auspicie di Sua Maestà il Re d'Italia. Firenze 1890 u. f.



E. Wiedemann nennt diese Nationalausgabe mit Recht »eins der
schönsten Denkmäler, das je Nationen einem ihrer großen Gelehrten gesetzt
haben«.



[126] Die Briefe an und von Kepler erschienen 1672 unter dem Titel Epistolae
Joannis Kepleri et Math. Berneggeri mutuae. Sie sind im 1. Bande
der von Ch. Frisch besorgten großen Ausgabe der Keplerschen Werke
zum Teil abgedruckt.



[127] Näheres über Bernegger und sein Verhältnis zu Galilei hat Eilhard
Wiedemann in den Berichten der physik. mediz. Sozietät in Erlangen
(Bd. 36, 1904) unter dem Titel, »Studien zur Geschichte Galileis« bekannt
gegeben.



[128] Die erste naturwissenschaftliche Gesellschaft rief Porta 1560 in Neapel
ins Leben. Sie hieß Academia secretorum naturae und bestand nur
kurze Zeit. Im Jahre 1603 wurde die Accademia dei Lyncei (Akademie der
Lüchse) in Rom gegründet. Sie hatte neben der Förderung der Naturwissenschaften
künstlerische und literarische Ziele im Auge. Noch mehr galt dies
von der Accademia della Crusca.



[129] Eins ihrer Mitglieder (Antonio Oliva) fiel in Rom der Inquisition
in die Hände. Um der Tortur zu entgehen, nahm er sich durch einen Sturz
aus dem Fenster seines Gefängnisses das Leben.



[130] In den Saggi di naturali esperienze fatte nell' Accademia del Cimento,
Florenz, 1667. Im Jahre 1731 wurden die »Saggi« in lateinischer Übersetzung
von Musschenbroek herausgegeben: Tentamina experimentorum naturalium
captorum in Accademia del Cimento.



[131] Musschenbroek, Tentamina experimentorum captorum in Accademia
del Cimento. MDCCLVI. Tab. IX. Fig. 3.



[132] Abbildung aus Musschenbroeks Bericht über die Versuche der
Accademia del Cimento.



[133] De vi repercussionis et motionibus naturalibus a gravitate pendentibus.
Reggio 1670. Angestellt hatte Borelli die in diesem Werk beschriebenen
Versuche schon im Jahre 1655.



[134] Siehe Bd. II an spät. Stelle.



[135] Sie rührt von Clairaut her und findet sich im 189. Bande von Ostwalds
Klassikern S. 60 u. f. auseinandergesetzt.



[136] Guericke, Experimenta nova ut vocantur Magdeburgica, Cap. 37.



[137] Cornelius Drebbel wurde geboren zu Alkmar 1672. Nach einem
wechselvollen Leben gelangte er nach England an den Hof Jakobs I. Dort
starb er 1634. Drebbel war ein Physiker von dem Schlage Portas und
Kirchers. Seine magisch-physikalischen Versuche beschrieb er in seinem
Traktat von der Natur der Elemente.



[138] Über Drebbels Apparat, sowie über die Vorgeschichte des Thermometers
im allgemeinen hat E. Wohlwill in den Mitteilungen zur Geschichte
der Medizin und der Naturwissenschaften berichtet. Jahrg. 1902. Heft 1–4.



[139] In seiner Abhandlung »Neue Beiträge zur Vorgeschichte des Thermometers«
macht Wohlwill es wahrscheinlich, daß die Erfindung dieses Instrumentes
in den Niederlanden ganz unabhängig von derjenigen in Italien
erfolgte. (Mitteilungen zur Geschichte der Medizin und Naturwissenschaften.
1902. Nr. 4.)



[140] Musschenbroek, Tentamina. Tab. I. Fig. 1.



[141] Renaldini, Philosophia naturalis. 1694. III, 276. Nach Gerland
hat Huygens zum erstenmal, und zwar schon 1665, den Vorschlag gemacht,
den Schmelzpunkt und den Siedepunkt des Wassers als Fundamentalpunkte
zu benutzen (Zeitschrift für Instrumentenkunde XIII, 390. 1893.)



[142] Abschn. III der Abhandlungen der Accademia del Cimento. Florenz 1667.



[143] E. v. Lippmann, Abhandlungen und Vorträge zur Geschichte der
Naturwissenschaften. Leipzig 1906.



[144] Abschnitt IV der »Saggi«.



[145] Abbildung aus Musschenbroek: Tentamina experimentorum naturalium
captorum in Accademia del Cimento.



[146] Gerland, Beiträge zur Geschichte der Physik. Leopoldina. Halle 1882.



[147] Eines dieser Instrumente befindet sich noch heute im physikalischen
Museum zu Florenz.



[148] Benzenberg, Versuche über das Gesetz des Falles, über den Widerstand
der Luft und über die Umdrehung der Erde. Dortmund 1804. S. 101.



[149] Bologna 1665.



[150] l. c. S. 235 u. f.



[151] Physico-Mathesis, s. S. 2.



[152] Physico-Mathesis, S. 8.



[153] Physico-Mathesis, Propos. XXII.



[154] Physico-Mathesis, Propos. XXIV. S. 231.



[155] Ostwalds Klassiker Nr. 43.



[156] Grimaldi, Physico-Mathesis. Propos. XLII.



[157] Im ersten Buche seiner Physico-Mathesis sucht Grimaldi in 60 Propositionen
darzutun, daß das Licht eine Substanz sei, im zweiten spricht er
sich in einer Reihe von Propositionen für die Akzidentalität des Lichtes, also
für das Gegenteil aus.



[158] Rosenberger, Newton und seine Prinzipien. S. 27.



[159] L. v. Ranke, Englische Geschichte im 17. Jahrhundert, I, 324.



[160] Ein Ausspruch Bacons: »Scientia est potentia.«



[161] Gilbert, Physiologia nova de magnete magneticisque corporibus et de
magno magnete tellure, London 1600. Auch in Deutschland erschienen mehrere
Ausgaben, so in Stettin 1628 und 1633, sowie in Frankfurt a. M. 1629. Eine
biographische Skizze über Gilbert veröffentlichte F. M. Feldhaus. Winters
Universitätsbuchhandlung. Heidelberg 1904.



[162] Nach anderen Angaben 1544. Siehe Mitteilungen z. Gesch. d. Mediz.
und Naturw. 1904. (Bd. III; Heft 1 u. 2.) S. 115.



[163] Ein auf Deutsch schlecht wiederzugebendes Diminutiv von Terra,
die Erde.



[164] Über Petrus Peregrinus siehe auch Bd. I. S. 353. Seine Schrift
wurde durch G. Hellmann von neuem herausgegeben. Siehe Nr. 10 der
von diesem veröffentlichten Neudrucke von Schriften über Meteorologie. Nr. 10
bringt unter dem Titel »Rara Magnetica« die seltensten und wichtigsten Abhandlungen
über den Erdmagnetismus aus der ersten bis Gilbert reichenden
Periode.



[165] Gilbert, De magnete, Buch II, Kapitel II.



[166] Über die Verwendung der Magnetnadel bei der Anlage von Gruben
berichtet Agricola (1490–1555) in seinem Werke De re metallica.



[167] Gilbert, De magnete, I, 1. Diese Messung rührt von Robert
Norman her. Die erste, jedoch sehr ungenaue Beobachtung der Inklination
erfolgte im Jahre 1544 durch den Deutschen Georg Hartmann.



[168] Gilbert, De magnete. Lib. II. Cap. VI.



[169] Gilbert, De magnete II, Cap. IV.



[170] Ähnliche Gedanken wie bei Gilbert begegnen uns auch bei Descartes,
und man kann annehmen, daß dieser seine Wirbeltheorie unter dem Einfluß
von Gilberts Lehren entwickelt hat (M. L. Hoppe, Die Abhängigkeit der
Wirbeltheorie des Descartes von Gilberts Lehre vom Magnetismus.
Halle a. S. 1914).



[171] Solche Versuche stellte auch schon Galilei an. Siehe S. 77 dies. Bds.



[172] Gilbert, De magnete. Cap. XX.



[173] Otto von Guericke, De vacuo spatio. 1672. Tafel XVIII. Fig. 5.



[174] Hoppe, Geschichte der Elektrizität. Leipzig 1884, S. 5.



[175] Bacon, Novum organon. 1610. Übersetzt und erläutert von J. H.
v. Kirchmann, Berlin, 1870.



[176] Telesio (Bernardinus Telesius) schrieb in der Vorrede zu diesem
naturphilosophischen Buch, er könne nicht begreifen, daß so viele ausgezeichnete
Männer sich durch die Jahrhunderte mit der aristotelischen Physik zufriedengegeben
hätten. Er gründete eine Vereinigung, die sich die Aufgabe stellte,
die Natur zu ergründen und die Philosophie des Aristoteles zu beseitigen.
Diese Vereinbarung wurde durch die Kurie aufgelöst.



Nach Telesio gibt es nur drei Prinzipien, ein völlig passives, den Stoff,
und zwei bewegende, die Wärme und die Kälte. Erstere dehnt den Stoff aus,
letztere zieht ihn zusammen. Die experimentelle Erforschung der Natur hat
Telesio nicht gefördert. Sein Verdienst ist, daß er die Menschheit vom
Autoritätsglauben freizumachen suchte.



[177] Näheres über ihn und seine Beziehung zu Bacon findet man in dem
Buche von A. B. Hanschmann, Bernhard Palissy als Vater der
induktiven Wissenschaftsmethode. Leipzig 1903.



Über Palissy siehe auch Bd. I dies. Werkes S. 438, 444, 445.



[178] L. v. Ranke, Englische Geschichte. Bd. II. S. 135.



[179] Siehe Draper, Geschichte der geistigen Entwicklung Europas. Leipzig
1841. S. 527 u. f.



[180] Novum organum scientiarum. Lugd. Bat. 1645. Kap. 48, S. 366.



[181] Eine scharfe, aber in mancher Hinsicht gerechte Beurteilung Bacons
rührt von Liebig her (Ueber Bacon und die Methode der Naturforschung,
München 1863): »Bacons Urteil über Gilbert und Coppernikus ist sein
eigenes wissenschaftliches Todesurteil. Die Tatsachen, die Gilbert entdeckte,
hielt Bacon für Fabeln (Nov. Organ. II. Aph. 48) und Coppernikus erklärt
er für einen Schwindler (Glob. intell. Cap. VI).« Das Vernichtende für Bacon
ist, daß er beide verurteilt, weil er ihrer Forschungsmethode die Berechtigung
abspricht. (Nov. Org. I. Aph. 64.) Liebig hat es von philosophischer Seite
an Entgegnungen zugunsten Bacons nicht gefehlt. Das zutreffende Urteil ist
auf der mittleren Linie zu finden, der die Darstellung des vorliegenden Werkes
gefolgt ist. Vgl. v. Lippmann in »Abhandl. u. Vorträge« Bd. I: Bacon.



[182] Die gleiche Forderung ist oft und lange vor Comenius erhoben
worden. Es kam aber vor allem darauf an, wie Galilei sich ausdrückt, die
»Sprache und die Schriftzeichen verstehen zu lernen, worin dieses Buch geschrieben
ist. Erst dann könne es verstanden werden«.



Auch die übliche Art der philologischen Ausbildung wurde angegriffen.
Gegen sie wandte sich besonders der geistreiche Montaigne (1533–1592),
der zu dem Urteil gelangte, daß der Zögling durch das jahrelange Studium
der griechischen und der lateinischen Sprache »dummer werde, als er war, da
er von Hause fortging«.
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[188] Siehe Dannemann, Aus der Werkstatt großer Forscher. 3. Auflage,
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L. Günthers, Die Mechanik des Weltalls. Leipzig 1909.



[189] Breitschwerdt, J. Keplers Leben und Wirken. 1831. S. 71.
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[191] Ein Bild des Lebens und Schaffens Tychos hat J. E. L. Dreyer
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im 16. Jahrhundert. Autorisierte deutsche Übersetzung von M. Bruns. XII,
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[194] Nach Tychos »Mechanica«. 1602.



[195] Brief an Rothmann vom 24. 11. 1589. Tychonis Brahe, epistolarum
astronomicarum libri. 1610.



[196] Bei Annahme des koppernikanischen Systems nämlich.



[197] Siehe den 66. Abschnitt von Dannemann, Aus der Werkstatt großer
Forscher. Leipzig, W. Engelmann. 1908.



[198] Tycho Brahe, De mundi aetherei recentioribus phaenomenis. Liber
secundus. Prag 1603. Figur auf S. 463.



[199] Im Jahre 1587.



[200] 1588.



[201] Laplace sagt in seiner Darstellung des Weltsystems (Ausgabe von
Hauff), der Name aller derjenigen, welche ihre Gewalt mißbrauchten, um die
Fortschritte der Vernunft aufzuhalten, müsse der Verwünschung aller Zeitalter
preisgegeben werden. Als Tychos größten Widersacher nennt Laplace
(Bd. II, S. 278) den dänischen Minister Walchendorp.



[202] Guericke, De vacuo spatio. lib. I. Icon. III.



[203] De motibus stellae Martis, Pars Secunda, Cap. 7.



[204] Siehe Johannes Frischauf, Grundriß der theoretischen Astronomie
und der Geschichte der Planetentheorien. Leipzig, W. Engelmann. 1903.



[205] De motibus stellae Martis. Prag 1609, Opera omnia ed. Frisch.
III. 135 ff.



[206] Am 24. Oktober 1601.



[207] Die Hexenverfolgungen haben mit dem Ende des 15. Jahrhunderts
mehr als zweihundert Jahre wie die Pest gewirkt. Näheres siehe bei Binz,
Doktor Johann Weyer, ein rheinischer Arzt, der erste Bekämpfer des Hexenwahns.
Berlin 1896. Das Unheil ging von der Kirche aus. Seine Ausrottung
erfolgte durch die der Naturwissenschaft zu verdankende Aufklärung. Als
Beweis für die Verblendung jener Zeit mögen folgende Zeilen eines berühmten
Theologen dienen. Sie sind einem Buche entnommen, daß auf Befehl Joachims
von Brandenburg verfaßt wurde. Es heißt dort von den Hexen: »Kein Glied
ist an unserem Körper, dem sie nicht schaden können. Meist machen sie die
Menschen besessen und lassen sie von den Dämonen kreuzigen. Mit letzteren
treten sie sogar in fleischliche Verbindung. Kein Ort ist so klein, wo man
nicht eine Hexe findet. Aber selten findet sich ein Inquisitor«. Daß sich
letztere auf kirchliches Geheiß bald einstellten, beweist die Tatsache, daß allein
in der Gegend von Bormio die von Innocenz VIII. eingesetzten Inquisitoren
in einem Jahre 41 Hexen verbrannten.



[208] Tabulae Rudolphinae. Ulm 1627. Opera omnia (ed. Frisch), VI. 661.



[209] Bürgi, ein Schweizer (1552–1632), und Napier oder Neper, ein
Schotte (1550–1617), machten die so wichtige Erfindung der Logarithmen unabhängig
voneinander. Bürgi war zuerst Gehilfe an der vom Landgrafen von
Hessen unterhaltenen Sternwarte zu Cassel. Später leitete er diese Sternwarte,
trat aber bald nach dem Tode seines fürstlichen Gönners in den Dienst Rudolfs
des Zweiten über und wurde so zum Mitarbeiter Keplers.



[210] De motibus stellae Martis, Cap. 59 (Opera, edit. Frisch, Bd. III).



[211] Opera omnia (ed. Frisch) I. 106.



[212] »Harmonices mundi« lib. V.



[213] Opera omnia V. 279.



[214] Da sich die Massen bei gleicher Dichte wie die Volumina verhalten.
In Wahrheit beträgt das Volumen der Erde etwa das 50fache von dem des
Mondes, während sich die Dichten beider Weltkörper wie 1 : 0,6 verhalten. Die
betreffende Stelle findet sich in Keplers Astronomia nova (Opera omnia
III, 151).



[215] Nach einem von Kästner in seiner Geschichte der Mathematik Bd. IV.
360 mitgeteilten Auszug der Epitome astronomicae copernicanae Keplers.



[216] Joannis Kepleri Phaenomenon singulare seu Mercurius in sole.
Leipzig 1609. (Opera omnia, ed. Frisch. II, 793.)



[217] In Einhards Vita Caroli Magni (herausgegeben von Jaffé 1876) wird
berichtet, der Merkur sei im April des Jahres 807 »quasi parva macula nigra«
vor der Sonnenscheibe gesehen worden.



[218] Opera omnia, II, S. 805.



[219] Durch Dr. G. Berthold.



[220] Siehe das Vorwort zu der erwähnten Ausgabe Dr. Bertholds. Über
Keplers Stellung zur Astrologie siehe auch S. 115 dieses Bandes.



[221] Der Prediger David Fabricius war nicht etwa ein Mann, der sich
mit der Astronomie nur oberflächlich aus Liebhaberei befaßte, sondern er hat
nach Tycho Brahes Tode die erste Stelle unter den beobachtenden Astronomen
eingenommen. So urteilt wenigstens Kepler, mit dem Fabricius in
regem Briefwechsel stand. Für die Bestimmung der Marsbahn hat Kepler
durch Fabricius viel wertvolles Material erhalten. David Fabricius gehörte
auch zu den ersten, die das Fernrohr zu astronomischen Zwecken benutzten.
Wahrscheinlich brachte es ihm sein Sohn Johann, der sich 1610 als Student
der Medizin in Leyden aufhielt, aus Holland mit. Mit einem solchen Fernrohr
entdeckte Johann Fabricius im elterlichen Hause die Sonnenflecken. Er
stellte darauf unter Aufsicht seines Vaters eine Reihe von Beobachtungen zusammen
und veröffentlichte deren Ergebnis in einer Schrift, die 1611 unter
dem Titel »De Maculis in sole observatis« (Von den Sonnenflecken) erschien.
(Näheres darüber siehe Bd. II. S. 26.)



[222] Erschienen 1618–1621 in Linz und Frankfurt; Opera omnia VI, 113 u. f.



[223] Somnium Kepleri von Ludwig Kepler dem Sohne. Frankfurt 1634.
Eine deutsche, mit Erläuterungen versehene Ausgabe besorgte L. Günther,
Leipzig, B. G. Teubner. 1898.



[224] Günther hat auch diese Anmerkungen übersetzt und erläutert.
L. Günther, Keplers Traum vom Monde. Leipzig 1898.



[225] Günther, Keplers Traum. S. 129 u. f.



[226] A. a. O. S. 174.



[227] Siehe auch H. Hankel, Die Entwicklung der Mathematik. Tübingen
1869. S. 26.



[228] Ad Vitellionem Paralipomena. Frankfurt 1604 (Gesamtausgabe von
Frisch II, 119).



[229] Johannis Kepleri Dioptrice. Augsburg 1611 (Gesamtausgabe von
Frisch II. 515). – Keplers Dioptrik wurde neuerdings von Plehn in
deutscher Übersetzung als Band 144 von Ostwalds Klassikern der exakten
Wissenschaften herausgegeben (Leipzig, Verlag von Wilhelm Engelmann, 1904).



[230] Siehe S. 133 ds. Bds.



[231] Ad Vitellionem Paralip. Cap. I, Prop. IX. (Edit. Frisch. II, 113).



[232] Der vollständige Titel lautet: Ad Vitellionem Paralipomena, quibus
Astronomiae pars optica traditur. Frankfurt 1604. Ausgabe von Frisch
II. 119–397.



Der Pole Vitello (Vitellio) lebte um 1270. Er war also ein Zeitgenosse
Roger Bacons. Vitello hat seine Optik, die im wesentlichen in einer
Wiedergabe der Lehren Alhazens besteht, in Italien verfaßt. Sie erschien
wiederholt gedruckt. Am bekanntesten ist die Ausgabe von Risner (Basel, 1572).



[233] Letzteres wird damit begründet, daß das Licht nichts Stoffliches sei
(quia lux materia caret).



[234] Sicut se habent sphaericae superficies, quibus origo lucis pro centro
est, amplior ad angustiorem: ita se habet fortitudo seu densitas lucis radiorum
in angustiori ad illam in laxiori sphaerica superficie.



[235] Dies geschah durch Harriot, Epist. ad Keplerum scriptae; ed.
Hanschii, 233; 1606. Siehe auch Wilde, Geschichte der Optik. I. 190.



[236] Ad Vitellionem. cap. 2. Opera omnia II. 153. – Einen Überblick über
den Inhalt dieses Werkes, das die optischen Grundlagen der Astronomie entwickelt,
gibt F. Plehn im Archiv für Optik. I. Bd. S. 75 u. f. 1908.



[237] Wilde, Geschichte der Optik. I. 188.



[238] Poggendorff, Geschichte der Physik. S. 167.



[239] Johannis Kepleri Dioptrice 1611. Opera omnia II. S. 515–567.



[240] Johannes Keplers Dioptrik oder Schilderung der Folgen, die sich
aus der unlängst gemachten Erfindung der Fernrohre für das Sehen und die
sichtbaren Gegenstände ergeben. 1611. Übersetzt und herausgegeben von
Ferdinand Plehn. Ostwalds Klassiker der exakten Wissenschaften.
Nr. 144. Leipzig, Verlag von W. Engelmann. 1904.



[241] Keplers Dioptrice, Figur zu Problema IV (Editio Frisch II, 528).



[242] Dioptrice, XIII. Propositio (Edit. Frisch II, 530): Nullus radius, qui
intra corpus crystalli super unam ejus superficiem plus 42° inclinatur a vertice,
potent illam superficiem penetrare.



[243] Dioptrik, Lehrsatz XII.



[244] Das Komplement des 42° betragenden Brechungswinkels.



[245] Der von Snellius gefundene Ausdruck läßt sich leicht in den gebräuchlichen
umwandeln. Man geht von der oben gegebenen Abb. 47 aus
und schlägt um C einen Kreis mit CA als Einheit (siehe Abb. 48). Dann ist
sin α (Einfallsw.) = DE und sin β (Brchsw.) = AF, ferner ist AC : CB = sin
(180 - α) : sin β = sin α : sin β = DE : AF. Ist nun AC : CB konstant, und zwar
für Luft und Wasser = 3 : 2, so gilt dasselbe von sin α : sin β, da wir diesen
Ausdruck gleich AC : CB gefunden haben.



[246] Descartes Dioptrik, Kapitel 2. Näheres über Descartes' Anteil
an der Entdeckung des Brechungsgesetzes siehe in der bezüglichen Abhandlung
von P. Kramer (Abhandlungen zur Geschichte der Mathematik. 4. Heft. 1882),
sowie in der Abhandlung von H. Wieleitner »Das Brechungsgesetz bei
Descartes und Snellius« (Natur und Kultur, 13. Jahrgang. S. 403–406).



[247] Lehrsatz XXXIX.



[248] Siehe auch Wilde, Geschichte der Optik. Berlin 1838. Bd. I. S. 201.



[249] Die Ähnlichkeit des Auges mit der Dunkelkammer findet man zuerst
bei Lionardo da Vinci erwähnt. Porta, dem wir die erste abendländische
Beschreibung der Dunkelkammer verdanken, betrachtete die hintere Wand des
Auges als einen Hohlspiegel, von dem aus das Licht nach der Mitte des Auges
gelange, um dort wahrgenommen zu werden.



Der Nachweis, daß die Linse des Auges ein Bild auf die Netzhaut
wirft, erfolgte indessen schon vor Scheiner (Arauzi 1587). Das Auge
eines Tieres wurde auf der hinteren Seite mit einem Ausschnitt versehen.
In diesem Ausschnitt fing man das Bild eines vor dem Auge befindlichen
Lichtes auf. E. Pergens, Geschichtliches über das Netzhautbildchen und
den Optikuseintritt. Klinisches Monatsblatt für Augenheilkunde. Bd. 42, I.
S. 137–143.



[250] In Vitellionem Paralipomena. Cap. V.



[251] Ostwalds Klassiker Nr. 144 (Dioptrik), S. 26–34.



[252] Siehe an späterer Stelle dieses Werkes.



[253] Dioptrik, Lehrsatz 62.



[254] Wilde, Geschichte der Optik, I. S. 199.



[255] Hirschberg, Die Optik der alten Griechen. Zeitschr. f. Psychologie
und Physiol. d. Sinnesorgane. Bd. XVI. S. 350. Siehe auch Bd. I ds. Werkes
S. 267.



[256] Ad Vitellionem Paralipomena. Frankfurt 1604. Cap. V. Propos. XXVIII
(Edit. Frisch II, 255.)



[257] Kepler, Dioptrice LXIV, Propositio. (Ed. Frisch II, 540.)



[258] Siehe Wilde, Geschichte der Optik I, 254.



[259] Siehe S. 14 u. f. ds. Bds.



[260] Siehe Ostwalds Klassiker d. exakt. Wiss. Nr. 20, S. 12 u. 13.



[261] Hevelius, eigentlich Hewelke.



[262] Selenographia seu descriptio lunae et macularum ejusdem.



[263] Wolf, Geschichte der Astronomie. S. 396.



[264] Näheres über das mutmaßliche Schicksal dieser Briefe siehe in
Poggendorffs Geschichte der Physik. S. 448.



[265] Eine englische Ausgabe besorgte Newton (Cambridge 1681).



[266] In seiner Pratique d'Arithmétique. Leyden 1585.



[267] In seiner Pratique d'Arithmétique.



[268] Zuerst in dem Rechenbuch des Johannes Widmann von Eger, das
1489 in Leipzig erschien. Erwähnt seien auch die Rechenbücher von Adam
Riese, dessen Verdienst um die Kunst des Rechnens ja sprichwörtlich geworden
ist. Die Rechenbücher Adam Rieses haben wissenschaftlich keine
Bedeutung; sie waren aber praktisch recht brauchbar und sehr verbreitet. Über
die Species, die Progressionen, die Bruchrechnung und die Regel de tri gehen
sie kaum hinaus. Adam Riese (1492–1559) war Bergbeamter in Annaberg
und leitete gleichzeitig eine Schule, in der er besonders das Rechnen lehrte.



[269] Cantor, Geschichte der Mathematik. Bd. II. S. 479.



[270] Anfänge hierzu finden sich schon bei Aristoteles.



[271] Cantor, Geschichte der Mathematik. Bd. II. S. 581.



[272] Näheres siehe Cantor II. S. 718.



[273] Suter, Geschichte d. mathem. Wissenschaften. Bd. II. S. 19.



[274] O. Stolz, Größen und Zahlen. Leipzig 1891. S. 11.



[275] Scipione del Ferro, 1508.



[276] Tropfke I. S. 285.



[277] Luigi Ferrari, 1522–1565.



[278] Gauß 1799 und Abel 1824.



[279] Veröffentlicht in Descartes' »Geometrie« im Jahre 1634. Eine deutsche
Bearbeitung des Werkes lieferte Schlesinger. Berlin 1894.



[280] Cantor, Geschichte der Mathematik. Bd. II. S. 780.



[281] Cantor II. S. 605.



[282] Über Euklids drei Bücher Porismen siehe Cantor I. S. 239 u. f.
Vielleicht hängt der Ausdruck mit πείρω, ich forsche, zusammen; jedenfalls
verstand man darunter einen Satz, der ein neues Problem anregte und einschloß.
(Cantor I. S. 291.)



[283] Fermat entwickelte seine analytisch-geometrische Methode in seiner
Schrift: »Ad locos planos et solidos isagoge«. Die ihm Descartes gegenüber
zugeschriebenen Prioritätsansprüche sind schwer zu entscheiden, weil Fermat
sich zumeist darauf beschränkte, die Ergebnisse seiner Forschungen in Paris
lebenden Mathematikern (besonders Mersenne) brieflich mitzuteilen. Seine
Werke und ein großer Teil seiner Briefe wurden erst längere Zeit nach seinem
Tode veröffentlicht. Fermat, Varia opera. Tolosae 1679.



[284] Elemente VI. 27.



[285] Bei Regiomontan begegnet uns z.B. die Aufgabe, festzustellen, von
welchem Punkte der Erdoberfläche eine 10 Fuß lange senkrechte Stange, die
4 Fuß über dem Boden endigt, am größten erscheint. Eine Lösung hat Regiomontan
indessen nicht gegeben. Im 16. Jahrhundert (bei Tartaglia) begegnet
uns ferner die Aufgabe, eine bestimmte Zahl so zu teilen, daß das Produkt
dieser Teile multipliziert mit ihrer Differenz den größten Wert hat.



[286] Methodus ad disquirendum maximum et minimum (Fermat, Opera
varia S. 63 u. f.). Fermat wandte seine Methode schon 1629, also lange vor
dem Erscheinen des Descartes'schen Werkes an. (Cantor II. S. 782.)



[287] de la moindre action.



[288] Der Gedanke findet sich bei Pappus. S. auch Mach, Die Mechanik
in ihrer Entwicklung. S. 397.



[289] Dühring, Kritische Geschichte der allgemeinen Prinzipien der Mechanik.
Berlin 1873. S. 290.



[290] Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes;
neuerdings in Ostwalds Klassikern Nr. 46 in deutscher Übersetzung
erschienen. Leipzig, W. Engelmann. 1894.



[291] Les lois du mouvement et du repos, déduites d'un principe métaphysique.
Histoire de l'Académie de Berlin 1746. p. 290.



[292] Siehe den 8. Abschnitt des III. Bandes.



[293] Archimedes (ed. Nizze) Seite 12–23. Siehe auch: Dannemann,
Die Naturwissenschaften in ihrer Entwicklung. Bd. I. S. 164 u. f.



[294] A. a. O. S. 163.



[295] De motibus stellae Martis: Cap. 59, 5. Opera Kepleri (ed. Frisch)
III, 401.



[296] Zeuthen, Geschichte der Mathematik im 16. und 17. Jahrhundert.
Leipzig, B. G. Teubner. 1903. S. 255.



[297] Nova Stereometria Doliorum vinariorum. Linz 1615. Opera omnia (ed.
Frisch) IV, 555. Unter dem Titel »Neue Stereometrie der Fässer« aus dem
Lateinischen übersetzt und herausgegeben von R. Klug. Bd. 165 von »Ostwalds
Klassikern der exakten Wissenschaften«. Leipzig, W. Engelmann. 1908.



[298] Opera omnia IV. 575.



[299] Opera Kepleri IV, 584–585.



[300] Kepleri Opera omnia (ed. Frisch) IV, 607–609.



[301] Bonaventura Cavalieri wurde 1598 in Bologna geboren. Er war
Schüler und später Freund Galileis. Nachdem Cavalieri in Bologna als
Professor der Mathematik gewirkt hatte, starb er dort im Jahre 1647.



[302] Geometria indivisibilibus continuorum nova quadam ratione promota.



[303] Das Werk Guldins erschien 1635–1641 unter dem Titel Centrobaryca.
Paul Guldin wurde 1577 in St. Gallen geboren; er war Jesuit und wirkte
als Lehrer der Mathematik in Rom und an anderen Orten. Guldin starb 1643.



[304] Gerhard, Geschichte der Mathematik in Deutschland. S. 130.



[305] Arithmetica infinitorum sive nova methodus inquirendi in curvilineorum
quadraturam 1655. John Wallis wurde 1616 in einem kleinen Orte der
Grafschaft Kent geboren und wirkte als Professor der Mathematik in Oxford.
Er gehört zu den Begründern der Royal Society und starb im Jahre 1703.



[306] Cantor, Geschichte der Mathematik. II. S. 822.



[307] Der Brief wurde im Oktober 1674 an Leibniz gesandt.



[308] Nova methodus pro maximis et minimis itemque tangentibus... (Acta
eruditorum 1684).



[309] De geometria recondita et analysi indivisibilium atque infinitorum.
Acta eruditor. 1686.



[310] Method of fluxions. London 1736. Geschrieben hatte Newton dieses
Werk schon 1671.



[311] Fatio de Duillier.



[312] Réflexions sur la metaphysique du calcul. infinitesimal 1797.



[313] René Descartes (Cartesius) wurde 1596 in der Touraine geboren
und starb 1650 in Stockholm, wohin er durch die Königin Christine von
Schweden berufen worden war. Vorher hatte er nach einer unsteten Jugend
viele Jahre in Holland gelebt.



[314] Pierre Gassendi, geboren 1592 in der Provence, gestorben in Paris
im Jahre 1655, ist der Erneuerer der atomistischen Lehre Epikurs. Über
das Verhältnis Epikurs zu Demokrit siehe Bd. I. S. 75. Nach Gassendi
wurde eine bestimmte Anzahl von Atomen geschaffen. Sie sind der Urgrund
aller Dinge. Außer den Elementen bestehen daher auch das Licht, die Wärme
usw. aus Atomen. Sie sind unteilbar, von bestimmter Größe und Gestalt,
schwer, absolut hart und undurchdringlich. Zwischen den Atomen befindet
sich der leere Raum. Kurz, in den Grundzügen und mit nur geringen Abänderungen
entwickelt Gassendi in seiner Physica corpuscularis die zuerst
von Demokrit aufgestellten Lehren der materialistischen Weltanschauung.
(Näheres siehe bei Lange in seiner Geschichte des Materialismus und Kritik
seiner Bedeutung für die Gegenwart. 1882. S. 184 u. f.)



[315] Brief von Huygens an Leibniz vom 11. Juli 1692. Chr. Hugenii
exercitationes mathem. ed. Uylenbroek. Hag. Com. 1833. I, 136.



[316] Novum organum. Lugd. Bat. 1645. Lib. II. Art. 37. p. 294.



[317] Cogitata physico-mathematica. Parisiis 1644. p. 21.



[318] Aristarchus Samius, de mundi systemate Parisiis 1644, p. 2. Vgl. J. C.
Fischer, Geschichte der Physik. 1801. Bd. I. S. 272.



[319] De motionibus naturalibus. Lugd. Bat. 1686. c. VI. p. 166.



[320] Epitome astronomiae. 1621. Lib. IV. p. 510. Leibniz macht an verschiedenen
Stellen darauf aufmerksam, daß zuerst Kepler diesen Begriff einer
Trägheit eingeführt habe. Ansätze zu ihm finden sich nach v. Lippmann
schon bei Aristoteles.



[321] Principia philosophiae 1677. P. II. § 43. p. 41.



[322] Boyle, Origo formarum et qualitatum. 1669. p. 50.



[323] Huygens, Discours sur la cause de la pésanteur 1690. p. 162.



[324] Hooke, De potentia restitutiva. 1678. p. 7.



[325] Locke, An essay concerning human understanding. London 1731.
V. I. Book II. p. 87.



[326] Micrographia, London 1665. p. 16.



[327] Micrographia, 1665. p. 12.



[328] Descartes, Principia philosophiae. 1677. P. II. § 36. p. 37.



[329] T. Lucretii Cari, De rerum natura libri sex. II. v. 294–307. Vgl.
G. Berthold, Notizen zur Geschichte des Prinzips der Erhaltung der Kraft
(Ber. d. Kgl. Akad. d. Wiss. z. Berlin. 1875. S. 57, sowie Bd. I des vorliegenden
Werkes S. 241).



[330] Animadversiones in X. libr. Diogenis Laertii 1675. V. I. p. 241.



[331] Der Engländer Thomas Hobbes (1632–1679) suchte gleich Descartes
alle Vorgänge auf die Bewegung kleiner Teilchen zurückzuführen. Die Bewegung
pflanzt sich dadurch fort, daß sich das Medium bewegt. Eine unvermittelte
Wirkung in die Ferne gibt es nicht. Dies alles kennzeichnet die
Philosophie des Hobbes als materialistisch. Gleichzeitig ist sie sensualistisch,
indem sie alle Begriffe auf die Wirkung der Sinnesorgane zurückführt. Bekannt
ist der Satz, durch den Hobbes dies folgendermaßen ausdrückt: »Nihil
est in intellectu, quod non prius fuerit in sensu«. Dieser Satz wird irrtümlich
mitunter Locke zugeschrieben.



[332] Spinoza (1632–1677) stammt von portugiesischen Juden, die nach
Amsterdam geflüchtet waren, um den Verfolgungen der Inquisition zu entgehen.
Die jüdische Gemeinde verhielt sich gegen Spinoza nicht weniger intolerant,
da sie ihn seiner religiösen Ansichten wegen durch Meuchelmord aus dem Wege
zu räumen suchte und schließlich ausstieß. Spinoza erwarb sich seinen
Lebensunterhalt durch das Schleifen optischer Gläser. Er wurde durch seine
philosophischen Schriften als Fortsetzer des cartesianischen Systems bekannt
und erhielt einen Ruf nach Heidelberg, den er aber ausschlug, weil er die
Freiheit der Forschung nicht als gesichert ansah.



[333] Newton. Philosophiae naturalis principia mathematica 1723. Lib. III.
Scholium generale p. 484.



[334] Philosophiae natur. princ. math. 1723. S. 5.



[335] a. a. O. S. 147.



[336] a. a. O. S. 173.



[337] Auszug aus dem Briefe Newtons an Bentley v. 25. II. 1692; abgedruckt
bei S. Horsley, J. Newtoni op. omn. Lond. 1782. IV. p. 438.



[338] Horsley l. c. p. 394.



[339] Opera omnia; Lausanne 1742. III. 138.



[340] Diss. de causa gravitatis. Chr. Hugenii op. reliqua. 1728. I. 121. 125.



[341] P. H. Fuß, correspondance math. et physique. St. Petersburg 1843.
T. II p. 550.



[342] Nov. act. Petrop. 1779. T. III. P. I. p. 162.



[343] Opera philosophica, ed. Erdmann. 1820. p. 466.



[344] Journal des savants. 1669. S. 23.



[345] Th. Birsch, The history of the Royal Society. Lond. 1756. Bd. II.
S. 337.



[346] Rosenberger, Geschichte der Physik. II. 131.



[347] De Beghinselen der Weegkonst. Leyden 1586.



[348] Les [oe]uvres mathématiques de Simon Stevin. Leyden 1634.



[349] Wonder en is gheen Wonder.



[350] Stevins Werke, Seite 499. V. Buch der Statik.



[351] Stevins Werke, S. 499, Fig. 4.



[352] Stevins Werke, S. 500, Fig. 2 u. 3.



Beide Nachweise gehören bekanntlich zum festen Bestand des heutigen
Physikunterrichts, der sich dazu derselben Apparate wie Stevin bedient.



[353] Stevins Werke, Les [oe]uvres mathématiques de Simon Stevin,
herausgegeben von Girard, Leyden 1634. Des éléments hydrostatiques;
Théorème IX. p. 488–491. Die betreffende Untersuchung hat Stevin im Jahre
1608 veröffentlicht (S. Cantor, Geschichte der Mathematik. II. 533).



[354] Galileis Discorsi erschienen 1638.



[355] Viviani, Della scienza universale delle proporzioni.



[356] Opera geometrica. Florenz 1644, 3. Abschnitt: De motu gravium
naturaliter descendentium.



[357] v = √(2gh), v1 = √(2gh1), v : v1 = √h : √h1. Mit der Formel v = √(2gh)
war Torricelli noch nicht bekannt; sie rührt von Johann und Daniel
Bernoulli her. Bei Torricelli ist v = A · √h, worin h die Höhe und A
eine Konstante bedeutet.



[358] Siehe Ostwalds Klassiker Nr. 11. S. 17.



[359] Siehe S. 82 u. 83 dies. Bds.



[360] Siehe das 7. Heft der »Neudrucke von Schriften und Karten über
Meteorologie u. Erdmagnetismus«, hrsg. von Prof. Dr. G. Hellmann: Evangelista
Torricelli, Esperienza dell'Argento Vivo. Berlin. A. Asher & Co. 1897.



[361] Torricelli hatte zuerst Ricci in Rom darüber geschrieben und dieser
Mersenne berichtet.



[362] Zu dem Descartes Pascal angeregt haben will.



[363] Blaise Pascal, Récit de la grande expérience de l'équilibre des liqueurs,
Paris 1648. Neuerdings erschienen als 2. Heft der »Neudrucke von Schriften
und Karten über Meteorologie und Erdmagnetismus«, herausgegeben von
Professor Dr. G. Hellmann. Berlin, A. Asher & Co.



[364] Traité de l'équilibre des liqueurs et de la pesanteur de la masse de
l'air. Paris 1663. Verfaßt wurde diese Abhandlung schon im Jahre 1653.



[365] Pascal, Oeuvres III. p. 86–86.



[366] In seinen akademischen Vorlesungen (lezioni academiche), die 1715
in Florenz erschienen, und zwar in der 7. Vorlesung.



[367] Eine ausführliche Biographie lieferte F. W. Hoffmann unter dem
Titel: O. v. Guericke, ein Lebensbild aus der Geschichte des 17. Jahrhunderts.



[368] Er starb am 11. Mai 1686 in Hamburg.



[369] Siehe die betreffenden Abhandlungen G. Bertholds in den Annalen
der Physik und Chemie Bd. 20. 1883, Bd. 54. 1895, sowie in den Verhandlungen
der Akademie der Wissenschaften zu Stockholm 1895. Nr. 1.



[370] Mechanica hydraulico-pneumatica, S. 307.



[371] Ottonis de Guericke Experimenta nova (ut vocantur) Magdeburgica
de Vacuo Spatio. Amsterdam 1672



[372] Aus dem Lateinischen übersetzt und mit Anmerkungen herausgegeben
von Friedrich Dannemann. Leipzig, Verlag von Wilhelm Engelmann, 1894
(59. Bd. von Ostwalds Klassikern der exakten Wissenschaften).



Einige wichtige Kapitel des »Über eigene Versuche« betitelten Buches
bilden mit den erforderlichen Erläuterungen den 17. Abschnitt des Werkes
von Dannemann, Aus der Werkstatt großer Forscher. Leipzig, W. Engelmann
1908.



[373] Auf der ersten Seite der Vorrede seines Werkes de Vacuo Spatio.



[374] Ostwalds Klassiker Nr. 59. S. 11.



[375] Eine der von Guericke gebauten Luftpumpen sowie seine Magdeburger
Halbkugeln befinden sich jetzt im Deutschen Museum von Meisterwerken
der Naturwissenschaft und der Technik in München. Die Zeit der Erfindung
der Luftpumpe wird auf 1647–49 oder 1651–52 angesetzt. Ob
mit Recht, bleibt dahingestellt. Siehe F. Poske, Zum Gedächtnis Otto
von Guerickes. Verhandl. d. Deutschen physikal. Gesellsch. IV (1902). Nr. 16.



Eine andere Luftpumpe gelangte 1676 nach Stockholm. Dort diente sie
Jahrzehnte zur Anstellung von Versuchen. Als noch vorhanden wurde sie
zuletzt im Jahre 1734 nachgewiesen. Neuere Nachforschungen nach dieser
Originalluftpumpe Guerickes blieben zunächst ohne Erfolg (Berthold in
Poggend. Annalen. 1895. S. 726). Vor kurzem (1917) hat sie sich aber in den
Sammlungen der Universität Lund wiedergefunden. Über die noch erhaltenen
Luftpumpen und Nebenapparate Guerickes, sowie die ersten englischen und
niederländischen Luftpumpen gibt der »Bericht über die Ausstellung wissenschaftlicher
Apparate im South Kensington Museum« (Berlin 1877. S. 158 u. f.)
Auskunft.



[376] Magdeburgische Versuche Kapitel XXII. Siehe 59. Bd. von Ostwalds
Klassikern der exakten Wissenschaften S. 66.



[377] Siehe S. 207.



[378] Siehe Ostwalds Klassiker Nr. 59. S. 66.



[379] Ostwalds Klassiker Nr. 59. S. 45.



[380] Pascal hatte dies aus der Verkürzung der Quecksilbersäule des Barometers
gefolgert (siehe S. 197 d. Bds.). Guericke verschloß einen Rezipienten
am Fuße eines Kirchturms und begab sich mit ihm auf die Spitze desselben.
Wurde der Hahn jetzt gedreht, so trat Luft aus, während Luft in den Rezipienten
hineindrang, wenn man ihn auf der Spitze des Turmes verschloß und
am Fuße wieder öffnete. Guericke, De vacuo spatio. III. Buch, 30. Kap.



[381] Ostwalds Klassiker Nr. 59. Kap. XV.



[382] Ostwalds Klassiker Nr. 59. S. 108.



[383] New experiments, Physico-Mechanical, touching the Spring of the Air
and its Effects made in the most part in a new pneumatical engine. Oxford
1660. Ein Jahr später erschien eine lateinische Übersetzung unter dem Titel:
Nova experimenta de vi aeris elastica.



[384] R. Boyle, Opera varia. Genevae 1680. S. 38. Fig. 5.



[385] Mitgeteilt von Boyle in seiner Schrift gegen Linus, Defensio contra
Linum London 1662. Cap. V. Opera Varia. Genf 1680. S. 42 ff.



[386] Mariotte, Essai sur la nature de l'air. 1679. Die wichtigsten Abschnitte
enthält Dannemann, Aus der Werkstatt großer Forscher. S. 104 u. f.



[387] 40–1–14.



[388] Leibnizens und Huygens' Briefwechsel mit Papin. Herausgegeben
von Gerland. Berlin 1881. S. 222.



[389] Durch Vidi. Poggendorffs Annalen. 1848. Bd. 73. S. 620.



[390] Siehe Bd. I S. 434.



[391] Dort ist er 1644 auch gestorben.



[392] Eine sehr ausführliche Geschichte des Namens »Gas« bringt v. Lippmann
im II. Bande seiner Abhandlungen u. Vorträge. S. 361–394. Veit u. Co.
Leipzig 1913.



[393] Van Helmonts Schriften hat sein Sohn unter dem Titel »Ortus medicinae
vel opera et opuscula omnia« im Jahre 1648 herausgegeben.



[394] H. Kopp, Die Alchemie in älterer und neuerer Zeit, Heidelberg 1886.
Bd. I. S. 8.



[395] Leibniz, Historia inventionis phosphori. Miscellanea Berolinensia
1710. T. 1. p. 91.



[396] Ein Jahrhundert später (1776) zeigte Gahn, daß sich Phosphor aus
kalzinierten Knochen darstellen läßt, indem man den beim Eindampfen der
Knochen mit Schwefelsäure erhaltenen Rückstand mit Kohle destilliert.



[397] H. Peters, Leibniz in seiner Beziehung zur Chemie und den anderen
Naturwissenschaften. Chemikerzeitung 1901. Nr. 81 u. 82.



[398] J. C. Orchall, Augsburg 1684.



[399] Das Geburtsjahr ist nicht bekannt.



[400] Alchemia est ars perficiendi magisteria et essentias puras e mistis separato
corpore extrahendi.



[401] Es wurde auch als Wundersalz (Sal mirabile) bezeichnet und fand in
der Heilkunde bald ausgedehnte Anwendung.



[402] 2NH4Cl + CaO = CaCl2 + 2NH3 + H2O.



[403] In der heutigen Formelsprache würde dieser Vorgang durch folgende
Gleichung wiederzugeben sein:



3HgCl2 + Sb2S3 = 2SbCl3 + 3HgS.





[404] In seinem Preliminary discourse.



[405] E. Bloch, Boyles Anschauungen über die Metallverkalkung. Chemikerzeitung.
1915. S. 481–486.



[406] Nach v. Lippmann kannte diese Reaktion schon Plinius.



[407] Ostwalds Klassiker der exakten Wissenschaften Nr. 125. Leipzig,
W. Engelmann. 1901.



[408] Dies hatte man seit 1600 schon wiederholt vor Mayow beobachtet.



[409] Ostwalds Klassiker Nr. 125. S. 15.



[410] Siehe den 19. Abschnitt des 3. Bandes.



[411] Rariarum stirpium per Pannoniam, Austriam et alias provincias observatarum
historia. Antwerpen 1583.



[412] Rariarum stirpium per Hispanias observatarum historia. Antwerpen 1576.



[413] Exoticorum libri 10. Antwerpen 1605.



[414] Sprengel, Geschichte der Botanik. I. 294.



[415] Pinax theatri botanici. Basel 1623.



[416] Sachs, Geschichte der Botanik. S. 37.



[417] Er wurde 1519 in Arezzo geboren, war ein Schüler des (Bd. I. S. 458)
erwähnten Luca Ghini und starb 1603.



[418] Emil Wohlwill, Joachim Jungius. Mit Beiträgen zu Jungius' Biographie
und zur Kenntnis seines handschriftlichen Nachlasses. Hamburg 1888.



[419] Isagoge phytoscopica. 1678.



[420] Robert Morison wurde 1620 in Aberdeen geboren. Er starb 1683.



[421] Plantarum umbelliferarum distributio nova. 1672.



[422] Er wurde 1628 in Essex geboren und starb 1705.



[423] Historia plantarum. 1686–1704.



[424] Latinisiert für Bachmann (1652–1725).



[425] Tournefort (1656–1708) wurde in der Provence geboren. Er wirkte
als Professor am Jardin des Plantes und durchforschte die Flora in Griechenland,
Nordafrika und Kleinasien, Ländern, welche der Botanik des Altertums
wegen immer noch eine besondere Anziehungskraft ausübten.



[426] Sprengel, Geschichte der Botanik. II. 157.



[427] Historia plantarum (1686) und Methodus plantarum nova (1682).



[428] Historia plantarum. Bd. I. 1886. S. 40.



[429] a. a. O. S. 42.



[430] Karl Jungmann, Die Weltentstehungslehre des Descartes. Bd. 54
der Berner Studien zur Philosophie und ihrer Geschichte. Herausgegeben
von Ludwig Stein. Bern, Buchdruckerei Scheitlin, Spring & Co., 1907.
51 Seiten.



[431] Laplace, Précis de l'histoire de l'astronomie. Paris 1821. p. 99.



[432] Die Royal Society veröffentlichte ihre Arbeiten seit dem Jahre 1665
unter dem Titel »Philosophical Transactions«.



[433] Siehe auch P. Tannery, Les sociétés savantes et l'histoire des
sciences. Paris, 1906.



[434] Weld, History of the Royal Society, und v. Ranke, Englische Geschichte.
V. 165. Die Verleihung der Korporationsrechte erfolgte am 10. Juli 1662.



[435] Heinrich Oldenburg war im Jahre 1626 in Bremen geboren und
als Konsul seiner Vaterstadt nach England gekommen. Nach Verlust seiner
Stelle zog er als Hofmeister eines jungen Lords nach Oxford. Dort wurde er
mit Mitgliedern der Royal Society bekannt, die ihm seiner Sprachkenntnisse
wegen das Amt eines Sekretärs anvertrauten.



[436] Zeitweilig führten sie den Titel Philosophical Collection. Die Gesellschaft
selbst übernahm die Herausgabe erst vom 47. Bande (1753) ab.



[437] Über ihn und seine Bedeutung für die Förderung der Wissenschaften
wurde an anderer Stelle (s. S. 245) schon berichtet.



[438] Nicht zu verwechseln mit der schon vor ihr gegründeten französischen
Akademie, die wie die Accademia della Crusca in Rom, der Pflege der französischen
Sprache diente.



[439] Siehe den ersten Abschnitt des IV. Bandes.



[440] Jungius wirkte eine Zeitlang als Rektor des Johanneums in Hamburg.
Er starb nach einem vielbewegten Leben 1667. Siehe auch Guhrauer, Joachim
Jungius und sein Zeitalter. Tübingen 1850.



[441] Der vollständige Titel lautet in der Übersetzung: Vorschlag, die Naturforschung
ihres Nutzens wegen zu fördern und zu diesem Zwecke eine Deutsche
Gesellschaft zu gründen, deren Aufgabe es sein würde die nutzbringenden
Künste und Wissenschaften in unserer Sprache zu beschreiben und den Ruhm
des Vaterlandes zu mehren.



[442] Harnack, Geschichte der preußischen Akademie der Wissenschaften,
Berlin 1901. S. 243.



[443] Eine ausführliche Biographie Newtons verfaßte Brewster: Life of
Newton. London 1831. Übersetzt von B. M. Goldberg. Leipzig 1833. Neu
bearbeitet erschien dies Werk unter dem Titel: Memoirs of the Life, Writings
and Discoveries of Sir Isaac Newton. Edinburg. 2 Bde. 1855. 2. Aufl. 1860.
Siehe auch Snell, Newton und die mechanische Naturwissenschaft. Dresden
u. Leipzig 1843.



[444] Wallis, Arithmetica infinitorum sive nova methodus inquirendi in
curvilineorum quadraturam. 1655. Wallis beschäftigte sich darin wie Cavalieri
in seinen »Indivisibilien« vorzugsweise mit Quadraturen und Kubaturen, verfuhr,
anknüpfend an Descartes, aber mehr rechnerisch, während Cavalieri
seine Ableitungen so geometrisch als irgend möglich zu gestalten trachtete
(siehe auch Cantors Geschichte der Mathematik II, 822).



[445] Zucchi 1616. Siehe Nicolai Zucchii Optica philosophica. Leyden
1652. Die bezügliche Stelle wird von Wilde in seiner Geschichte der Optik,
Bd. I. Seite 308 angegeben. Zucchi machte auch, wie er an dieser Stelle
mitteilt, den entsprechenden Fundamentalversuch, indem er das Licht mit
einem Hohlspiegel auffing und gleichzeitig eine Konkavlinse in passender Entfernung
ans Auge brachte. Er wird deshalb von Wilde schon als der
Erfinder des Spiegelteleskops bezeichnet (Wilde I, 308). Gregory beschränkte
sich in seiner Optica promota vom Jahre 1663 (Seite 92 u. f.) auf den bloßen
Vorschlag, das durch zwei Spiegel erzeugte Bild durch eine Linse zu betrachten.
Die Ausführung dieses Gregory'schen Teleskops erfolgte erst ein Jahrzehnt
später (1774) durch Hooke. Siehe die schematische Zeichnung in Wüllners
Lehrbuch der Experimentalphysik II, 344.



[446] Aus den Philos. Transactions von 1672.



[447] 1672.



[448] Philos. Transact. 1742. S. 155.



[449] Philos. Transact. 1731. S. 147 u. f.



[450] Optics or a treatise of the reflections, refractions, inflections and
coulours of light. London 1704. – Newtons Optik wurde als 96. und
97. Band von Ostwalds Klassikern der exakten Wissenschaften übersetzt
und herausgegeben von W. Abendroth. W. Engelmann, Leipzig. 1898. –
Es ist dies die erste deutsche Übersetzung. Neben vier englischen Auflagen
gibt es sechs lateinische und drei französische Ausgaben.



[451] Newtons Optik. I. Tafel III. Abb. 13.



[452] Newtons Optik. I. Tafel IV. Abb. 18.



[453] Newtons Optik, II. Taf. IV. Abb. 16.



[454] Opera omnia (ed. Frisch) II. 119 u. f.



[455] De radiis visus et lucis in vitris perspectivis et iride Tractatus Marci
de Dominis, Venedig 1611.



De Dominis (1566–1624) war Kleriker und erlitt ein ähnliches Schicksal
wie Giordano Bruno. Er geriet mit den katholischen Lehren in Widerspruch,
wurde von der Inquisition gefangen gesetzt und starb in dem Kerker der
Engelsburg, wahrscheinlich an Gift.



Nach v. Lippmann entstammt die Lehre, daß die Farben eine Mischung
von Weiß und Dunkel seien, pseudo-aristotelischen Schriften.



[456] Näheres siehe Newtons Optik (Ostwalds Klassiker Bd. 96 S. 50 u. f.)
sowie Wilde, Geschichte der Optik. II. S. 44 u. f.



[457] Der Spiegel hatte einen Durchmesser von 4 Fuß und wog 2000 Pfund.
Herschel lieferte eine Beschreibung dieses Fernrohrs in den Philos. Transact.
1795, II, pag. 347. Das Teleskop des Earl of Rosse vom Jahre 1845 besaß
sogar eine Länge von 16,6 und einen Spiegeldurchmesser von 1,82 m.



[458] Für bestimmte Zwecke (photographische Aufnahmen) werden auch jetzt
noch gewaltige Reflektoren von über 2 m Öffnung benutzt.



[459] Bzw. in G (rot) und in H (violett) beim äußeren Bogen.



[460] Ostwalds Klassiker. Bd. 96. S. 130.



[461] Jesuit, von 1566–1624 lebend. Er wurde von der Inquisition seiner
freieren religiösen Auffassung wegen eingekerkert.



[462] Grimaldi, Physico-Mathesis de lumine, coloribus et iride. Bologna
1665. S. 235 u. f.



[463] Siehe S. 92 u. f.



[464] Huygens, Abhandlung über das Licht. Nr. 20 von Ostwalds
Klassikern der exakten Wissenschaften.



[465] Dannemann, Aus der Werkstatt großer Forscher. Leipzig 1908.
Abschnitt 34.



[466] Hooke, Micrographia or some philosophical descriptions of minute
bodies. London 1665.



[467] Micrographia, Observat. IX: Of the Colours observable in Muscovy
Glass and other thin Bodies.



[468] Newton, Optice, Lib. II. Pars 1. Observatio VI. S. 149 der Clarkeschen
Ausgabe von 1740.



[469] Frage 5. (Ostwalds Klassiker. Nr. 97. S. 101.)



[470] Frage 8. (Ostwalds Klassiker. Nr. 97. S. 101.)



[471] Frage 30. (Ostwalds Klassiker. Nr. 97. S. 124.)



[472] Frage 29. (Ostwalds Klassiker. Nr. 97. S. 123.)



[473] Rosenberger, Newtons Prinzipien. S. 329.



[474] Poggendorff, Geschichte der Physik. S. 645.



[475] Picard, La mésure de la terre. Paris 1671.



[476] 1 Toise = 6 frz. Fuß = 1,949 m.



[477] Sie hatte für den Breitengrad 55972 Toisen ergeben. Snellius verfuhr
folgendermaßen. Er bestimmte die Polhöhe von Alkmaar zu 52° 40,5ʹ,
diejenige von Bergen op Zoom zu 51° 29ʹ. Der Abstand der durch beide
Orte gehenden Parallelkreise ergab sich daraus zu 1° 11,5ʹ. Die Messung
dieses Abstandes ergab 55072 Toisen für den Grad. Bei dieser Messung
wurde zum erstenmal das Verfahren der Triangulation angewandt (De
terrae ambitu a Willebrordo Snellio, Leyden 1617), indem Snellius
von einer festen, äußerst genau gemessenen Standlinie oder Basis ausging und
von dieser aus durch Winkelmessung ein Netz von Dreiecken bestimmte. Als
einige Jahre nach seiner ersten Messung die Umgegend von Leyden überschwemmt
wurde und überfror, benutzte er diese Gelegenheit, um nochmals
eine Ausgangslinie möglichst genau zu messen.



Willibrord Snellius, in Leyden 1591 geboren und dort als Universitätslehrer
1626 gestorben, ist uns bei früherer Gelegenheit als der Entdecker des
Brechungsgesetzes bekannt geworden. Von ihm rührt auch das trigonometrische
Verfahren des »Rückwärtseinschneiden« her, das fälschlich wohl
dem Franzosen Pothenot zugeschrieben wird. Die hier kurz geschilderte
Tätigkeit dieses hervorragenden Geometers war es also, die Newton die
Lösung des größten naturwissenschaftlichen Problems, das je den Menschengeist
beschäftigte, ermöglicht hat.



[478] Genau gleich 15ʹ 1ʺ 14/9ʺ. Siehe Newtons Prinzipien (Ausgabe von
Wolfers) S. 386.



[479] Philosophiae naturalis principia mathematica, London 1687. Übersetzt
von Wolfers, Berlin 1872. Siehe auch Ferd. Rosenberger: Isaac
Newton und seine physikalischen Prinzipien. Ein Hauptstück aus der Entwicklungsgeschichte
der modernen Physik. Leipzig 1895.



[480] Hooke, An attempt to prove the motion of the earth, London 1674.
S. 27 und 28.



[481] Newtons Prinzipien (ed. Wolfers), S. 515.



[482] Dies würde geschehen, wenn die Geschwindigkeit 21000ʹ für die Sekunde
beträgt.



[483] Newtons Prinzipien. I. Buch. § 13.



[484] Newtons Prinzipien (ed. Wolfers), Fig. 213.



[485] Siehe Abb. 14 dies. Bds.



[486] Siehe auch die »Begriffsbestimmungen und Leitsätze« aus Newtons
mathematischen »Prinzipien der Naturphilosophie«, die im ersten Teil des
191. Bandes von Ostwalds Klassik. d. exakt. Wissensch. zusammengestellt
sind (Leipzig, W. Engelmann, 1914).



[487] Seneca, Nat. Quaest. III, 28.



[488] Näheres darüber siehe im III. Bande.



[489] Optik, Frage 31.



[490] Newtons Prinzipien III. 5. Abschnitt.



[491] Den Gegensatz zwischen den Newtonianern und den Cartesianern verspottete
Voltaire einst mit folgenden Worten: »Wenn ein Franzose in London
ankommt, so findet er einen großen Unterschied. In Paris verließ er die Welt
ganz voll von Materie, in London findet er sie völlig leer. In Paris sieht er
das Universum von ätherischen Wirbeln erfüllt, während in London unsichtbare
Kräfte ihr Spiel treiben. Dort ist es der Druck des Mondes, der Ebbe
und Flut bewirkt, während in England das Meer gegen den Mond gravitiert
und alles durch den Zug verrichtet wird.«



[492] E. Hoppe, Zur Geschichte der Fernwirkung. Programm des Wilhelmgymnasiums,
Hamburg 1901.



[493] Rosenberger, Newtons Prinzipien. S. 234.



[494] Ausführlicher wurde das System der corpuscules ultramondaines von
Le Sage entwickelt (Prévost, Deux traités de physique mécanique, Genève
et Paris, 1818).



[495] Nach dem gregorianischen Kalender am 5. Januar 1643 und am
31. März 1727.



[496] Siehe S. 24.



[497] Christiani Hugenii Systema Saturnium. Haag 1659.



[498] Saturn wird von einem dünnen, ebenen, freischwebenden Ringe umgeben,
der zur Ekliptik geneigt ist.



[499] Die übrigen Saturnmonde wurden später von Cassini, Herschel u. a.
entdeckt.



[500] Der Reihenfolge nach, wie oben erwähnt, der sechste Mond.



[501] Das Patent, das er auf seine Erfindung nahm, datiert vom 16. Juni 1657.



[502] Siehe S. 96.



[503] Siehe S. 290.



[504] Siehe Dannemann, Aus der Werkstatt großer Forscher, S. 96.



[505] Olaf oder Olof Römer wurde am 25. September 1644 zu Arhuus geboren
und starb am 19. September 1710 in Kopenhagen. Die erwähnten Beobachtungen
stellte er 1672–1676 auf der Pariser Sternwarte an. Sein Bericht
an die Pariser Akademie datiert vom 22. November 1675. (Anc. Mémoires,
Paris. Tome I et X.)



[506] 42 Stunden 27 Minuten 33 Sekunden.



[507] Chr. Huygens, Abhandlung über das Licht. Fig. 2. Siehe Ostwalds
Klassiker der exakten Wissenschaften Nr. 20, S. 14.



Die Abhandlung über das Licht (Traité de la lumière) erschien im Jahre
1690 in Leyden, zusammen mit der Untersuchung über die Ursache der Schwere
(Discours de la Cause de la Pesanteur). Die Arbeit über das Licht entstand
schon in Paris um 1678. Dadurch, daß Huygens 1681 Frankreich der Mißhandlung
seiner Glaubensgenossen wegen verließ, wurde die Herausgabe bis
zum Jahre 1690 verzögert. Eine lateinische Übersetzung wurde 1728 von
s'Gravesande unter dem Titel »Tractatus de Lumine« herausgegeben.



[508] Dieser in vielen Lehrbüchern der Physik beschriebene Apparat (z. B.
Wüllner, Lehrbuch der Experimentalphysik, III. Aufl. Bd. I, Fig. 66) zum Nachweis
der Gesetze des Stoßes wurde von Mariotte angegeben. (Traité de la
percussion ou du choc des corps. Paris 1677.)



[509] Ostwalds Klassiker Nr. 20. S. 26.



[510] Ostwalds Klassiker Nr. 20. S. 34.



[511] Experimenta crystalli islandici disdiaclastici, quibus mira et insolita
refractio detegitur. Havniae 1669.



[512] Huygens hatte wie Bartholin gefunden, daß Licht, das in einen
Doppelspatkristall eindringt, im allgemeinen zwei Brechungen erleidet, von
denen die eine dem von Snellius gefundenen Gesetze folgt, nach dem der
Sinus des Einfallswinkels zum Sinus des Brechungswinkels in einem bestimmten
Verhältnis steht. Dies Verhältnis ermittelten Bartholin und
Huygens übereinstimmend gleich 5 : 3. Es blieb für alle Neigungen stets dasselbe,
während sich dies Verhältnis für den zweiten, außergewöhnlichen Strahl
mit der Neigung des einfallenden Strahles änderte. Um das Auftreten beider
Strahlen zu erklären, mußte Huygens annehmen, daß sich ein Teil des
Lichtes nach dem Eintreten in den Kristall in kugelförmigen Wellen fortpflanze,
ein anderer dagegen in sphäroidischen. Ferner galt es, für den durch
letztere bewirkten Strahl ein dem von Snellius ermittelten analoges Gesetz
zu finden, was Bartholin nicht vermocht hatte.



[513] Ostwalds Klassiker Nr. 20. S. 61.



[514] Ostwalds Klassiker Nr. 20. S. 65.



[515] Siehe an späterer Stelle dieses Werkes.



[516] Nach heutiger Annahme ist die aristotelische Schrift »Über die Farben«
nicht echt-aristotelisch, entstammt aber der Schule des Philosophen. S. auch
Wilde, Gesch. d. Optik. I. S. 8 u. f.



[517] Horologium oscillatorium sive de motu pendulorum. Paris 1673. Eine
Besprechung der einzelnen Teile dieses Werkes bringt eine Abhandlung von
A. Heckscher in den Mitteilungen z. Gesch. d. Med. u. d. Natw. XIV. Bd.
S. 97. In deutscher Übersetzung wurde es von A. Heckscher und A. v.
Oettingen als 192. Band von Ostwalds Klassikern der exakten Wissenschaften,
unter dem Titel »Die Pendeluhr« herausgegeben. Leipzig, W. Engelmann, 1913.
Huygens erste Pendeluhr wird noch heute im physikalischen Kabinett der
Universität Leyden aufbewahrt.



[518] Im Besitze der Grundzüge seines unter dem Namen der Fluxionsrechnung
bekannt gewordenen analytischen Verfahrens befand sich Newton
schon im Jahre 1666. Siehe Cantor, Geschichte der Mathematik. Bd. III.
S. 150 u. f.



[519] Siehe S. 52 ds. Bds.



[520] Das von Viviani herrührende Modell dieser Vorrichtung existiert
noch im Galilei-Museum zu Florenz. Siehe Günther, Vermischte Untersuchungen
zur Geschichte der mathematischen Wissenschaften. 1876. Seite 316.



[521] Die Erteilung von Erfindungspatenten ist eine neuzeitliche Einrichtung.
Ihre Ausbreitung gehört dem 19. Jahrhundert an. Die Anfänge des Patentwesens
reichen jedoch bis ins 17. Jahrhundert zurück. Das erste Patentgesetz
wurde 1624 in England durch Jakob I. bestätigt. Während der ersten hundert
Jahre wurden in England im ganzen nur etwa 300 Patente erteilt. In Frankreich
setzte die Patentgesetzgebung im Jahre 1791 und in Preußen 1815 ein.



[522] Siehe über sie die Arbeit von W. Schmidt in den Abhandlungen zur
Geschichte der Mathematik. 8. Heft (1898). S. 177.



[523] Siehe die der Arbeit Schmidts beigegebene Photographie.



[524] Christiani Hugenii, Horologium oscillatorium. Paris MDCLXXIII.
pag. 4. Fig. 1.



[525] Der Londoner Uhrmacher Clement erfand die Ankerhemmung im
Jahre 1680.



[526] Horologium oscillatorium, Pars II.



[527] Horologium oscillatorium. Fig. auf S. 12.



[528] Diese Erfindung wurde veröffentlicht im Journal des savants vom
25. Februar 1675.



[529] Horologium oscillatorium, Pars 5. Eine zusammenfassende Arbeit über
die Geschichte der Erfindung der Pendeluhr lieferte E. Gerland in Wiedemanns
Annalen, Bd. 4, Seite 585–613.



Gerland schreibt Galilei das Verdienst zu, die Pendeluhr schon 1641,
also 15 Jahre vor Huygens erfunden zu haben. Beide Männer seien unabhängig
voneinander auf sie gekommen. Von Galileis Apparat existiert jedoch
nur ein Entwurf. Er ist zehn Jahre nach Galileis Tode nur unvollkommen
zur Verwirklichung gelangt. (Siehe Gerland und Traumüller, Geschichte
der physikalischen Experimentierkunst. S. 121 und S. 57 des vorlieg. Bandes.)



[530] Horologium oscillatorium. pag. 4. Fig. II.



[531] t = π√(l/g).



[532] Dies geschah in der »Abhandlung über die Ursache der Schwere«
(Discours de la cause de la pesanteur), die 1690 als Anhang zu der Abhandlung
über das Licht erschien und von R. Mewes deutsch herausgegeben
wurde (A. Friedländer, Berlin 1893).



[533] Der mit den hervorragendsten Männern seiner Zeit in Briefwechsel
stehende Pater Mersenne (1588–1648).



[534] Centrum oscillationis vel agitationis figurae cujuslibet, dicatur punctum
in linea centri, tantum ab axe oscillationis distans, quanta est longitudo penduli
simplicis quod figurae isochronum sit.



[535] Si pondera quodlibet, vi gravitatis suae, moveri incipiant, non posse
centrum gravitatis ex ipsis compositae altius, quam ubi incipiente motu
reperiebatur, ascendere.



Diesen Satz benutzt Huygens, um die Unmöglichkeit des Perpetuum
mobile nachzuweisen. Er erklärt es für »mechanisch« unmöglich. Huygens
hatte indessen noch nicht erkannt, daß das Prinzip der Erhaltung der Kraft
für sämtliche Naturkräfte gilt. So sagt er in einem Briefe an Leibniz ausdrücklich,
ein Perpetuum mobile sei zwar mechanisch unmöglich, doch bestehe
einige Hoffnung, ein solches physico-mechanisch zu konstruieren, z. B. mit Hilfe
eines Magneten. Dagegen hatte Mersenne bereits 1644 die Möglichkeit eines
Perpetuum mobile überhaupt in Abrede gestellt, und die auf dessen Konstruktion
gerichteten Bestrebungen mit dem Suchen nach dem Stein der Weisen
verglichen. Cogitata physico-mechanica. 1644. S. 224.



[536] Von Felix Haushofer im 138. Bande von Ostwalds Klassikern
der exakten Wissenschaften. W. Engelmannn, Leipzig 1903.



[537] Ostwalds Klassiker Nr. 138. S. 158.



[538] Im tiefsten Punkte ist nämlich, da dann die durchfallene Strecke = l ist,
v = [sqrt](2gl) und die Zentrifugalkraft P = v2/l = 2gl/l = 2g. Dazu kommt die
Schwere g, so daß (für m = 1) die gesamte Zugkraft = 3g ist.



[539] Ostwalds Klassiker Nr. 138, Fig. 21.



[540] Mach, Mechanik. Fig. 106.



[541] Newtons Prinzipien (übers. von Wolfers) S. 406.



[542] D. h. unter Berücksichtigung der in Paris gleichfalls durch die Zentrifugalkraft
hervorgerufenen Verminderung der Schwere. Siehe auch die über
diesen Gegenstand von Newton in seinen Prinzipien der Naturlehre (ed.
Wolfers) S. 401 angestellten Berechnungen.



[543] Cassini entdeckte in den Jahren 1671 bis 1684 den dritten, vierten,
fünften und achten Mond des Saturn.



[544] Cassini bestimmte deren Dauer zu 9 Stunden 56 Minuten; die Abplattung
des Jupiter beträgt 1/14.



[545] Siehe an späterer Stelle dieses Bandes.



[546] Siehe S. 65 dieses Bandes.



[547] Er starb dort im Jahre 1703.



[548] Siehe S. 169 dieses Bandes.



[549] Wallis, Opera mathematica I, 355–478. Der vollständige Titel lautet:
Arithmetica infinitorum sive nova methodus inquirendi in curvilineorum quadraturam.



[550] Sie wurde in lateinischer Sprache im darauf folgenden Jahre in den
Philosophical Transactions veröffentlicht.



[551] Christian Huygens, »Über die Bewegung der Körper durch den
Stoß«, als 138. Band I. Teil von Ostwalds Klassikern der exakten Wissenschaften
herausgegeben von Felix Hausdorff. Leipzig, Verlag von W. Engelmann,
1903. Diese Abhandlung von Huygens erschien unter dem Titel
»Tractatus de motu corporum ex percussione« im Jahre 1703 (Opuscula posthuma).



[552] S. Bd. I dieses Werkes, S. 241. Danach haben die Atomisten die Konstanz
der Materie und der Kraft damit begründet, daß es keinen Ort außerhalb
des Weltalls gäbe, wohin ein Teilchen der Materie entfliehen, oder von wo eine
neue Kraft in das Universum einzudringen vermöge.



[553] Leibniz, Mathematische Schriften. Herausgegeben von Gerhardt.
Halle 1860. II. Abt. Bd. II. S. 434.



[554] Ausgabe von Pertz-Gerhardt. Bd. VI. S. 231.



[555] Brevis demonstratio etc. (Acta eruditorum 1686. S. 163.)



[556] Der Kampf wogte bis 1691 zwischen Leibniz einerseits und Papin
und anderen Cartesianern andererseits hin und her. Dann beteiligten sich auch
die Engländer (Briefwechsel zwischen Clarke und Leibniz) daran. J. Bernoulli
war zuerst gegen Leibniz, trat dann aber auf seine Seite. In diesen
Streit mischten sich schließlich die Gelehrten aller Länder Europas. Endgültig
entschieden wurde er erst 1743 durch d'Alembert. Dieser erklärte,
daß der ganze Streit nur auf eine leere metaphysische Diskussion oder auf
einen Wortstreit hinauslaufe. D'Alembert, Traité de dynamique. 1743. Vorrede
S. 21.



[557] Dühring, Kritische Geschichte der allgemeinen Prinzipien der
Mechanik. S. 230.



[558] Opera philosophica S. 775.



[559] H. Berthold, Notiz zur Geschichte des Prinzips der Erhaltung der
Kraft (Chem. Zentralbl. VII, 7. 1876).



[560] Opera omnia III. S. 253.



[561] Daniel Bernoulli, Bemerkungen über eine allgemeinere Fassung des
Satzes von der Erhaltung der lebendigen Kraft. Berlin 1750. Aus dem Französischen
übersetzt und veröffentlicht im 191. Bande von Ostwalds Klassikern.
Leipzig, W. Engelmann. 1914.



[562] Siehe auch Jacobis Vorlesungen über Dynamik, herausgegeben von
E. Lottner, Berlin 1884. S. 19.



[563] De vera ratione virium vivarum. Acta erudit. 1735. 240.



[564] Hydrodynamica 1738. Sectio I. § 20. S. 12.



[565] Pensées sur l'interprétation de la nature 1754. § 45. p. 61.



[566] Siehe A. Stadler, Kant und das Prinzip von der Erhaltung der
Kraft. (Philosoph. Monatshefte Bd. XV. Leipzig 1879.)



[567] Eine Sammlung seiner Werke erschien 1717 in Leyden: [OE]uvres de
Mariotte, divisées en deux tomes.



[568] [OE]uvres de Mariotte. Bd. I. S. 149 u. f.



[569] [OE]uvres de Mariotte. Bd. II. S. 322 u. f.



[570] Poggendorff, Geschichte der Physik. S. 493.



[571] Traité de la percussion ou choc des corps. Paris 1677. [OE]uvres,
Bd. 1. S. 3 u. f.



[572] Siehe S. 293 dieses Bandes.



[573] Mariotte, [OE]uvres. Bd. II. S. 496.



[574] [OE]uvres de Mariotte. Bd. II. S. 607.



[575] I. Kant, Einige kurz gefaßte Bemerkungen über das Feuer. Königsberg
1755.



[576] Catalogus stellarum australium, seu supplementum catalogi Tychonici.



[577] Eine Zusammenstellung der Elemente findet sich in Wolffs Geschichte
der Astronomie. S. 702. Der Halleysche Komet flößte bei seinem Erscheinen
im Jahre 1456 während der Belagerung von Belgrad Türken und Christen
Schrecken ein.



[578] Siehe an späterer Stelle (Bd. III).



[579] Im Jahre 1647. Siehe Wilde, Geschichte der Optik. I. 272.



[580] Philos. Transactions von 1693.



[581] Den von Halley geführten Beweis dieser Formel enthält Wildes
Geschichte der Optik. I. 275 u. f.



[582] Philos. Transactions 1686. Discourse of the rule of the decrease of
the height of the mercury in the barometer, according as places are elevated
above the surface of the earth.



Abb. 102 ist der Abhandlung Halleys entnommen (Philos. Transact. 1686,
S. 79). Für die Höhen, die einem gemessenen Barometerstand entsprechen,
berechnete Halley folgende Tabelle:




	Barometerstand in Zollen
	Höhe in Fuß


	30
	0


	29
	915


	28
	1862


	27
	2844


	26
	4922


	20
	10947


	15
	18715


	10
	29662


	5
	48378


	1
	91831






[583] Cantor, Geschichte der Mathematik. III. S. 114 u. 115.



[584] Cantor III. S. 80–82.



[585] Cantor III. S. 363.



[586] Philos. Transactions XVII 596–610. An Estimate of the Degrees of
the Mortality of Mankind, drawn from curious Tables of the Births and
Funerals at the City of Breslaw with an Attempt to ascertain the Price of
Annuities upon Lives.



[587] Cantor, Geschichte der Mathematik. Bd. III. S. 45–47.



[588] Cantor III. S. 343.



[589] Cantor, Geschichte der Mathematik. III. S. 616.



[590] Übersichtliche Karte, die mit einem Blick die Deklination der Magnetnadel
erkennen läßt.



[591] Die Entdeckung dieser Erscheinung erfolgte durch E. Gunter 1622.



[592] Graham, Observations made on the variation of the horizontal needle
at London. 1722–23.



[593] Heller, Geschichte der Physik. II. S. 308.



[594] Siehe an späterer Stelle dieses Bandes.



[595] Ephemerides Bononienses Mediceorum Siderum. Bologna 1668.



[596] Siehe S. 41 dieses Bandes.



[597] Die vier Jupitermonde hatte Galilei gleichfalls zu Ehren seines fürstlichen
Gönners als Sidera Medicea bezeichnet.



Nach der Zeit ihrer Entdeckung lassen sich die Saturnmonde in
folgende Reihe bringen:




	Huygens
	entdeckte
	den
	6.
	Mond
	im
	Jahre
	1655,



	Cassini
	"
	"
	8.
	"
	"
	"
	1671,


	"
	"
	"
	5.
	"
	"
	"
	1672,


	"
	"
	"
	4.
	"
	"
	"
	1684,


	"
	"
	"
	3.
	"
	"
	"
	1684,


	Herschel
	"
	"
	1.
	"
	"
	"
	1789,


	"
	"
	"
	2.
	"
	"
	"
	1789,


	Bond
	"
	"
	7.
	"
	"
	"
	1848.



Dazu kamen 1898 und 1904 noch zwei weitere Monde. (Siehe den Anhang.)



[598] Siehe S. 290 dieses Werkes.



[599] Nicolaus Fatio, geboren 1664 in Basel.



[600] Sie rührt von dem Engländer Childrey her und wurde von ihm in
seiner Britannia Baconica veröffentlicht.



[601] Jacques Cassini 1677–1756.



César François Cassini de Thury 1714–1784.



Jacques Dominique Cassini de Thury 1748–1845.



Letzterer leitete die Pariser Sternwarte bis 1793.



[602] Lehrreich ist in dieser Hinsicht die Geschichte Böttgers, des angeblichen
Erfinders des Porzellans. Siehe dessen Biographie von Engelhardt.
Siehe ferner S. 342.



[603] Siehe Gerland: Beiträge zur Geschichte der Physik. Leopoldina, Halle
1882. Eine Linse von 4,34 m Brennweite befindet sich in Kassel. Sie ist jedoch
voll von Schlieren.



[604] Von K. A. Engelhardt.



[605] Von Peters.



[606] Siehe das Referat Diergarts in den Mitteilungen zur Geschichte der
Medizin und der Naturwissenschaften. Bd. V. S. 534.



[607] Vita a se ipso breviter delineata (kurze Selbstbiographie).



[608] Kopp, Geschichte der Alchemie. Bd. I. S. 233.



[609] Miscellanea Berolinensia. Berolini 1710. S. 16 ff.



[610] Siehe S. 203.



[611] Die Eröffnung der Petersburger Akademie fand zwar erst nach Peters
Tode statt.



[612] Siehe Bd. I. S. 437.



[613] Steno, De solido inter solidum naturaliter contento. Florenz 1669.
Ein von Élie de Beaumont herrührender Auszug dieser Schrift findet sich
in den »Annales de sciences naturelles«. XXV. p. 337.



[614] Annales des sciences naturelles. XXV. S. 347.



[615] Humboldt, Essai géognostique. Paris 1823. pag. 38.



[616] Humboldt a. a. O.



[617] Athanasius Kircher Mundus subterraneus, in quo universae
naturae majestas et divitiae demonstrantur. 2 vol. fol. Amsterdam 1664.



Der gelehrte Jesuit Kircher wurde 1602 in der Nähe von Eisenach geboren.
Er wirkte als Lehrer der Mathematik in Rom, wo er das Museum
Kircherianum gründete, und starb dort 1680.



[618] Principia philosophiae. 1644.



[619] Descartes unterschied drei Grundstoffe, die in der Sonne, im Weltraum
und auf der Erde vertreten sein sollten. Siehe E. Bloch, Die chemischen
Theorien bei Descartes und den Kartesianern (Isis, 1914. S. 590–635).



[620] G. Daubrée, Descartes l'un des créateurs de la Cosmologie et de la
Géologie. Paris 1880.



[621] Man vergleiche dazu Bd. I S. 260, 380, 443, 445.



[622] Auch die heutigen Geologen nehmen an, daß die Mansfelder Schiefer
aus dem feinen Schlamme einer mit Fischen reich bevölkerten Meeresbucht
entstanden sind. Dieser Bucht wurden schwefelsaure Salze von Kupfer, Eisen
und Silber zugeführt. Die Fische starben infolgedessen und sanken in den
Schlamm. Der Reichtum an tierischer, in Zersetzung begriffener Substanz
machte den aus diesem Schlamm hervorgehenden Schiefer bituminös (pechhaltig).
Gleichzeitig wirkte die organische Substanz reduzierend auf jene schwefelsauren
Metallsalze. Diese wurden infolgedessen in Schwefelmetalle (Erze) verwandelt,
die den Kupferschiefer durchsetzen und insbesondere die Stellen überziehen,
an denen sich einst die verwesenden Fischkörper befanden.



[623] Hooke, Lectures on Earthquakes, 1688.



[624] Dies geschah durch Langmantel im Jahre 1688.



[625] N. Lemery.



[626] Experimenta Crystalli Islandici Disdiaclastici, quibus mira et insolita
refractio detegitur. Havniae 1669.



[627] Siehe S. 301.



[628] Arcana naturae detecta ab Antonio van Leeuwenhoek. 1695.
p. 124.



[629] Näheres über Boyle siehe S. 225 dieses Werkes.



[630] Specimen de Gemmarum origine et virtutibus, auctore Roberto
Boyle. 1673.



[631] Siehe S. 217 dies. Bds.



[632] Georg Ernst Stahl wurde 1660 in Ansbach geboren und war
Professor der Medizin und der Chemie in Halle. Von 1716 bis zu seinem Tode
(1734) wirkte er in Berlin.



[633] Außer Marggraf und seinem Schüler Achard sind von den Berliner
Chemikern noch Neumann und Pott zu nennen. Casper Neumann
(1683–1737) war Professor an der medizinischen Bildungsanstalt zu Berlin.
Sein Nachfolger war Johann Heinrich Pott (1692–1777). Ersterer hat
sich um die Analyse, letzterer um die Mineralchemie Verdienste erworben.



[634] 1760. Vgl. v. Lippmann, »Abhandl. u. Vorträge«. Bd. I: Marggraf.



[635] 1754. Vgl. v. Lippmann, »Abhandl. u. Vorträge«. Bd. I: Marggraf.



[636] Einige von Marggrafs Arbeiten über den Phosphor wurden im
187. Bande von Ostwalds Klassikern veröffentlicht (W. Engelmann, Leipzig
1912). Insbesondere die erste der dort veröffentlichten Abhandlungen, die
1743 in den Miscellanea Berolinensia (VII, 324–344) erschien, ist von epochemachender
Bedeutung, weil durch sie der Phosphor des Geheimnisvollen entkleidet
wurde, das ihn seit seiner Entdeckung umgab (Ostwalds Klassiker
Nr. 187. S. 43).



[637] Siehe an späterer Stelle.



[638] Siehe a. a. O. S. 79–90.



[639] Siehe Bd. I dieses Werkes. S. 179.



[640] John Hemmeter, Michael Servetus. Discoverer of the Pulmonary
Circulation. His Life and Work. Janus. S. 331–364 mit 9 Tafeln.



[641] Exercitatio anatomica de motu cordis et sanguinis in animalibus.
Francof. 1628.



[642] West, Harvey and his times. London 1874.



[643] So lautet der anatomische Name des großen Gefäßes, das den in den
Lymphgefäßen des Magens und des Darmes bereiteten Milch- oder Speisesaft
(Chylus) dem Blutstrom zuführt.



[644] Haeser, Geschichte der Medizin. Bd. II. S. 277.



[645] Siehe auch K. Lasswitz, Geschichte der Atomistik. II. S. 84.



[646] Durch Jean Pecquet.



[647] Siehe auch S. 365, Anm. 3.



[648] Sie erfolgte durch den schwedischen Arzt Olaf Rudbeck im Jahre
1651.



[649] Hooke, Micrographia. Schem. I, Fig. 5/6.



[650] Borelli erfand den Heliostaten, indem er einem Spiegel durch ein
Uhrwerk eine solche Bewegung gab, daß die Sonnenstrahlen immer nach derselben
Richtung zurückgeworfen werden.



[651] Borelius, De motu animalium. Rom 1680, Leyden 1685.



[652] Borelius, De motu animalium. Leyden 1685. Tab. III. Fig. 2.



[653] De motu animalium. Tab. X. Fig. 12.



[654] Lorenzo Bellini. Die insbesondere durch Borelli ins Leben gerufene
Schule wird wohl als die iatrophysische bezeichnet.



[655] Malpighi, Opera omnia. London 1697. B. II. S. 87: De renibus.



[656] Jan van Hoorne. Er war der erste, der die Bedeutung der Ovarien
für die Entstehung des Embryos erkannte. Siehe Hirsch, Geschichte der
medizinischen Wissenschaften, S. 120.



[657] Siehe S. 346.



[658] Boerhaave (1668–1738) war Professor der Chemie und der Botanik in
Leyden.



[659] Siehe Carus, Geschichte der Zoologie. München 1872. S. 403.



[660] Harvey, Exercitationes de generatione animalium. London 1651.



[661] De gener. animal. XLV. Leydener Ausgabe vom Jahre 1737. Seite 161.



[662] A. a. O. Seite 162 und 163.



[663] Siehe auch »Harvey, Über die Erzeugung der Tiere« von W. Preyer.
Zeitschrift Kosmos, II. Jahrgang. Seite 396.



[664] Bibel der Natur. 1752. Seite 126.



[665] Francesco Redi (1618–1676). Arzt in Florenz und Mitglied der
Accademia del Cimento.



[666] Professor der Medizin in Bologna, später Leibarzt von Papst Innocenz XII.



[667] Malpighi, Opera omnia, London 1686.



[668] Siehe S. 376.



[669] Malpighi, De Bombycibus. Tab. VI. Fig. 2.



[670] A. Hirsch, Geschichte der medizinischen Wissenschaften. 1893.
S. 122.



[671] Ledermüller, Mikroskopische Gemüts- und Augenergötzungen. 1763.



[672] Leeuwenhoek, Arcana naturae. Delphis Batavorum 1695–1719.



[673] Arcana naturae Bd. I. S. 42.



[674] Arcana naturae. Bd. I. S. 42.



[675] Hirsch, Geschichte der Medizin. S. 493.



[676] Arcana naturae. 1695. Bd. I. S. 173.



[677] Arcana naturae, 1695, Bd. I. Brief 90. Die nähere Aufklärung über
dies Verhalten der Blattläuse gab Bonnet im 1. Bande seiner Insektologie.
Paris 1745.



[678] Hirsch, Geschichte der Medizin. S. 115.



[679] Abbildung aus Leeuwenhoeks Arcana naturae, 1695. Bd. I. Seite 447.



[680] Hookes »Micrographia«, Schem. XI, Fig. 1.



[681] Hooke, Micrographia or some physiological descriptions of minute
bodies. London 1667. pg. 112 (Observat. XVIII).



[682] Micrographia. S. 143.



[683] Arcana naturae. Bd. I. S. 315.



[684] Arcana naturae. Bd. I. S. 318.



[685] Malpighi, Anatome plantarum. 1675. Grew, The anatomy of plants.
1682. Fol. mit 83 Kupfertafeln.



Siehe Marcellus Malpighi, Die Anatomie der Pflanzen, bearbeitet
von M. Möbius. Ostwalds Klassiker der exakten Wissenschaften. Nr. 120.
S. 31. Leipzig, Verlag von Wilhelm Engelmann, 1901.



[686] Sachs, Geschichte der Botanik. S. 259.



[687] Siehe S. 399.



[688] The anatomy of plants. S. 172.



[689] Siehe Marcellus Malpighi, Die Anatomie der Pflanzen, bearbeitet
von M. Möbius. Ostwalds Klassiker der exakten Wissenschaften. Nr. 120.
S. 31. Leipzig, Verlag von Wilhelm Engelmann, 1901.



[690] Die Spiralröhren bestehen nach Malpighi aus einem zarten Streifen
von geringer Breite, der spiralig verläuft und an den äußeren Rändern zusammenhängt.
»Findet ein Zerreißen statt, so zerfällt das Spiralband nicht in
einzelne Ringe, wie es bei der Trachee der höheren Tiere der Fall ist, sondern
es entsteht ein langes Band« (Ostwalds Klassiker 120. S. 7).



[691] Das Verfahren ist noch heute in Gebrauch.



[692] Siehe Bd. I dieses Werkes, S. 145.



[693] Theophrast, Von den Ursachen der Pflanzen. I, 6.



[694] Camerarius, De sexu plantarum epistola, datiert vom 25. August 1694.
Herausgegeben von J. G. Gmelin, Tübingen 1749. Eine Ausgabe in deutscher
Übersetzung veranstaltete M. Möbius. Ostwalds Klassiker der exakten
Wissenschaften. Nr. 105. Leipzig, Verlag von Wilhelm Engelmann, 1899.
Siehe auch Dannemann, Aus der Werkstatt großer Forscher, 3. Aufl.,
Abschnitt 27.



[695] Koelreuter, siehe an späterer Stelle.



[696] Newton, Abhandlung über die Quadratur der Kurven (1704). Aus
dem Lateinischen übersetzt von G. Kowalewski. Band 164 von Ostwalds
Klassikern der exakten Wissenschaften. Leipzig, Verlag von W. Engelmann.
1908.



[697] Leibniz, Über die Analysis des Unendlichen. Aus dem Lateinischen
übersetzt von G. Kowalewski. Band 162 von Ostwalds Klassikern der
exakten Wissenschaften. Leipzig, Verlag von Wilhelm Engelmann. 1908.



[698] Siehe auch S. 165.



[699] Ars conjectandi (Wahrscheinlichkeitsrechnung) von Jakob Bernoulli.
Basel 1713. Als 107. und 108. Bd. von Ostwalds Klassikern in deutscher
Übersetzung herausgegeben von R. Haussner. Leipzig, Verlag von Wilhelm
Engelmann. 1899.



[700] Tropfke, Geschichte der Elementarmathematik. Bd. II. 354.



[701] Ostwalds Klassiker Nr. 108. S. 71 u. f.



[702] Ostwalds Klassiker Nr. 108. S. 104.



[703] Sie entstanden in der Zeit von 1689 bis 1704 und bilden den Inhalt
des 171. Bandes von Ostwalds Klassikern der exakten Wissenschaften. Leipzig,
W. Engelmann. 1904. Die Übersetzung und die Herausgabe erfolgten durch
G. Kowalewski.



[704] Wallis in seiner Arithmetica infinitorum (1655) und Newton in seiner
Methodus fluxionum.



[705] Ostwalds Klassiker. Bd. 171. S. 110.



Nicolaus Mercator (nicht mit dem hundert Jahre vor ihm lebenden
Gerhard zu verwechseln) wurde 1640(?) in Holstein geboren. Er war Mitglied
der Royal Society und starb 1687. Seine mathematischen Untersuchungen wurden
besonders durch Wallis' Arithmetica infinitorum (1655) angeregt.



[706] Von neueren Untersuchungen über Reihen seien noch diejenigen von
Paul du Bois Reymond erwähnt, weil sie Aufnahme in die Sammlung Ostwalds
gefunden haben; P. du Bois Reymond, Über unendliche und trigonometrische
Reihen. Als 185. Band von Ostwalds Klassikern herausgegeben.
Leipzig, W. Engelmann. 1912.



P. du Bois Reymond, Über die Darstellung der Funktionen durch
trigonometrische Reihen. Als 186. Bd. von Ostwalds Klassikern herausgegeben.
Leipzig, W. Engelmann. 1912.



[707] Pappus, V. 2.



[708] Abhandlungen über Variationsrechnung: Ostwalds Klassiker Nr. 46,
S. 3–13. Leipzig, W. Engelmann. 1894.



[709] Ostwalds Klassiker der exakten Wissenschaften. Bd. 46. S. 14–20.
Leipzig, W. Engelmann. 1894.



[710] Siehe Johann Bernoulli, Die erste Integralrechnung. Aus dem
Lateinischen übersetzt und als Bd. 194 von Ostwalds Klassik. d. exakt. Wiss.
herausgegeb. von G. Kowalewski. Leipzig, W. Engelmann. 1914.



[711] Hydrodynamica seu de viribus et motibus fluidorum commentarii 1738.



[712] Jacob Bernoulli (1654–1705), Johann Bernoulli (1667–1748),
Bruder des vorigen. Daniel Bernoulli (1700–1802), Sohn von Johann
Bernoulli.



Die Familie Bernoulli gilt als ein Beispiel dafür, daß sich das so seltene
mathematische Talent in einer Familie vererben kann. Dies Beispiel ist allerdings
wohl einzig in seiner Art. Acht Mitglieder der Familie Bernoulli waren
bedeutende Mathematiker, darunter sind die drei obigen, so oft erwähnten als
Mathematiker ersten Ranges bekannt. Die Bernoulli stammen aus Antwerpen,
von wo ein Jacob Bernoulli nach Frankfurt auswanderte, um sich
den Verfolgungen des Herzogs Alba zu entziehen. Einer seiner Enkel wurde
1622 Bürger der Stadt Basel. Der mathematische Lehrstuhl der Universität
Basel war länger als ein Jahrhundert von einem Bernoulli besetzt.



[713] Robins, New Principles of gunnery. London. 1742.



[714] Berlin, 1745.



[715] Diese Formel gilt, wenn wir das Pendel als ein einfaches betrachten.



[716] Die Zahl sämtlicher von Euler veröffentlichten Abhandlungen wird auf
700 veranschlagt. Daneben verfaßte er 45 Bände selbständiger Werke. Eine
Ausgabe sämtlicher von Euler herrührenden Schriften würde etwa 2000 Druckbogen
umfassen.



[717] Eulers »Einführung in die Analysis des Unendlichen« und seine »Anleitung
zur Differential- und Integralrechnung« gelten noch heute als vorzügliche
Lehrbücher der höheren Mathematik. So viele Werke seitdem über denselben
Gegenstand geschrieben sind, »sie sind fast alle mehr oder weniger
Variationen des von Euler behandelten Themas« (F. Radio in L. Euler
S. 16).



[718] Tropfke, Geschichte der Elementarmathematik. Bd. I. S. 127.



[719] Introductio in analysin infinitorum.



[720] H. Hankel, Die Entwicklung der Mathematik in den letzten Jahrhunderten.
S. 15.



[721] Durch P. Stäckel im 46. Band von Ostwalds Klassikern. Leipzig.
W. Engelmann. 1894. Eulers Werk erschien 1744. Der vollständige Titel
lautet: Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes
sive solutio problematis isoperimetrici latissimo sensu accepti.



[722] Eine Inhaltsübersicht gibt Cantor im III. Bande seiner Geschichte der
Mathematik. S. 830–840.



[723] Leonhard Euler, Vollständige Anleitung zur Integralrechnung. Ausgabe
von Salomon. Bd. III. S. 392.



[724] Über das Problem der Kettenlinie bei Galilei, der es noch nicht zu
lösen vermochte, und Huygens, Leibniz, sowie den Gebrüdern Bernoulli
s. S. 61, Anm. 2.



[725] L. Euler, Von den elastischen Kurven (1744). Einen Neudruck der Abhandlung
enthält Nr. 175 der Sammlung »Ostwalds Klassiker der exakten
Wissenschaften«.



[726] Siehe an späterer Stelle dieses Abschnitts (S. 443).



[727] Siehe S. 280.



[728] Diese Methode wurde schon von Apian (1495–1552) in dessen Kosmographie
(§ 5) empfohlen.



[729] Herrührend von Gemma Frisius (1508–1555).



[730] Novae et correctae tabulae ad loca Lunae computanda. Berlin 1746.



[731] Novae tabulae motuum Solis et Lunae. 1752.



[732] Siehe S. 414.



[733] E. Mach, Zur Geschichte der Akustik (E. Machs Vorlesungen. IV.
Leipzig, J. A. Barth. 1896). Sauveurs akustische Abhandlungen finden sich
in den Mém. de Paris von 1701.



[734] Durch Noble und Pigot, die in den Philos. Transactions vom Jahre
1677 darüber berichteten.



[735] Descartes, der sich mit Mersenne über das Verhalten schwingender
Saiten unterhielt, hat schon vermutet, daß die Saiten Teilschwingungen
vollziehen, und daß dadurch ihr Ton beeinflußt wird.



[736] Wurde ein Ton z. B. durch 36 Schwingungen in der Sekunde hervorgerufen,
und ergaben sich für einen zweiten, etwas höheren Ton vier Stöße in
der Sekunde, so beruhte dieser auf 40 Schwingungen, entsprechend dem oben
gegebenen Beispiel. Bemerkt sei noch das Kuriosum, daß Sauveur ganz unmusikalisch
war und seine Untersuchungen nur unter Mitwirkung von Musikern
anzustellen vermochte.



[737] Siehe Dannemann, »Aus der Werkstatt«, 3. Aufl., Abschnitt 34.



[738] Geboren 1706 in der Nähe von London.



[739] Von Dollonds Fernrohren befinden sich noch mehrere im Besitz der
Petersburger Akademie der Wissenschaften. Dollond hatte sie für die russische
Expedition zur Beobachtung des Venusdurchgangs vom Jahre 1769 geliefert.



[740] Eulers Briefe an eine deutsche Prinzessin. Leipzig 1773. Bd. III.
Abbildung auf S. 299.



[741] J. A. Segner (1704–1777), Programma, quo theoriam machinae cujusdam
hydraulicae praemittit. Gött. 1750.



[742] Als 182. Band von »Ostwalds Klassiker der exakten Wissenschaften«
erschienen. Leipzig, W. Engelmann. 1911.



[743] Ostwalds Klassiker Nr. 182. S. 71.



[744] Dühring, Prinzipien der Mechanik. § 162.



[745] Abhandlung über Dynamik (Traité de dynamique) von d'Alembert.
Übersetzt und als Bd. 106 von Ostwalds Klassikern herausgegeben von
A. Korn. Leipzig, W. Engelmann. 1899.



[746] Ostwalds Klassiker Bd. 106. S. 71 u. f.



[747] D'Alembert, Traité de l'équilibre et du mouvement des fluids.
Paris 1744.



[748] E. Mach, Die Mechanik in ihrer Entwicklung. 1883. S. 335.



[749] Harnack, Geschichte der Preußischen Akademie der Wissenschaften.



[750] Siehe S. 41 dies. Bandes.



[751] Siehe S. 62 dies. Bandes.



[752] J. L. Lagranges Zusätze zu Eulers Elementen der Algebra. Als
103. Band von Ostwalds Klassikern der exakten Wissenschaften herausgegeben
von A. J. v. Öttingen und H. Weber. Leipzig, Verlag von W. Engelmann.
1898.



[753] J. L. Lagrange, Über die Lösung der unbestimmten Probleme zweiten
Grades. Aus dem Französischen übersetzt und als 146. Band von Ostwalds
Klassikern herausgegeben von Eugen Netto. Leipzig, W. Engelmann. 1904.



[754] Durch G. Kowalewski im 113. Band von Ostwalds Klassikern der
exakten Wissenschaften. Leipzig, Verlag von W. Engelmann. 1900.



[755] Lagrange, Versuch einer neuen Methode, um die Maxima und
Minima unbestimmter Integralformeln zu bestimmen. Im 47. Bande von
Ostwalds Klassikern herausgegeben von P. Stäckel. Leipzig, W. Engelmann.
1894.



[756] Ein anderer Ausdruck für Maxima- und Minimaaufgaben.



[757] Siehe S. 159 dies. Bandes.



[758] Siehe an früherer Stelle (S. 407).



[759] Lagrange, Über die Methode der Variation. 1770. Im 47. Bande
von Ostwalds Klassikern herausgegeben von P. Stäckel. Leipzig, W. Engelmann.
1894.



[760] Die betreffenden Arbeiten von Legendre und Jacobi hat P. Stäckel
gleichfalls im 47. Bande von Ostwalds Klassikern veröffentlicht.



[761] Mec. analyt. Partie II, Sect. II.



[762] E. Mach, Die Mechanik in ihrer Entwicklung. Leipzig 1897. S. 458.



[763] Mach, a. a O. S. 471.



[764] Essai d'une nouvelle méthode pour résoudre le problème des trois
corps. Paris 1788.



[765] Siehe Ostwalds Klassiker. Bd. 54.



[766] Siehe Ostwalds Klassiker. Bd. 93.



[767] J. L. de Lagrange, Über die Konstruktion geographischer Karten
(1779). Im 55. Bande von Ostwalds Klassikern der exakten Wissenschaften
herausgegeben von A. Wangerin. Leipzig, W. Engelmann. 1894.



[768] Lambert, Photometria sive de mensura et gradibus luminis, colorium
et umbrae, 1760. Das Werk wurde als 31., 32. und 33. Band von Ostwalds
Klassikern d. exakten Wissensch. übersetzt und mit zahlreichen Anmerkungen
herausgegeben von E. Anding. Leipzig, Verlag von W. Engelmann. 1892.



[769] Lamberts philosophische Werke verdienen deshalb besondere Beachtung,
weil sie aus dem Bestreben hervorgegangen sind, die Mathematik und
die exakte Beweisführung auf dem Gebiete der Philosophie zur Geltung zu
bringen. Ihre Titel lauten: 1. Neues Organon oder Gedanken über die Erforschung
und Bezeichnung des Wahren und dessen Unterscheidung von Irrtum
und Schein. Leipzig 1764. 2. Architektonik oder Theorie des Einfachen und
Ersten in der philosophischen und mathematischen Erkenntnis. Riga 1771.



[770] Bouguer, Traité d'optique sur la gradation de la lumière. Ouvrage
posthume. Paris 1760.



[771] Siehe darüber Zöllners Photometrische Untersuchungen.



[772] Zöllner, Photometrische Untersuchungen. S. 27 u. f.



[773] Über die Beziehung von Lamberts Photometrie zum neueren Standpunkte
der Wissenschaft handelt G. Recknagels gekrönte Preisschrift:
Lamberts Photometrie. München 1861.



[774] Ostwalds Klassiker Nr. 33. S. 63.



[775] Ostwalds Klassiker Nr. 31. S. 5.



[776] Durch die Entdeckung der konischen Refraktion.



[777] Ostwalds Klassiker. Bd. 31. S. 21. Auf diesen Grundsatz hatte
auch schon Euler hingewiesen.



[778] Ostwalds Klassiker. Bd. 32. S. 1 u. f.



[779] Ostwalds Klassiker. Bd. 32. S. 71.



[780] Dan. Bernoulli, Sur le son et sur les tons des tuyaux d'orgues
Mém. de Paris. 1762.



[781] Über die drehenden Schwingungen eines Stabes berichtete Chladni
in den neuen Schriften der naturforschenden Freunde in Berlin. II. Bd. 1799.



[782] Chladni, Entdeckungen über die Theorie des Klanges. 1787. Taf. VIII.
Fig. 87–90.



[783] Chladni wurde von Napoleon, der den Ergebnissen der physikalischen
Forschung das größte Interesse entgegenbrachte, ehrenvoll aufgenommen.
Napoleons Ausspruch: »Chladni läßt uns die Töne sehen«, machte die Runde
durch die ganze gebildete Welt. Siehe J. Ebstein »Aus Chladnis Leben
und Wirken« (Mitteilungen zur Geschichte der Med. und der Naturw., IV. Bd.
Nr. 3 (1905), S. 438 u. f.). Ebsteins Abhandlung enthält 18 bisher ungedruckte
Briefe Chladnis. Chladni hat die Aufnahme, die er bei den französischen
Gelehrten und am Hofe Napoleons fand, ausführlich geschildert
(in der musikalischen Zeitschrift »Cäcilia«). Er hielt sich in Paris fast
1½ Jahre auf (1808–1810). Im Jahre 1809 wurde er durch Laplace und
Berthollet dem Kaiser vorgestellt, um seine Versuche zu zeigen und seinen
Klavizylinder vorzuführen. Der Besuch dauerte mehrere Stunden. Am anderen
Tage wurde Chladni eine Gratifikation von 6000 Frank gesandt. Napoleon
zeigte sich auf dem Gebiete der Akustik gut bewandert. Er wußte recht wohl,
daß man noch nicht imstande sei, Flächen so dem Kalkül zu unterwerfen wie
Kurven. Er setzte daher 3000 Frank als Preis für eine mathematische Theorie
der Flächenschwingungen aus, auf denen die Chladnischen Figuren beruhen.



[784] Chladni, Die Akustik. Leipzig 1802.



[785] Siehe S. 316 ds. Bds.



[786] Pierre Bouguer wurde im Jahre 1698 in der Bretagne geboren und
starb 1758.



[787] Charles Maria de la Condamine wurde 1701 in Paris geboren
und starb im Jahre 1774.



[788] Pierre de Maupertuis wurde 1698 zu St. Malo geboren und trat
im Jahre 1731 in die Akademie ein. Zehn Jahre später berief ihn Friedrich
der Große nach Berlin und ernannte ihn zum Präsidenten der dortigen
Akademie. Während er diese Stellung bekleidete, hat Maupertuis wissenschaftlich
wenig geleistet; um so größeres Aufsehen erregte sein Streit mit
Voltaire, der die Entfremdung zwischen dem letzteren und dem Könige
zur Folge hatte. 1753 kehrte Maupertuis nach Paris zurück. Er starb im
Jahre 1759.



[789] 1 Toise = 1,949 m.



[790] Alexis Claude Clairaut (Clairault) wurde 1713 in Paris geboren.
Sein Vater war dort Lehrer der Mathematik. Er förderte seinen Sohn, der
einen ganz außergewöhnlichen Fall frühreifen mathematischen Talentes darbot,
in solchem Grade, daß der junge Clairaut schon in seinem 13. Lebensjahre
der Pariser Akademie eine Arbeit vorlegte, in der mehrere Kurven mit
den Hilfsmitteln der Infinitesimalrechnung diskutiert waren. Mit 16 Jahren
reichte Clairaut der Akademie eine Abhandlung ein, von welcher der Berichterstatter
sagte, die geschicktesten Mathematiker würden es sich zur Ehre anrechnen,
Verfasser dieser Schrift zu sein. (Näheres darüber siehe bei Cantor,
Gesch. d. Math. III. 1901. S. 779.) Clairaut starb 1765 in Paris.



[791] Clairaut, Théorie de la Figure de la Terre, tirée des Principes de
l'Hydrostatique. Paris 1743. Eine deutsche Ausgabe erschien als 189. Band
von Ostwalds Klass. d. exakt. Wiss. Leipzig, W. Engelmann. 1913.



[792] Mach, Die Mechanik in ihrer Entwicklung, historisch-kritisch dargestellt.
1901. S. 428 u. f.



[793] Dieser Satz besagt, daß bei einem kugelähnlichen Sphäroid die Schwere
von dem Gesetz, nach dem sich die innere Dichtigkeit ändert, unabhängig ist.
Er lautet:



g_{φ} = g0(1 + sin2φ(5/2 f/g0 - α)).



In dieser Formel bedeutet α die Abplattung, g0 und gφ die Beschleunigung
am Äquator, bzw. unter der Breite φ, und f die Zentrifugalkraft am Äquator.



[794] Siehe Bd. II S. 374.



[795] Siehe Bd. III Abschnitt 20.



[796] Gabriel Mouton (1618–1694), Observationes diametrorum solis et
lunae apparentium, medianarumque. pag. 427.



[797] Der Bericht über diese, von Méchain und Delambre ausgeführte
Messung erschien in drei Bänden in Paris in den Jahren 1806 bis 1810. Eine
Auswahl wurde übersetzt und herausgegeben im 181. Bande von Ostwalds
Klassikern der exakten Wissenschaften. Dieser enthält auch die von Borda
und Cassini verfaßte Abhandlung über die Länge des Sekundenpendels.
Leipzig, W. Engelmann. 1911.



[798] Um sie gegen Kugeln aus anderen Substanzen leicht auswechseln zu
können und auf diese Weise zu zeigen, daß der Wert von g für alle Substanzen
der gleiche sei.



[799] Bessel wiederholte die Bestimmung (Untersuchungen über die Länge
des einfachen Sekundenpendels. 1826. S. Bd. IV dies. Werkes). Er bediente
sich gleichfalls der Methode der Koinzidenzen und fand für Königsberg die
Länge gleich 440,8179 Linien, sowie für die entsprechende Beschleunigung
g = 9,81443 m. Kater bestimmte (1818) mit Hilfe des Reversionspendels
g zu 9,80804 m unter der Breite von London und auf den Meeresspiegel reduziert.
Kater, Experiments for determining the length of the pendulum vibrating
seconds in the latitude of London (Phil. Trans. 1818. Näheres siehe im
IV. Bande).



[800] Ostwalds Klassiker Nr. 181. S. 186.



[801] De visibili conjunctione inferiorum planetarum cum Sole.



[802] Methodus singularis, qua Solis parallaxis ope. Veneris intra Solem conspiciendae
tuto determinari poterit.



[803] Da sich die Abstände der Erde und der Venus von der Sonne wie
1 : 0,723 verhalten, so ergibt sich die Proportion cd : ab = 0,723:(1 - 0,723),
woraus folgt, daß das zunächst gesuchte Stück cd = 2,6ab ist.



[804] Joh. Müllers Lehrbuch der kosmischen Physik, 5. Aufl. Braunschweig
1894, Fig. 97.



[805] Siehe S. 274 d. Bds.



[806] Philosophical Transactions von 1718.



[807] Siehe S. 434 d. Bds.



[808] Maskelyne, An account of observations made on the mountain
Shehallien for finding its attraction. Philosophical Transactions for the year
1795 (Vol. LXV), pg. 500. Nevil Maskelyne wurde 1732 in London geboren
und starb 1811 in Greenwich als Astronom der dortigen Sternwarte. Im Jahre
1761 beobachtete er den Durchgang der Venus von St. Helena aus. Ferner
war er Begutachter der Ansprüche Harrisons und Mayers an den großen
Preis, den die englische Regierung für die Lösung des Längenproblems ausgesetzt
hatte. (Siehe S. 416.)



[809] Siehe Dannemann, Aus der Werkstatt großer Forscher, S. 354.



[810] Die Instrumente gaben damals schon einzelne Sekunden an, während
die Genauigkeit sich zur Zeit Tychos nur auf Minuten belief.



[811] Halley starb im Jahre 1742.



[812] Bradley, Account of a new discovered motion of the fixed stars
(Phil. Transact. 1728).



[813]
bc/ab = cotg 20ʺ; bc = ab · cotg 20ʺ





[814] J. H. Lamberts Abhandlungen zur Bahnbestimmung der Kometen
erschienen 1761, 1771 und 1772. Sie wurden neuerdings von J. Bauschinger
als 133. Band von Ostwalds Klassikern der exakten Wissenschaften herausgegeben.
Leipzig, W. Engelmann. 1902.



[815] Ostwalds Klassiker Nr. 133. S. 36.



[816] Miscell. Berol. Tom. VII. pag. 20.



[817] Ostwalds Klassiker Nr. 133. S. 65.



[818] Ostwalds Klassiker Nr. 133. S. 141.



[819] J. H. Lambert, Anmerkungen und Zusätze zur Entwerfung der Land-
und Himmelskarten. Herausgegeben von A. Wangerin als 54. Band von
Ostwalds Klassikern der exakten Wissenschaften. Leipzig, Verlag von
W. Engelmann. 1894.



[820] Ein entsprechendes Unternehmen war für Mitteleuropa die Reymannsche
Karte, von der 1806 die ersten 6 Sektionen erschienen. Die Karte
wuchs bis 1874 auf 405 Blätter (1 : 200000). Dann ging sie in den Besitz des
preußischen Generalstabs über, der den Umfang auf 796 Blätter erweiterte.



[821] Das Nähere hierüber siehe in Ostwalds Klassikern Bd. 54. S. 24 u. 67.



[822] Sie wurden 1777 in den Berichten der Petersburger Akademie der
Wissenschaften veröffentlicht und, übersetzt und erläutert, von A. Wangerin
als 93. Band von Ostwalds Klassikern wieder herausgegeben. Leipzig,
W. Engelmann. 1898.



[823] Über Kartenprojektion. Abhandlungen von Lagrange (1779) und
Gauß (1822). Ostwalds Klassiker der exakten Wissenschaften. Bd. 55.
Leipzig, W. Engelmann. 1894.



[824] Die Projektionsart rührt nicht von De Lisle, sondern von Mercator
her, der sie schon 1585 benutzt hat.



[825] L. Euler, Grundlage der sphärischen Trigonometrie, im 73. Bande
von Ostwalds Klassikern in deutscher Übersetzung herausgegeben von
E. Hammer. Leipzig, Verlag von W. Engelmann. 1896.



[826] Elemente der sphäroidischen Trigonometrie. Abhandlungen d. Berliner
Akademie. 1753. IX. 268–293.



[827] Tropfke, Geschichte der Elementarmathematik. II. S. 295.



[828] Zum Vergleich mögen Eulers Schreibweise und die damals übliche
Schreibweise des pythagoräischen Satzes für jedes beliebige ebene Dreieck
hier Platz finden:



a2 = b2 + c2 - 2bc cos A


und



BCq = ABq + ACq - 2AB × AC × (Cosin BAC)/(sin. tot.).




[829] Sie wurden 1807 und 1808 durch Mollweide und durch Delambre
bekannt gegeben.



[830] L. Euler, Allgemeine sphärische Trigonometrie in kurzer und durchsichtiger
Entwicklung von den einfachsten Voraussetzungen ausgehend. Im
73. Bande von Ostwalds Klassikern übersetzt und herausgegeben von
H. Hammer. Leipzig, W. Engelmann. 1896.



[831] Caroli a Linné, Systema naturae. 1768. Bd. III. S. 29 u. f.



[832] Die Natur dieses Vorganges konnte sich erst später durch die antiphlogistische
Lehre enthüllen.



[833] Natriumammoniumhydrophosphat, das man damals aus Harn darstellte.



[834] Als Blech und Draht kam Platin erst seit 1772 in den Handel.



[835] Wallerius, 1768.



[836] Hauy, 1801.



[837] Hauy, Traité de Minéralogie. 1801. Bd. V, p. VIII, Fig. 77.



[838] W. Nicholson (1753–1815). Description of a new instrument of
measuring the specific gravities of bodies. (Mem. Manchest. Soc. II. 1787.)



[839] Romé de l'Isle (1736–1790). Cristallographie ou description des
formes propres à tous les corps du règne minéral. Paris 1783.



[840] Namens Carangeot.



[841] Zittel, Geschichte der Geologie und der Paläontologie. S. 64.



[842] Kant, Geschichte der Naturbeschreibung des Erdbebens vom Jahre
1755. Die kleine Schrift erschien 1756.



[843] Lazzaro Moro, 1687–1740.



[844] Antonio Vallisneri (1661–1730) war Professor in Padua.



[845] A. Vallisneri, Dei corpi marini che sui monti si trovano. Venezia
1721.



[846] J. G. Lehmann war Professor der Chemie und Mineralogie in Berlin.
Er starb 1767.



[847] J. G. Lehmann, Versuch einer Geschichte der Flözgebirge. Berlin 1756.



[848] Jean Etienne Guettard wurde 1715 geboren und war Verwalter
einer naturgeschichtlichen Sammlung. Er machte zahlreiche Reisen und starb
1786 in Paris.



[849] Mém. Acad. roy. des Sciences pour 1702. S. 27. Sur quelques montagnes
de la France qui ont été Volcans.



[850] Nicolas Desmarest, 1725 geboren und 1815 als Leiter der Porzellanfabrik
zu Sèvres gestorben. Er reiste viele Jahre, um Frankreich und
Italien geologisch zu durchforschen.



[851] Zittel, Geschichte der Geologie. S. 56.



[852] George Louis Leclerc de Buffon.



[853] Buffon, Epoques de la Nature. 1778.



[854] Simon Peter Pallas.



[855] De Saussure, Rélation d'un voyage à la cime du Montblanc en
août 1787. Er ermittelte die Höhe des Montblanc zu 2426 Toisen. Vorher
hatte ein Führer den Montblanc erstiegen und dadurch Saussures Expedition
ermöglicht.



[856] Voyage dans les Alpes. 1779–1796. 4 Bde.



[857] Ein Jahr vorher war sein erstes Werk unter dem Titel »Von den
äußerlichen Kennzeichen der Fossilien« erschienen.



[858] Werner, Von den äußerlichen Kennzeichen der Fossilien.



[859] Georgius Agricola, De natura fossilium. Basileae 1546.
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[862] Werner, Von den äußeren Kennzeichen der Mineralien. S. 197.



[863] v. Kobell, Geschichte der Mineralogie. S. 93.



[864] Werner, a. a. O. S. 274.



[865] Werner, a. a. O. in der Einleitung.



[866] Er hieß K. W. Voigt und sammelte in der Rhön eine große Anzahl
von Beobachtungen, die auf das Deutlichste gegen den neptunischen Ursprung
des Basalts sprachen.



[867] Zittel, Geschichte der Geologie. S. 90.



[868] J. Hutton, Theory of the Earth. Edinburg 1795. 2 Bände. Ein
Auszug in deutscher Sprache erschien im 6. Bande von Voigts Magazin der
Physik.



[869] Die von Hall benutzten Vorrichtungen, sowie die mit ihnen in den
Jahren 1787–1805 erzielten geologischen Präparate werden im Museum der Geologischen
Gesellschaft zu London aufbewahrt. Es befinden sich darunter Porzellanröhren,
in denen Kreide unter Druck geschmolzen wurde, sowie Proben
von Basalt und Lava, die geschmolzen und unter verschiedenen Bedingungen
abgekühlt wurden, usw.



[870] Beide Anschauungen vertritt nach dem Vorgange Demokrits schon
Aristoteles. Siehe Bd. I S. 124 u. f.



[871] John Playfair (Schüler Huttons, lebte von 1748–1819), Illustration
of the Huttonian Theory. 1802.



[872] Scheuchzer, Herbarium diluvianum. 1721.



[873] Knorrs mit 300 vortrefflichen Kupfertafeln versehenes Werk vom
Jahre 1755, das unter dem Titel »Sammlung von Merkwürdigkeiten der Natur
und Altertümern des Erdbodens« in Nürnberg erschien.



[874] Georg Wolfgang Knorr, 1706–1761.



[875] G. A. Suckow, Näheres siehe Zittel, Geschichte der Geologie. S. 214.



[876] Siehe S. 476 dieses Bandes.



[877] Dr. G. Berthold, John Toland und der Monismus der Gegenwart.
Heidelberg 1876, Carl Winter.



[878] A. a. O. S. 5.



[879] Siehe die Bemerkung in den Zusätzen.



[880] Principia philosophiae. 1677. P. II. § 36. Es wird also irrtümlicherweise
die Bewegungsgröße für konstant gehalten.



[881] Richtig lautet der Name La Métherie.



[882] Système de la nature ou des lois du monde physique et morale. 1770.



[883] Siehe auch E. du Bois-Reymond, Lamettrie. Berlin 1875. Verlag
von A. Hirschwald. Eine deutsche Ausgabe des Systems der Natur erschien
1841 in Leipzig.



[884] Sie rühren zum großen Teile von E. Wiedemann (Wi) und J. Würschmidt
(Wü) her. Die Bemerkungen E. v. Lippmanns konnten sämtlich
im Text Platz finden.



Aus den Besprechungen der ersten Auflage.



Des Verfassers Grundriß einer Geschichte der Naturwissenschaften hat
in zweiter Auflage G. W. A. Kahlbaum (I, 160 und III, 75) in anerkennendster
Weise besprochen und zugleich die Gefühle ausgesprochen, die angesichts
der Erfolge dieses Werkes jeden Historiker der Naturwissenschaften beseelen
müssen. Aus den gleichen Gründen begrüßen wir es heute freudigst, daß
unser Gesellschaftsmitglied und Mitarbeiter den zweiten Teil dieses Buches
zu einem vierbändigen Werke ausgestalten will und davon bereits den ersten
Band vorzulegen vermag.


(H. Stadler in den Mitteilungen zur Geschichte der Medizin
und der Naturwissenschaften, Bd. X, 2. Heft.)


Der soeben erschienene 2. Band dieses großen Werkes behandelt die Zeit
von Galilei bis zur Mitte des 18. Jahrhunderts, also jene Epoche, in welcher
die Grundlagen der neueren Naturwissenschaften gelegt wurden. Auch in
diesem Bande hat sich der Verfasser mit Erfolg bemüht, eine Darstellung zu
schaffen, die nicht nur dem Historiker dient, sondern für jeden anregend ist,
der sich überhaupt für die Naturwissenschaft interessiert.


(Kölnische Zeitung, 20. Februar 1911.)


Ähnlich wie Cantors Vorlesungen über Geschichte der Mathematik ein
»standard work« allerersten Ranges bleiben werden, so wird auch Dannemanns
Werk von bleibendem Wert sein, das für den Geschichtsforscher wie
für den Mediziner, für den Lehrer wie für den Techniker großen Nutzen haben
und dessen Lektüre für jeden, der sich für die Naturwissenschaften interessiert,
eine Quelle hohen Genusses bilden wird.


(Monatsschrift für höhere Schulen, 1911, 6. Heft.)


Besonders dankenswert erscheint, wie Dannemann in allen diesen
Wissenschaften die verbindenden großen Gedanken herauszuschälen weiß, die
im hohen Maße geeignet sind, die Vertreter der einzelnen naturwissenschaftlichen
Disziplinen vor Einseitigkeit zu bewahren.


(Ärztliche Rundschau, 1910, XX. Jahrgang, Nr. 47.)


Für die Hebung der Kultur unseres Volkes kann dieses Buch, das die
Wissenschaft und ihre Erfolge als etwas Werdendes vorstellt, von größtem
Nutzen sein, da es die Erfolge fortschrittlichen Denkens gegenüber den
Schwächen dogmatischer Gesinnung aufs deutlichste vergegenwärtigt.


(Prometheus, 26. November 1910, XXII. Jahrgang.)




L'ouvrage me paraît excellent; il a d'ailleurs une qualité inappréciable;
c'est de n'avoir pas d'équivalent.


(Revue générale des Sciences. Paris 15. III. 1912.)


Das Gesamtwerk, dessen Inhalt durch gute Register und Literaturverzeichnisse
übersichtlich zusammengehalten wird, liegt nun, auch in äußerlich
schönem Gewande, vollständig vor; es gehört fraglos zu den besten, bestgeschriebenen,
originellsten und nutzbringendsten der neueren
naturwissenschaftlichen Literatur und ist mehr als jedes andere geeignet,
den immer unheilvoller hervortretenden Folgen der völligen Zersplitterung
unter den Naturforschern abzuhelfen und deren allgemeine Fortbildung
wieder zu heben. Es gereicht dem Verfasser zur Ehre, nicht minder aber
auch der ganzen deutschen Literatur.


(Prof. Dr. E. O. von Lippmann in der Chemiker-Zeitung 1913.)


Seit Jahren empfehle ich meinen Hörern in der einführenden Vorlesung
über experimentelle Chemie das Dannemannsche ausgezeichnete, noch nicht
nach Gebühr verbreitete Werk »Die Naturwissenschaften in ihrer Entwicklung
und in ihrem Zusammenhange«.


(Dr. A. Stock, Prof. a. d. Univ. Berlin und am Kaiser-Wilh.-Inst.
Dahlem, in d. Monatsschrift f. d. chem. u. biol. Unterr. 1920.)


Aus den Besprechungen des ersten Bandes
der zweiten Auflage.

So steht das Werk in seiner verjüngten Gestalt zweifellos auf der Höhe
und kann jedem, der sich für die Geschichte der Naturwissenschaften interessiert,
aufs beste empfohlen werden.


(Süddeutsche Zeitung, 23. Dezember 1920.)


Das Werk wird dem Lehrer einer höheren Schule Gelegenheit geben,
sich ohne zu große Mühe über alle Punkte zu vergewissern, die er in seinem
Unterricht zu verwerten beabsichtigt. Es wird aber zugleich auch dem Lehrer
der Hochschule als wertvoller Handweiser für eine Reihe von akademischen
Vorträgen über das Gesamtgebiet der Naturwissenschaften willkommen sein.
Und mit dem Verfasser hofft der Unterzeichnete, daß recht bald schon das
Bedürfnis derartiger Vorträge von allen unseren hohen Schulen anerkannt
werden möchte.


(S. Günther in der D. Lit.-Ztg. v. 11. u. 25. September 1920.)




Von dem Verfasser erschienen ferner:

Leitfaden für die Übungen im chemischen Unterricht
der oberen Klassen höherer Lehranstalten.
6. Aufl. B. G. Teubner, Leipzig 1920.

Aus der Werkstatt großer Forscher. 430 Seiten.
3. Aufl. Leipzig 1908. Wilhelm Engelmann.

Gebunden M. 13.50 einschließl. V.-T.-Z.

»Es sei jeder, der sich bisher noch nicht mit diesem vortrefflichen
Werke bekannt gemacht hat, darauf hingewiesen,
die sehr wertvolle Bekanntschaft nicht länger hinauszuschieben.«


(Prof. Dr. Wilh. Ostwald.)


Naturlehre für höhere Lehranstalten, auf
Schülerübungen gegründet. Hannover 1908. Hahnsche
Buchhandlung.

»Der Verfasser hat so alle Momente vereinigt, die zur
Erteilung eines zeitgemäßen Unterrichts von Belang sind
und zwar so, daß zu dem neuen Plane ein Übergang von
dem bestehenden her möglich ist.«


(Deutsche Literaturzeitung, 1909, Nr. 5.)


Handbuch für den physikalischen Unterricht.
J. Beltz, Langensalza 1919.

»Was in diesem Buche gesagt wird, faßt alle lebenskräftigen
Reformgedanken der letzten Jahre in geschickter Weise
zusammen.«


(R. Winderlich,
i. d. Ztschr. f. d. math. u. naturw. Unterr.)




VERLAG VON WILHELM ENGELMANN IN LEIPZIG

Logarithmisch-trigonometrische Tafeln mit
8 Dezimalstellen.

Enthaltend die Logarithmen aller Zahlen von 1–200000
und die Logarithmen der trigonometrischen Funktionen
für jede Sexagesimalsekunde des Quadranten. Mit Unterstützung
der Preußischen Akademie der Wissenschaften
in Berlin und der Akademie der Wissenschaften in Wien.
Neu berechnet und herausgegeben von Professor Dr. J.
Bauschinger und Professor Dr. J. Peters. 2 Bände.
Lex.-8.


M. 78.–


Aus den Besprechungen:

»... Mit ... hat die Tafelliteratur erstklassige Bereicherungen
erfahren, die von bleibendem Wert sind und für die Erstellung
von Tabellensammlungen vorbildlich sein sollten ...«


(Archiv der Mathematik und Physik.)


Zur Geschichte der astronomischen Meßwerkzeuge
von Purbach bis Reichenbach 1450–1830 von
Joh. A. Repsold. 1. Band. Mit 171 Abbildungen (VIII
und 132 Seiten gr. 8).


M. 24.–


Aus den Besprechungen:

»Das Buch, das sich überall als eine reiche Quelle der Belehrung
über die Zweckdienlichkeit und die sachgemäße Verwendung
der Instrumente, sowie über die Vorteile und Nachteile
der einzelnen Konstruktionen darbietet, wird gewiß nicht verfehlen,
einen dauernden, großen Nutzen für die Wissenschaft
zu stiften.«


(Astronomische Nachrichten, Bd. 177, Nr. 6.)


»Ein höchst interessantes, lehrreiches Werk ist es, das der
Verfasser, der wie kein anderer dazu berufen war, es zu schreiben,
den Mechanikern und Astronomen darbietet.«


(Zeitschrift für Instrumentenkunde. XXVIII. Jahrg., Sept. 1908.)


Vorstehende Preise einschließlich Verleger-Teuerungszuschlag.


Bei der Transkription vorgenommene Änderungen und weitere Anmerkungen:

In "»Stellt
man nun zwischen das Auge und dieses undeutliche Bild, und
zwar nahe dahinter eine zweite Sammellinse OP, so wird letztere
die von D und F kommenden Strahlen konvergent und das Bild
dadurch deutlich machen.« Auch wird dieses durch das Okular
erzeugte Bild, wie Kepler dartut, größer erscheinen als das Bild
das »die dem Auge nächststehende Linse (OP) von der entfernteren
Linse (AB) erhalten hatte«[2]." erstes öffnendes und zweites schließendes Anführungszeichen ergänzt.

In "Ließ Grimaldi durch die Öffnungen
CD und GH (siehe Abb. 30) einen
Lichtkegel fallen, der von dem Schirm IK aufgefangen wurde, so
besaßen die Grundflächen dieses Kegels nicht den Durchmesser
NO, den die geometrische Konstruktion auf Grund der geradlinigen
Fortpflanzung des Lichtes fordert, sondern einen größeren
Durchmesser IK." stand "angefangen" statt "aufgefangen", und "JK" statt "IK" (Text wurde Abbildung 30 angepasst).

In "Auf dieses Gebiet wurde Glauber dadurch geführt,
daß er die Darstellung der Salzsäure durch Einwirkung von
Schwefelsäure auf Kochsalz kennen lernte" stand "lehrte" statt "lernte".

In "Ferner könne der Wellenteil
BG (Abb. 85), der den leuchtenden
Punkt A zum Mittelpunkt hat,
sich nur bis zu dem von den Geraden
ABC und AGE begrenzten Bogen
CE ausbreiten." stand "dem Graden" statt "den Geraden".

In "z = (m1a12 + m2a22 + m3a32 ...)/(m1a1 + m2a2 + m3a3 ...)": Tiefergestellte 1 an der Variable a im Formelteil m1a12 hinzugefügt.

In "Σ{m(X - d2x/(dt2))δx + m(Y - d2y/(dt2))δy + m(Z - d2z/(dt2))δz} = 0." stand im mittleren Formelteil der Partikel "δy" in der Klammer.

Fußnote 97: In x_{ʹ} : x_{ʺ} = y_{ʹ}2 : y_{ʺ}2 wurde der Strich hinter dem x im ersten Formelteil ergänzt.
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